Isotope Fingerprints of Common and Tartary Buckwheat Grains and Milling Fractions: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Milling Process and Sample Preparation
2.3. Stable Isotope Ratios
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Primrose, S.; Woolfe, M.; Rollinson, S. Food forensics: Methods for determining the authenticity of foodstuffs. Trends Food Sci. Technol. 2010, 21, 582–590. [Google Scholar] [CrossRef]
- Kelly, S.; Brodie, C.; Hilkert, A. Isotopic-Spectroscopic Technique: Stable Isotope-Ratio Mass Spectrometry (IRMS). In Modern Techniques for Food Authentication, 2nd ed.; Sun, D.-W., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018; pp. 349–413. [Google Scholar]
- Laursen, K.H.; Schjoerring, J.K.; Kelly, S.D.; Husted, S. Authentication of organically grown plants—Advantages and limitations of atomic spectroscopy for multielement and stable isotope analysis. TrAC—Trends Anal. Chem. 2014, 59, 73–82. [Google Scholar] [CrossRef]
- Laursen, K.H.; Mihailova, A.; Kelly, S.D.; Epov, V.N.; Bérail, S.; Schjoerring, J.K.; Donard, O.F.X.; Larsen, E.H.; Pedentchouk, N.; Marca-Bell, A.D.; et al. Is it really organic?—Multi-isotopic analysis as a tool to discriminate between organic and conventional plants. Food Chem. 2013, 141, 2812–2820. [Google Scholar] [CrossRef] [PubMed]
- Donarski, J.; Camin, F.; Fauhl-Hassek, C.; Posey, R.; Sudnik, M. Sampling guidelines for building and curating food authenticity databases. Trends Food Sci. Technol 2019, 90, 187–193. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC—Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- Luykx, D.M.A.M.; van Ruth, S.M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 2008, 107, 897–911. [Google Scholar] [CrossRef]
- Morin, J.-F.; Lees, M.; Vermeulen, P.; Baeten, V.; Maestri, E.; Marmiroli, N. Cereals and cereal-based products. In FoodIntegrity Handbook: A Guide to Food Authenticity Issues and Analytical Solutions; Morin, J.-F., Lees, M., Eds.; Eurofins Analytics France: Nantes, France, 2018; pp. 101–126. [Google Scholar]
- Asfaha, D.G.; Quétel, C.R.; Thomas, F.; Horacek, M.; Wimmer, B.; Heiss, G.; Dekant, C.; Deters-Itzelsberger, P.; Hoelzl, S.; Rummel, S.; et al. Combining isotopic signatures of n(87Sr)/n(86Sr) and light stable elements (C, N, O, S) with multi-elemental profiling for the authentication of provenance of European cereal samples. J. Cereal Sci. 2011, 53, 170–177. [Google Scholar] [CrossRef]
- Longobardi, F.; Sacco, D.; Casiello, G.; Ventrella, A.; Sacco, A. Characterization of the Geographical and Varietal Origin of Wheat and Bread by Means of Nuclear Magnetic Resonance (NMR), Isotope Ratio Mass Spectrometry (IRMS) Methods and Chemometrics: A Review. Agric. Sci. 2015, 6, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wei, Y.; Lu, H.; Wei, S.; Jiang, T.; Zhang, Y.; Guo, B. Combination of the 87Sr/86Sr ratio and light stable isotopic values (δ13C, δ15N and δD) for identifying the geographical origin of winter wheat in China. Food Chem. 2016, 212, 367–373. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Y.; Wei, S.; Jiang, T.; Zhang, S.; Guo, B. δ2H of wheat and soil water in different growth stages and their application potentialities as fingerprints of geographical origin. Food Chem. 2017, 226, 135–140. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Badini, R.G.; Inga, M.; Ostera, H.A.; Cagnoni, M.; Gautier, E.A.; García, P.P.; Hoogewerff, J.; Wunderlin, D.A. Elemental and isotopic fingerprint of Argentinean wheat. matching soil, water, and crop composition to differentiate provenance. J. Agric. Food Chem. 2013, 61, 3763–3773. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, D.; Shree, P.; Singh, D.K. Stable isotope ratio analysis in determining the geographical traceability of Indian wheat. Food Control 2017, 79, 169–176. [Google Scholar] [CrossRef]
- Bhinder, S.; Kaur, A.; Singh, B.; Yadav, M.P.; Singh, N. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Res. Int. 2020, 130, 108946. [Google Scholar] [CrossRef] [PubMed]
- Sinkovič, L.; Kokalj Sinkovič, D.; Meglič, V. Milling fractions composition of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Food Chem. 2021, 365, 130459. [Google Scholar] [CrossRef] [PubMed]
- Sinkovič, L.; Kokalj, D.; Vidrih, R.; Meglič, V. Milling fractions fatty acid composition of common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum (L.) Gaertn) buckwheat. J. Stored Prod. Res. 2020, 85, 101551. [Google Scholar] [CrossRef]
- Salim, N.A.A.; Mostapa, R.; Othman, Z.; Daud, N.M.; Harun, A.R.; Mohamed, F. Geographical identification of Oryza sativa ‘MR 220CL’ from Peninsular Malaysia using elemental and isotopic profiling. Food Control 2020, 110, 106967. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agriculture Organization (FAO): Crops Data. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 March 2022).
