Near-Infrared Spectroscopy (NIRS) as a Tool for Classification of Pre-Sliced Iberian Salchichón, Modified Atmosphere Packaged (MAP) According to the Official Commercial Categories of Raw Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Iberian Salchichón Samples and Packaging
2.2. NIRS Spectra Acquisition and Spectral Pre-Treatment
2.3. NIR Qualitative Analysis
2.3.1. PLS-DA
- -
- SE refers to the percentage of samples of a given class that the model correctly recognises as belonging to that class:
- -
- SP refers to samples that do not belong to a given class and are correctly rejected by the model:
2.3.2. SIMCA
2.3.3. LDA
2.4. Quantitative NIR Analysis
2.5. Reference Analysis
3. Results
3.1. Exploration of the Spectral Data
3.2. NIRS Qualitative Predictive Models
3.3. NIRS Quantitative Predictive Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Informe del Volumen de Productos Ibéricos Certificados Comercializados; Spanish Ministry of Agriculture, Fisheris and Food: Madrid, Spain, 2014.
- Pugliese, C.; Sirtori, F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012, 90, 511–518. [Google Scholar] [CrossRef]
- Contador, R.; Ortiz, A.; Ramírez, M.D.R.; García-Torres, S.; López-Parra, M.M.; Tejerina, D. Physico-chemical and sensory qualities of Iberian sliced dry-cured loins from various commercial categories and the effects of the type of packaging and refrigeration time. LWT 2021, 141, 110876. [Google Scholar] [CrossRef]
- García-Torres, S.; Contador, R.; Ortiz, A.; Ramírez, R.; López-Parra, M.; Tejerina, D. Physico-chemical and sensory characterization of sliced Iberian chorizo from raw material of three commercial categories and stability during refrigerated storage packaged under vacuum and modified atmospheres. Food Chem. 2021, 354, 129490. [Google Scholar] [CrossRef]
- Real Decreto 4/2014 de 10 de Enero por el que se Aprueba la Norma de Calidad Para la Carne, el Jamón, la Paleta y la Caña de Lomo Ibérico; Spanish Ministry of Agriculture, Fisheris and Food: Madrid, Spain, 2014.
- Horcada, A.; Valera, M.; Juárez, M.; Fernández-Cabanás, V. Authentication of Iberian pork official quality categories using a portable near infrared spectroscopy (NIRS) instrument. Food Chem. 2020, 318, 126471. [Google Scholar] [CrossRef]
- Tejerina, D.; Contador, R.; Ortiz, A. Near infrared spectroscopy (NIRS) as tool for classification into official commercial categories and shelf-life storage times of pre-sliced modified atmosphere packaged Iberian dry-cured loin. Food Chem. 2021, 356, 129733. [Google Scholar] [CrossRef] [PubMed]
- Parra, V.; Viguera, J.; Sánchez, J.; Peinado, J.; Espárrago, F.; Gutierrez, J.; Andrés, A. Modified atmosphere packaging and vacuum packaging for long period chilled storage of dry-cured Iberian ham. Meat Sci. 2010, 84, 760–768. [Google Scholar] [CrossRef]
- García-Esteban, M.; Ansorena, D.; Astiasarán, I. Comparison of modified atmosphere packaging and vacuum packaging for long period storage of dry-cured ham: Effects on colour, texture and microbiological quality. Meat Sci. 2004, 67, 57–63. [Google Scholar] [CrossRef]
- Fernández-Cabanás, V.M.; Polvillo, O.; Rodríguez-Acuña, R.; Botella, B.; Horcada, A. Rapid determination of the fatty acid profile in pork dry-cured sausages by NIR spectroscopy. Food Chem. 2011, 124, 373–378. [Google Scholar] [CrossRef]
