Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sprouting and Milling Processes
2.3. Bread Making
2.4. Simulated Gastrointestinal Digestion
2.5. Chemical Characterization of Raw and Sprouted Cañihua, Kiwicha, and Quinoa Flours
2.6. Total Soluble Phenolic Compounds (TSPC)
2.7. Determination of γ-Aminobutyric Acid (GABA)
2.8. Determination of Oxygen Radical Antioxidant Capacity (ORAC)
2.9. Estimation of In Vitro Glycemic Index
2.10. Acceptability Evaluation
2.11. Simplex Centroid Mixture Design
2.12. Statistical Analysis
3. Results and Discussion
3.1. Comparative Study between Nutritional Composition of Refined Wheat Flours and Sprouted Pseudo-cereal Flours
3.2. Effect of WF Replacement by Sprouted Pseudo-cereal Flours on Nutritional and Sensory Properties of Breads
3.3. Regression Models and Response Surface Analysis
3.4. Nutritional Properties of Optimised Bread and Effect of In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Ros, A.D.; Polo, A.; Rizzello, C.G.; Acin-Albiac, M.; Montemurro, M.; Cagno, R.D.; Gobbetti, M. Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiol. Spectr. 2021, 9, e00494-21. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.Z.M.; Shori, A.B.; Baba, A.S. Potential functional food ingredients in bread and their health benefits. Biointerface Res. Appl. Chem. 2022, 12, 6533–6542. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Kumar, K.; Dhaliwal, H.S. Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Biosci. 2021, 42, 101170. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Polo, A.; Rizzello, C.G. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 2158–2173. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.-A.; Van den Broeck, H.C.; Brouns, F.J.P.H.; De Brier, N.; et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef] [Green Version]
- Pilco-Quesada, S.; Tian, Y.; Yang, B.; Repo-Carrasco-Valencia, R.; Suomela, J.-P. Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). J. Cereal Sci. 2020, 94, 102996. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J.; Peñas, E. Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. Int. J. Food Sci. Technol. 2018, 53, 516–524. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Peñas, E.; Dueñas, M.; Frias, J.; Martínez-Villaluenga, C. Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT Food Sci. Technol. 2017, 76, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.; Miano, A.C.; Obregón, J.; Soriano-Colchado, J.; Barraza-Jáuregui, G. Malting process as an alternative to obtain high nutritional quality quinoa flour. J. Cereal Sci. 2019, 90, 102858. [Google Scholar] [CrossRef]
- Abderrahim, F.; Huanatico, E.; Repo-Carrasco-Valencia, R.; Arribas, S.M.; Gonzalez, M.C.; Condezo-Hoyos, L. Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). J. Cereal Sci. 2012, 56, 410–417. [Google Scholar] [CrossRef]
- Darwish, A.M.G.; Al- Jumayi, H.A.O.; Elhendy, H.A. Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti-anemic potential in Sprague–Dawley male albino rats. Cereal Chem. 2021, 98, 315–327. [Google Scholar] [CrossRef]