- Luo, D.; Dong, H.; Luo, H.; Xian, Y.; Wan, J.; Guo, X.; Wu, Y. The application of stable isotope ratio analysis to determine the geographical origin of wheat. Food Chem. 2015, 174, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Bontempo, L.; Camin, F.; Paolini, M.; Micheloni, C.; Laursen, K.H. Multi-isotopic signatures of organic and conventional Italian pasta along the production chain. J. Mass Spectrom. 2016, 51, 675–683. [Google Scholar] [CrossRef]
- Schmidt, H.L.; Roßmann, A.; Voerkelius, S.; Schnitzler, W.H.; Georgi, M.; Graßmann, J.; Zimmermann, G.; Winkler, R. Isotope characteristics of vegetables and wheat from conventional and organic production. Isotopes Environ. Health Stud. 2005, 41, 223–228. [Google Scholar] [CrossRef]
- Gregorčič, S.H.; Strojnik, L.; Potočnik, D.; Vogel-Mikuš, K.; Jagodic, M.; Camin, F.; Zuliani, T.; Ogrinc, N. Can We Discover Truffle’s True Identity? Molecules 2020, 25, 2217. [Google Scholar] [CrossRef]
- Davidian, J.-C.; Kopriva, S. Regulation of Sulfate Uptake and Assimilation—The Same or Not the Same? Mol. Plant 2010, 3, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Pramanik, K.; Panda, D.; Dutta, D.; Karmakar, S.; Bose, B. Sulfur in Seeds: An Overview. Plants 2022, 11, 450. [Google Scholar] [CrossRef] [PubMed]
- Pongrac, P.; Vogel-Mikuš, K.; Regvar, M.; Vavpetič, P.; Pelicon, P.; Kreft, I. Improved lateral discrimination in screening the elemental composition of buckwheat grain by micro-PIXE. J. Agric. Food Chem. 2011, 59, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Buša, L.; Bērtiņš, M.; Vīksna, A.; Legzdiņa, L.; Kobzarevs, D. Evaluation of carbon, nitrogen, and oxygen isotope ratio measurement data for characterization of organically and conventionally cultivated spring barley (Hordeum vulgare L.) grain. Agron. Res. 2021, 19, 1364–1372. [Google Scholar]
- Gatzert, X.; Chun, K.P.; Boner, M.; Hermanowski, R.; Mäder, R.; Breuer, L.; Gattinger, A.; Orlowski, N. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany. Isotopes Environ. Health Stud. 2021, 57, 281–300. [Google Scholar] [CrossRef]
Year | Buckwheat Species | Fraction | δ13C (‰) | δ15N (‰) | δ34S (‰) |
---|---|---|---|---|---|
I | Common | Whole grains | −29.5 | 8.4 | 6.7 |
Hulls | −29.8 | 7.8 | 6.6 | ||
Semolina | −29.3 | 8.5 | 5.2 | ||
Light flour | −29.1 | 8.5 | 5.4 | ||
Tartary | Whole grains | −28.8 | 7.7 | 5.5 | |
Hulls | −29.4 | 6.7 | 7.7 | ||
Semolina | −28.8 | 7.8 | 5.2 | ||