- Tejerina, D.; García-Torres, S.; Cabeza de Vaca, M.; Ortiz, A.; Romero-Fernández, M. Evaluation of near-infrared spectroscopy (NIRS) for the quality control of packaged cured ham-sliced from Iberian pigs. Arch Zootec. 2018, 1, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Faber, M. A closer look at the bias–variance trade off in multivariate calibration. J. Chemom. 1999, 13, 185–192. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.; Lister, S. Standard normal variate transformation and de-trending of near infrared diffuse reflectance spectrea. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. A User Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2003. [Google Scholar]
- Oliveri, P.; Malegori, C.; Casale, M. Multivariate Classification Techniques. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Reference Collection in Chemistry; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Tao, F. Spectral Techniques for Meat Quality and Safety Assessment. In Advances in Meat Processing Technology, 1st ed.; Peng, Y., Bekhit, A., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Edney, M.; Morgan, J.; Williams, P.; Campbell, L. Analysis of Feed Barley by near Infrared Reflectance Technology. J. Near Infrared Spectrosc. 1994, 2, 33–41. [Google Scholar] [CrossRef]
- Williams, P. Implementation of near infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P.C., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 145–169. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Analytical: Washington, DC, USA, 2003. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Liu, Q.; Scheller, K.K.; Schaefer, D.M. Technical note: A simplified procedure for vitamin E determination in beef muscle. J. Anim. Sci. 1996, 74, 2406–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified Extraction 2-Thiobarbituric Acid Method for Measuring Lipid Oxidation in Poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef]
- Oliver, C.; Ahn, B.; Moerman, E.; Goldstein, S.; Stadtman, E. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 193, 265–275. [Google Scholar]
- Cáceres-Nevado, J.; Garrido-Varo, A.; De Pedro-Sanz, E.; Tejerina-Barrado, D.; Pérez-Marín, D. Non-destructive Near Infrared Spectroscopy for the labelling of frozen Iberian pork loins. Meat Sci. 2021, 175, 108440. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.; Felicio, A.L.D.S.M.; Sun, D.-W.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Marín, D.; Fearn, T.; Riccioli, C.; De Pedro, E.; Garrido, A. Probabilistic classification models for the in situ authentication of iberian pig carcasses using near infrared spectroscopy. Talanta 2020, 222, 121511. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Caro, C.; García-Torres, S.; Elghannam, A.; Tejerina, D.; Mesias, F.; Ortiz, A. Is production system a relevant attribute in consumers' food preferences? The case of Iberian dry-cured ham in Spain. Meat Sci. 2019, 158, 107908. [Google Scholar] [CrossRef]