- Bhinder, S.; Kumari, S.; Singh, B.; Kaur, A.; Singh, N. Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chem. 2021, 346, 128915. [Google Scholar] [CrossRef]
- Horstmann, S.W.; Atzler, J.J.; Heitmann, M.; Zannini, E.; Lynch, K.M.; Arendt, E.K. A comparative study of gluten-free sprouts in the gluten-free bread-making process. Eur. Food Res. Technol. 2019, 245, 617–629. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa-enriched bread. J. Cereal Sci. 2020, 96, 103111. [Google Scholar] [CrossRef]
- Aguiar, E.V.; Santos, F.G.; Centeno, A.C.L.S.; Capriles, V.D. Defining Amaranth, Buckwheat and Quinoa Flour Levels in Gluten-Free Bread: A Simultaneous Improvement on Physical Properties, Acceptability and Nutrient Composition through Mixture Design. Foods 2022, 11, 848. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- AACC. Approved Methods of AACC. Method 08-03, 30-10, 9th ed.; The American Association of Cereal Chemists: St. Paul, MN, USA, 2010. [Google Scholar]
- McKie, V.A.; McCleary, B.V. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds. J. AOAC Int. 2019, 99, 738–743. [Google Scholar] [CrossRef] [Green Version]
- Pico, J.; Pismag, R.Y.; Laudouze, M.; Martinez, M.M. Systematic evaluation of the Folin–Ciocalteu and Fast Blue BB reactions during the analysis of total phenolics in legumes, nuts and plant seeds. Food Funct. 2020, 11, 9868–9880. [Google Scholar] [CrossRef]
- Tomé-Sánchez, I.; Martín-Diana, A.B.; Peñas, E.; Frias, J.; Rico, D.; Jiménez-Pulido, I.; Martínez-Villaluenga, C. Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. Front. Plant Sci. 2021, 12, 790898. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Laparra, J.M.; Haros, M. Impact of α-Amylase During Breadmaking on In Vitro Kinetics of Starch Hydrolysis and Glycaemic Index of Enriched Bread with Bran. Plant Foods Hum. Nutr. 2014, 69, 216–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornell, J.A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 403. [Google Scholar]
- Galvan, D.; Effting, L.; Cremasco, H.; Conte-Junior, C.A. Recent Applications of Mixture Designs in Beverages, Foods, and Pharmaceutical Health: A Systematic Review and Meta-Analysis. Foods 2021, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- Reguera, M.; Haros, C.M. Structure and Composition of Kernels. In Pseudocereals: Chemistry and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 28–48. [Google Scholar]
- Montemurro, M.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int. J. Food Microbiol. 2019, 302, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Ramos, K.C.; Haros, C.M. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods 2020, 9, 1859. [Google Scholar] [CrossRef] [PubMed]
- Pramai, P.; Thanasukarn, P.; Thongsook, T.; Jannoey, P.; Chen, F.; Jiamyangyuen, S. Glutamate Decarboxylase (GAD) Extracted from Germinated Rice: Enzymatic Properties and Its Application in Soymilk. J. Nutr. Sci. Vitaminol. 2019, 65, S166–S170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, D.; Han, C.; Yao, J.; Shen, S.; Yang, P. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 2011, 11, 2693–2713. [Google Scholar] [CrossRef]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-aminobutyric acid as a bioactive compound in foods: A review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Chauhan, A.; Saxena, D.C.; Singh, S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT Food Sci. Technol. 2015, 63, 939–945. [Google Scholar] [CrossRef]