Light flour | −28.2 | 7.5 | 6.7 | ||
II | Common | Whole grains | −30.2 | 6.4 | 5.4 |
Hulls | −31.1 | 6.1 | 10.6 * | ||
Semolina | −30.0 | 6.2 | 5.0 | ||
Light flour | −29.6 | 6.5 | 5.2 | ||
Tartary | Whole grains | −28.4 | 8.9 | 8.0 | |
Hulls | −28.9 | 8.0 | 7.9 | ||
Semolina | −28.6 | 9.0 | 5.5 | ||
Light flour | −27.9 | 8.7 | 7.5 | ||
III | Common | Whole grains | −30.3 | 9.3 | 7.2 |
Tartary | Whole grains | −27.7 | 9.8 | 5.5 | |
Range | (−31.1)–(−27.7) | 6.1–9.8 | 5.2–8.0 |
Year | Buckwheat Species | Accession Name | Cultivation Field | δ13C (‰) | δ15N (‰) | δ34S (‰) |
---|---|---|---|---|---|---|
III | Common | CB_Eva | Organic | −30.3 | 9.3 | 7.8 |
CB_Darja | Conventional | −28.6 | 5.0 | 4.6 | ||
CB_Darja Semenarna | −30.0 | 5.3 | 4.7 | |||
CB_212 | −28.1 | 4.4 | 5.3 | |||
CB_Čebelica | −29.6 | 6.0 | 3.6 | |||
CB_SUNOR 2007/41 | −29.3 | 5.2 | 5.1 | |||
CB_SUNOR 2010-14 | −29.3 | 4.6 | 4.6 | |||
CB_Bamby | −29.3 | 4.0 | 4.8 | |||
Range | (−30.3)–(−28.1) | 4.0–9.3 | 3.6–7.8 | |||
Tartary | TB_Doris | Organic | −27.7 | 9.8 | 5.8 | |
TB_26 | Conventional | −29.3 | 3.5 | 3.9 | ||
TB_96 | −29.6 | 3.4 | 3.9 | |||
TB_61 | −29.4 | 3.7 | 3.7 | |||
TB_66 | −29.4 | 3.3 | 3.6 | |||
TB_156 | −29.6 | 3.7 | 4.0 | |||
TB_115 | −29.3 | 4.4 | 4.4 | |||
TB_116 | −30.0 | 4.4 | 4.3 | |||
TB_65 | −30.1 | 4.1 | 4.2 | |||
TB_213 | −29.5 | 3.8 | 3.3 | |||
TB_29 | −29.2 | 4.3 | 4.1 | |||
Range | (−30.1)–(−27.7) | 6.1–9.8 | 3.6–5.8 |
Parameter | Milling Fractions | Variety | Season | Type of Production |
---|---|---|---|---|
δ13C (‰) | p = 0.463 | p = 0.550 | p = 0.902 | p = 0.422 |
δ15N (‰) | p = 0.402 | p = 0.519 | p = 0.156 | p = 0.003 |
δ34S (‰) | p = 0.035 | p = 0.382 | p = 0.055 | p = 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkovič, L.; Ogrinc, N.; Potočnik, D.; Meglič, V. Isotope Fingerprints of Common and Tartary Buckwheat Grains and Milling Fractions: A Preliminary Study. Foods 2022, 11, 1414. https://doi.org/10.3390/foods11101414
Sinkovič L, Ogrinc N, Potočnik D, Meglič V. Isotope Fingerprints of Common and Tartary Buckwheat Grains and Milling Fractions: A Preliminary Study. Foods. 2022; 11(10):1414. https://doi.org/10.3390/foods11101414
Chicago/Turabian StyleSinkovič, Lovro, Nives Ogrinc, Doris Potočnik, and Vladimir Meglič. 2022. "Isotope Fingerprints of Common and Tartary Buckwheat Grains and Milling Fractions: A Preliminary Study" Foods 11, no. 10: 1414. https://doi.org/10.3390/foods11101414