- Agudo, B.; Delgado, J.; López, M.; Rodríguez, P. Comparación de herramientas quimiométricas de clasificación para la identificación de grasa perirrenal en corderos. Arch. Zootec. 2020, 69, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Pieszczek, L.; Czarnik-Matusewicz, H.; Daszykowski, M. Identification of ground meat species using near-infrared spectroscopy and class modeling techniques—Aspects of optimization and validation using a one-class classification model. Meat Sci. 2018, 139, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Saeys, W.; Darius, P.; Ramon, H. Potential for On-Site Analysis of Hog Manure Using a Visual and near Infrared Diode Array Reflectance Spectrometer. J. Near Infrared Spectrosc. 2004, 12, 299–309. [Google Scholar] [CrossRef]
- Prieto, N.; Ross, D.; Navajas, E.; Nute, G.; Richardson, R.; Hyslop, J.; Simm, G.; Roehe, R. On-line application of visible and near infrared reflectance spectroscopy to predict chemical–physical and sensory characteristics of beef quality. Meat Sci. 2009, 83, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Marín, D.; Sanz, E.D.P.; Guerrero-Ginel, J.; Garrido-Varo, A. A feasibility study on the use of near-infrared spectroscopy for prediction of the fatty acid profile in live Iberian pigs and carcasses. Meat Sci. 2009, 83, 627–633. [Google Scholar] [CrossRef]
- Ortiz, A.; Parrini, S.; Tejerina, D.; De Araújo, J.P.P.; Čandek-Potokar, M.; Crovetti, A.; Garcia-Casco, J.M.; González, J.; Hernández-García, F.I.; Karolyi, D.; et al. Potential Use of Near-Infrared Spectroscopy to Predict Fatty Acid Profile of Meat from Different European Autochthonous Pig Breeds. Appl. Sci. 2020, 10, 5801. [Google Scholar] [CrossRef]
- Prieto, N.; Roehe, R.; Lavín, M.P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef]
Sampling Storage Time | Commercial Category | Total | |||
---|---|---|---|---|---|
Black | Red | White | |||
Calibration | T0 | 13 | 15 | 15 | 43 |
T4 | 13 | 12 | 15 | 40 | |
T8 | 14 | 15 | 15 | 44 | |
T12 | 3 | 5 | 3 | 11 | |
Total | 43 | 47 | 48 | 138 | |
Validation | T0 | 5 | 5 | 5 | 15 |
T4 | 5 | 5 | 4 | 14 | |
T8 | 4 | 4 | 4 | 12 | |
T12 | 2 | 2 | 2 | 6 | |
Total | 16 | 16 | 15 | 47 | |
Total | 59 | 63 | 63 | 185 |
Commercial Category | Pre-Treatment | LVs | Calibration | External Validation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | 1-VR | RMSECV | SE | SP | n | SE | SP | |||
Black | SNV-DE SG 1,4,4,1 | 8 | 40 | 0.599 | 0.296 | 69.77 | 81.05 | 16 | 43.75 | 45.16 |
Red | 42 | 0.653 | 0.279 | 78.72 | 80.22 | 16 | 43.75 | 70.97 | ||
White | 46 | 0.782 | 0.226 | 91.67 | 92.22 | 15 | 46.67 | 78.13 |
Commercial Category | Pre-Treatment | PCs | Calibration | External Validation | ||||
---|---|---|---|---|---|---|---|---|
n | SE | SP | n | SE | SP | |||
Black | Absorbance | 2 | 43 | 100.00 | 18.95 | 16 | 100.00 | 19.35 |
Red | 1 | 47 | 95.74 | 3.30 | 16 | 87.50 | 3.22 | |
White | 2 | 48 | 100.00 | 23.33 | 15 | 100.00 | 21.88 |
Commercial Category | Pre-Treatment | Calibration | External Validation | ||||
---|---|---|---|---|---|---|---|
n | SE | SP | n | SE | SP | ||
Black | SNV-DE | 43 | 81.40 | 91.58 | 16 | 75.00 | 80.65 |
Red | 47 | 87.23 | 87.91 | 16 | 81.25 | 77.42 | |
White | 48 | 79.17 | 94.44 | 15 | 53.33 | 96.88 |
Parameters | Calibration | External Validation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Min | Max | SD | n | Mean | Min | Max | SD | |
DM (g/100 g) | 138 | 73.13 | 69.09 | 78.04 | 1.36 | 47 | 73.02 | 69.09 | 78.04 | 1.29 |