- Jan, R.; Saxena, D.C.; Singh, S. Physico-chemical, textural, sensory and antioxidant characteristics of gluten—Free cookies made from raw and germinated Chenopodium (Chenopodium album) flour. LWT Food Sci. Technol. 2016, 71, 281–287. [Google Scholar] [CrossRef]
- Candioti, L.V.; De Zan, M.M.; Camara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F. Phytic Acid and Whole Grains for Health Controversy. Nutrients 2022, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Nasser, J.M.; Hammood, E.K. Effect of natural phytase, fermentation, and baking processes on phytate degradation in wheat bread manufactured from local mills flour. Iraqi J. Sci. 2019, 60, 1920–1927. [Google Scholar] [CrossRef]
- Lux, P.E.; Fuchs, L.; Wiedmaier-Czerny, N.; Frank, J. Oxidative stability of tocochromanols, carotenoids, and fatty acids in maize (Zea mays L.) porridges with varying phytate concentrations during cooking and in vitro digestion. Food Chem. 2022, 378, 132053. [Google Scholar] [CrossRef]
- Hussin, F.S.; Chay, S.Y.; Hussin, A.S.M.; Wan Ibadullah, W.Z.; Muhialdin, B.J.; Abd Ghani, M.S.; Saari, N. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Sci. Rep. 2021, 11, 9417. [Google Scholar] [CrossRef]
- Diep, T.T.; Yoo, M.J.Y.; Rush, E. Effect of In Vitro Gastrointestinal Digestion on Amino Acids, Polyphenols and Antioxidant Capacity of Tamarillo Yoghurts. Int. J. Mol. Sci. 2022, 23, 2526. [Google Scholar] [CrossRef]
- Hidalgo, A.; Ferraretto, A.; De Noni, I.; Bottani, M.; Cattaneo, S.; Galli, S.; Brandolini, A. Bioactive compounds and antioxidant properties of pseudocereals-enriched water biscuits and their in vitro digestates. Food Chem. 2018, 240, 799–807. [Google Scholar] [CrossRef]
- Bączek, N.; Jarmułowicz, A.; Wronkowska, M.; Haros, C.M. Assessment of the glycaemic index, content of bioactive compounds, and their in vitro bioaccessibility in oat-buckwheat breads. Food Chem. 2020, 330, 127199. [Google Scholar] [CrossRef]
- Rojas-Bonzi, P.; Vangsøe, C.T.; Nielsen, K.L.; Lærke, H.N.; Hedemann, M.S.; Knudsen, K.E.B. The Relationship between In Vitro and In Vivo Starch Digestion Kinetics of Breads Varying in Dietary Fibre. Foods 2020, 9, 1337. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.-S.; Zannini, E.; Arendt, E.K. In vitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. J. Cereal Sci. 2013, 58, 431–436. [Google Scholar] [CrossRef]
- Romão, B.; Falcomer, A.L.; Palos, G.; Cavalcante, S.; Botelho, R.B.A.; Nakano, E.Y.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; et al. Glycemic Index of Gluten-Free Bread and Their Main Ingredients: A Systematic Review and Meta-Analysis. Foods 2021, 10, 506. [Google Scholar] [CrossRef] [PubMed]
Parameters | WF | SCF | SKF |
---|---|---|---|
Starch (g/100 g dw) | 71.63 ± 0.77 c | 41.21 ± 1.47 b | 32.45 ± 0.85 a |
TDF (g/100 g dw) | 8.50 ± 0.78 a | 22.06 ± 0.83 b | 23.06 ± 0.67 b |
IDF (g/100 g dw) | 0.73 ± 0.26 a | 15.28 ± 0.95 b | 16.18 ± 0.60 b |
SDF (g/100 g dw) | 7.77 ± 0.53 b | 6.88 ± 0.12 a | 6.87 ± 0.07 a |
Protein (g/100 g dw) | 12.63 ± 0.03 a | 19.11 ± 0.27 c | 15.38 ± 0.11 b |
Fat (g/100 g dw) | 1.02 ± 0.10 a | 6.23 ± 0.25 b | 5.86 ± 0.38 b |
Ash (g/100 g dw) | 0.56 ± 0.01 a | 2.68 ± 0.05 b | 2.85 ± 0.08 b |
PA (g/100 g dw) | 0.19 ± 0.00 a | 0.88 ± 0.01 b | 1.24 ± 0.02 c |
GABA (mg/100 g dw) | 13.67 ± 0.48 a | 100.00 ± 22.45 b | 217.98 ± 1.48 c |
TSPC (mg GAE/100 g dw) | 63.97 ± 4.53 a | 386.12 ±27.83 c | 144.72 ± 2.09 b |
ORAC (μmol TE/g dw) | 18.55 ± 4.02 a | 114.92 ± 14.17 c | 35.44 ± 4.55 b |
Bread Type | Recipe no. | Proportion of Flours a | PA (g/100 g) | GABA (mg/100 g) | TSPC (mg GAE/100 g) | ORAC (μmol TE/g) | ODOR | COLOR | TASTE | TEXTURE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SKF | SCF | WF | ||||||||||
BrKC | 1 | 8.33 | 8.33 | 83.33 | 0.26 ± 0.03 b | 16.45 ± 0.25 bc | 173.34 ± 12.59 de | 56.55 ± 1.47 de | 6.68 ± 1.46 bcde | 7.41 ± 1.20 a | 6.32 ± 1.32 abc | 7.32 ± 1.49 a |
2 | 15 | 5 | 80 | 0.30 ± 0.03 bcd | 19.08 ± 0.88 def | 123.24 ± 11.65 bc | 47.62 ± 3.81 cd | 6.04 ± 1.15 ab | 7.13 ± 1.46 a | 6.48 ± 1.31 abc | 7.28 ± 1.25 a | |
3 | 10 | 10 | 80 | 0.30 ± 0.05 bcd | 19.39 ± 0.09 def | 159.89 ± 2.77 cde | 60.40 ± 6.67 de | 5.41 ± 1.30 a | 6.95 ± 1.44 a | 5.84 ± 1.57 a | 7.11 ± 1.43 a | |
4 | 5 | 15 | 80 | 0.25 ± 0.01 b | 18.21 ± 0.06 cde | 237.46 ± 1.58 fg | 66.30 ± 4.51 e | 7.01 ± 1.50 bcdefg | 7.48 ± 1.19 a | 6.28 ± 1.41 abc | 7.41 ± 1.26 a | |
5 | 5 | 15 | 80 | 0.30 ± 0.01 bcd | 18.62 ± 0.05 de | 251.17 ± 3.36 g | 58.09 ± 2.23 de | 7.26 ± 1.38 cdefg | 7.56 ± 1.36 a | 6.14 ± 1.35 ab | 7.69 ± 1.20 a | |
6 | 5 | 10 | 85 | 0.25 ± 0.02 b | 16.52 ± 0.53 bc | 200.46 ± 1.20 ef | 51.40 ± 4.47 cd | 6.62 ± 1.29 bcde | 7.13 ± 1.37 a | 7.40 ± 1.30 cdef | 7.92 ± 1.07 a | |
7 | 6.67 | 11.67 | 81.67 | 0.27 ± 0.01 bc | 19.69 ± 0.30 ef | 262.30 ± 15.89 g | 53.43 ± 0.86 de | 6.42 ± 1.09 abcd | 7.08 ± 1.23 a | 6.82 ± 1.13 abcd | 7.15 ± 1.23 a | |
8 | 5 | 5 | 90 | 0.24 ± 0.01 b | 12.39 ± 0.67 a | 112.15 ± 12.49 b | 38.79 ± 1.19 bc | 7.87 ± 1.38 fg | 7.39 ± 1.14 a | 8.53 ± 1.11 f | 7.90 ± 1.30 a | |
9 | 15 | 5 | 80 | 0.42 ± 0.01 e | 17.63 ± 0.53 cd | 111.96 ± 7.76 b | 39.37 ± 0.59 bc | 6.31 ± 1.43 abc | 7.24 ± 1.20 a | 6.32 ± 1.20 abc | 7.22 ± 1.29 a | |
10 | 10 | 5 | 85 | 0.35 ± 0.00 cde | 15.70 ± 0.19 b | 116.63 ± 0.59 b | 49.09 ± 0.04 cd | 7.56 ± 1.31 defg | 7.14 ± 1.19 a | 7.16 ± 1.18 bcde | 7.45 ± 1.31 a | |
11 | 6.67 | 6.67 | 86.67 | 0.28 ± 0.01 bc | 19.48 ± 0.18 def | 165.17 ± 0.31 cde | 51.64 ± 0.53 cd | 7.27 ± 1.20 cdefg | 6.91 ± 1.11 a | 7.67 ± 1.22 def | 7.81 ± 1.53 a | |
12 | 5 | 10 | 85 | 0.31 ± 0.01 bcd | 20.51 ± 0.08 f | 196.78 ± 18.70 ef | 55.79 ± 0.97 de | 6.73 ± 1.30 bcdef | 6.90 ± 1.18 a | 7.63 ± 1.16 def | 7.57 ± 1.13 a | |
13 | 11.67 | 6.67 | 81.67 | 0.36 ± 0.01 de | 23.62 ± 0.50 g | 149.75 ± 13.42 bcd | 48.74 ± 3.29 cd | 5.90 ± 1.18 ab | 7.05 ± 1.21 a | 6.40 ± 1.13 abc | 7.21 ± 1.08 a | |
14 | 5 | 5 | 90 | 0.30 ± 0.01 bcd | 15.48 ± 0.42 b | 131.18 ± 8.20 bcd | 46.86 ± 2.94 cd | 7.61 ± 1.29 efg | 7.19 ± 1.17 a | 8.26 ± 1.36 ef | 8.19 ± 1.18 a | |