NaCl (g/100 g) | 138 | 3.58 | 2.91 | 4.46 | 0.32 | 47 | 3.55 | 2.98 | 4.46 | 0.33 |
alpha (µg/g) | 138 | 10.30 | 4.89 | 17.14 | 3.28 | 47 | 10.37 | 4.89 | 17.44 | 3.35 |
gamma (µg/g) | 138 | 0.85 | 0.18 | 1.93 | 0.24 | 47 | 0.85 | 0.18 | 1.93 | 0.24 |
C16:0 1 | 138 | 24.64 | 20.65 | 26.44 | 0.92 | 47 | 24.59 | 20.65 | 26.44 | 0.97 |
C18:0 1 | 138 | 11.59 | 5.36 | 12.69 | 1.24 | 47 | 11.49 | 5.36 | 12.69 | 1.34 |
C18:1 n-9 1 | 138 | 51.00 | 48.71 | 58.50 | 1.50 | 47 | 51.07 | 48.71 | 58.50 | 1.60 |
C18:2 n-6 1 | 138 | 5.74 | 5.05 | 7.11 | 0.36 | 47 | 5.75 | 5.05 | 7.11 | 0.38 |
C18:3 n-3 1 | 138 | 0.59 | 0.29 | 1.53 | 0.30 | 47 | 0.62 | 0.29 | 1.74 | 0.33 |
mg MDA/kg | 138 | 1.44 | 0.59 | 2.31 | 0.43 | 47 | 1.40 | 0.59 | 2.31 | 0.44 |
nmol Carbonyls/mg protein | 138 | 3.30 | 2.02 | 4.54 | 0.52 | 47 | 3.32 | 2.03 | 4.54 | 0.52 |
Parameter | Pre-Treatment | LVs | n | Calibration | External Validation | ||||
---|---|---|---|---|---|---|---|---|---|
1-VR | RMSECV | R2V | RMSEV | RPDV | RERV | ||||
DM (g/100 g) | SNV-DE | 10 | 122 | 0.704 | 0.700 | 0.204 | 1.234 | 1.134 | 6.408 |
NaCl (g/100 g) | SNV-DE | 10 | 123 | 0.687 | 0.715 | NA | 69.439 | 0.005 | 0.020 |
alpha (µg/g) | SNV-DE SG 1,4,4,1 | 5 | 117 | 0.730 | 1.522 | 0.601 | 2.029 | 1.600 | 5.998 |
gamma (µg/g) | SNV-DE SG 1,4,4,1 | 5 | 125 | 0.731 | 1.633 | NA | 9.454 | 0.028 | 0.169 |
C16:0 1 | SNV-DE SG 1,4,4,1 | 6 | 128 | 0.651 | 0.560 | 0.184 | 0.729 | 1.120 | 5.490 |
C18:0 1 | SNV-DE SG 1,4,4,1 | 6 | 128 | 0.728 | 0.597 | 0.554 | 0.673 | 1.514 | 6.437 |
C18:1 n-9 1 | SG 1,4,4,1 | 6 | 126 | 0.612 | 0.889 | 0.118 | 1.036 | 1.076 | 5.162 |
C18:2 n-6 1 | SG 1,4,4,1 | 6 | 129 | 0.652 | 0.206 | 0.386 | 0.259 | 1.291 | 6.112 |
C18:3 n-3 1 | SNV-DE SG 1,4,4,1 | 4 | 134 | 0.824 | 0.146 | 0.808 | 0.142 | 2.309 | 10.106 |
mg MDA/kg | SNV-DE SG 1,4,4,1 | 8 | 124 | 0.746 | 0.213 | 0.342 | 0.338 | 1.247 | 4.376 |
nmol Carbonyls/mg protein | SNV-DE SG 1,4,4,1 | 4 | 126 | 0.441 | 0.343 | 0.065 | 0.499 | 1.046 | 4.832 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, A.; León, L.; Contador, R.; Tejerina, D. Near-Infrared Spectroscopy (NIRS) as a Tool for Classification of Pre-Sliced Iberian Salchichón, Modified Atmosphere Packaged (MAP) According to the Official Commercial Categories of Raw Meat. Foods 2021, 10, 1865. https://doi.org/10.3390/foods10081865
Ortiz A, León L, Contador R, Tejerina D. Near-Infrared Spectroscopy (NIRS) as a Tool for Classification of Pre-Sliced Iberian Salchichón, Modified Atmosphere Packaged (MAP) According to the Official Commercial Categories of Raw Meat. Foods. 2021; 10(8):1865. https://doi.org/10.3390/foods10081865
Chicago/Turabian StyleOrtiz, Alberto, Lucía León, Rebeca Contador, and David Tejerina. 2021. "Near-Infrared Spectroscopy (NIRS) as a Tool for Classification of Pre-Sliced Iberian Salchichón, Modified Atmosphere Packaged (MAP) According to the Official Commercial Categories of Raw Meat" Foods 10, no. 8: 1865. https://doi.org/10.3390/foods10081865
APA StyleOrtiz, A., León, L., Contador, R., & Tejerina, D. (2021). Near-Infrared Spectroscopy (NIRS) as a Tool for Classification of Pre-Sliced Iberian Salchichón, Modified Atmosphere Packaged (MAP) According to the Official Commercial Categories of Raw Meat. Foods, 10(8), 1865. https://doi.org/10.3390/foods10081865