BrWF | 15 | 0 | 0 | 100 | 0.20 ± 0.01 a | 11.26 ± 0.40 a | 46.80 ± 3.47 a | 18.45 ± 1.82 a | 7.95 ± 1.04 g | 7.89 ± 0.92 a | 7.91 ± 0.97 def | 8.03 ± 0.85 a |
Dependent Variables | Mathematical Models | R2 (pred) | R2 (adj) |
---|---|---|---|
PA | ŷ = + 0.36X1 + 0.27X2 + 0.27X3 | 0.80 | 0.77 |
TSPC | ŷ = +117.02X1 + 258.03X2 + 131.84X3 | 0.87 | 0.85 |
ORAC | ŷ = +46.40X1 + 64.73X2 + 42.54X3 | 0.75 | 0.70 |
ODOR | ŷ = 6.12X1 + 7.15 X2 + 7.74X3 − 4.81X1 X2 + 2.52 X1 X3 − 2.79X2 X3 | 0.95 | 0.92 |
TASTE | ŷ = 6.16 X1 + 6.21 X2 + 8.39X3 | 0.90 | 0.89 |
TEXTURE | ŷ = 7.11 X1 + 7.40X2 + 8.00X3 | 0.72 | 0.70 |
Digestion Phase/Time | Parameters | BrWF | BrKC |
---|---|---|---|
None/0 min | PA (g/100 g) | 0.20 ± 0.01 a | 0.25 ± 0.01 a,* |
GABA (mg/100 g) | 11.26 ± 0.40 a | 18.21 ± 0.60 a,* | |
TSPC (mg GAE/100 g) | 46.80 ± 3.47 a | 237.46 ± 1.58 a,* | |
ORAC (μmol TE/g) | 18.45 ± 1.82 a | 66.06± 3.21 a,* | |
Gastric/120 min | PA (g/100 g) | 0.26 ± 0.02 a | 0.23 ± 0.02 a |
GABA (mg/100 g) | 9.67 ± 0.90 a | 17.00 ± 0.24 a,* | |
TSPC (mg GAE/100 g) | 202.44 ± 16.13 b | 362.96 ± 4.47 b,* | |
ORAC (μmol TE/g) | 38.40 ± 1.84 b | 93.74 ± 6.17 b,* | |
Intestinal/120 min | PA (g/100 g) | 0.26 ± 0.01 a | 0.26 ± 0.03 a |
GABA (mg/100 g) | 11.7 ± 1.28 a | 18.5 ± 1.02 a,* | |
TSPC (mg GAE/100 g) | 263.11 ± 4.21 c | 357.18 ± 4.38 b | |
ORAC (μmol TE/g) | 45.33 ± 5.42 c | 109.11 ± 8.71 c,* | |
In vitro starch digestibility | Starch (g /100 g) | 55.89 ± 0.27 | 45.52 ± 0.96 * |
HI | 96.7 ± 1.54 | 79.14 ± 1.06 * | |
AUC | 31,642.5 ± 999.3 | 25,042.2 ± 336.7 * | |
GI | 92.81 ± 0.85 | 83.16 ± 0.58 * |
Optimum Desirability Value (D) | Optimal Formulation | Response Variables | Predicted Values | −95% CI | +95% CI |
---|---|---|---|---|---|
0.704 | 5% SKF, 23% SCF, 72% WF | PA (g/100 g) | 0.27 | 0.24 | 0.32 |
GABA (mg/100 g) | 19.58 | 12.39 | 23.62 | ||
TSPC (mg GAE/100 g) | 258.03 | 211.96 | 262.30 | ||
ORAC (μmol TE/g) | 63.88 | 58.78 | 66.30 | ||
Odor | 7.10 | 6.41 | 7.37 | ||
Taste | 7.2 | 6.84 | 7.53 | ||
Texture | 7.62 | 7.51 | 8.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucar-Menacho, L.M.; Simpalo-López, W.D.; Castillo-Martínez, W.E.; Esquivel-Paredes, L.J.; Martínez-Villaluenga, C. Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods 2022, 11, 1541. https://doi.org/10.3390/foods11111541
Paucar-Menacho LM, Simpalo-López WD, Castillo-Martínez WE, Esquivel-Paredes LJ, Martínez-Villaluenga C. Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods. 2022; 11(11):1541. https://doi.org/10.3390/foods11111541
Chicago/Turabian StylePaucar-Menacho, Luz María, Wilson Daniel Simpalo-López, Williams Esteward Castillo-Martínez, Lourdes Jossefyne Esquivel-Paredes, and Cristina Martínez-Villaluenga. 2022. "Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes" Foods 11, no. 11: 1541. https://doi.org/10.3390/foods11111541
APA StylePaucar-Menacho, L. M., Simpalo-López, W. D., Castillo-Martínez, W. E., Esquivel-Paredes, L. J., & Martínez-Villaluenga, C. (2022). Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods, 11(11), 1541. https://doi.org/10.3390/foods11111541