Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Material and Preliminary Treatments
2.2. Pre-Treatment
2.3. Extraction of Polysaccharides
2.3.1. Conventional Extraction
2.3.2. Microwave Assisted Extraction
2.3.3. Pressurized Liquid Extraction
2.3.4. Processes after Extraction
2.4. Chemical Composition of Polysaccharides
2.5. Monosaccharide Analysis of Polysaccharides by High Performance Liquid Chromatography (HPLC)
2.6. Determination of Molecular Properties
2.7. DPPH Radical Scavenging Assay
2.8. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Microwave Assisted Extraction
3.2. Pressurised Liquid Extraction
3.3. Comparison of Different Extraction Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Kovačević, D.B.; Garofulić, I.E.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.J.; Wan Aida, W.M. Extraction of sulfated polysaccharides (fucoidan) from brown seaweed. In Seaweed Polysaccharides; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–46. ISBN 9780128098172. [Google Scholar]
- De Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praveen, M.A.; Parvathy, K.R.K.; Balasubramanian, P.; Jayabalan, R. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci. Technol. 2019, 92, 46–64. [Google Scholar] [CrossRef]
- Fayad, S.; Nehmé, R.; Tannoury, M.; Lesellier, E.; Pichon, C.; Morin, P. Macroalga Padina pavonica water extracts obtained by pressurized liquid extraction and microwave-assisted extraction inhibit hyaluronidase activity as shown by capillary electrophoresis. J. Chromatogr. A 2017, 1497, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.-S.; Abert-Vian, M.; Chemat, F. Microwave-assisted extraction of antioxidants and food colors. In Microwave-Assisted Extraction of Bioactive Compounds: Theory and Practice; Chemat, F., Cravotto, G., Eds.; Springer: New York, NY, USA, 2013; pp. 103–125. ISBN 9781461448303. [Google Scholar]
- Wu, S.-C. Antioxidant activity of sulfated seaweeds polysaccharides by novel assisted extraction. In Solubility of Polysaccharides; Xu, Z., Ed.; IntechOpen: London, UK, 2017; pp. 89–108. [Google Scholar]
- Ren, B.; Chen, C.; Li, C.; Fu, X.; You, L.; Liu, R.H. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 2017, 173, 192–201. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.J.; Park, Y.B.; Woo, H.C.; Chun, B.S. Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym. 2016, 153, 518–525. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ptak, S.H.; Christensen, K.V.; Meichßner, R.; Fretté, X. Improving fucoidan yield from fucus brown algae by microwave extraction. Chem. Eng. Trans. 2019, 74, 109–114. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Dobroslavić, E.; Pedisić, S.; Balbino, S.; Elez Garofulić, I.; Čož-Rakovac, R.; Dragović-Uzelac, V. The effectiveness of the Fucus virsoides and Cystoseira barbata fucoidan isolation as a function of applied pre-treatment and extraction conditions. Algal Res. 2021, 56. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebus, P.; Smith, F. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar]
- Dische, Z.; Shettles, L.B. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J. Biol. Chem. 1948, 175, 595–603. [Google Scholar] [CrossRef]
- Dodgson, K.S.; Price, R.C. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Filisetti-Cozzi, T.M.C.C.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Wang, J.; Shi, X.; Zhang, Z. Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chin. J. Oceanol. Limnol. 2009, 27, 578–582. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of polyphenolic profile and antioxidant activity of Pistacia lentiscus L. leaves and fruit extract obtained by optimized microwave-assisted extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef]
- January, G.G.; Naidoo, R.K.; Kirby-McCullough, B.; Bauer, R. Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res. 2019, 40, 101517. [Google Scholar] [CrossRef]
- Fletcher, H.R.; Biller, P.; Ross, A.B.; Adams, J.M.M. The seasonal variation of fucoidan within three species of brown macroalgae. Algal Res. 2017, 22, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Imbs, T.I.; Shevchenko, N.M.; Sukhoverkhov, S.V.; Semenova, T.L.; Skriptsova, A.V.; Zvyagintseva, T.N. Seasonal variations of the composition and structural characteristics of polysaccharides from the brown alga Costaria costata. Chem. Nat. Compd. 2009, 45, 786–791. [Google Scholar] [CrossRef]
- Hentati, F.; Delattre, C.; Ursu, A.V.; Desbrières, J.; Le Cerf, D.; Gardarin, C.; Abdelkafi, S.; Michaud, P.; Pierre, G. Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr. Polym. 2018, 198, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Sellimi, S.; Kadri, N.; Barragan-Montero, V.; Laouer, H.; Hajji, M.; Nasri, M. Fucans from a Tunisian brown seaweed Cystoseira barbata: Structural characteristics and antioxidant activity. Int. J. Biol. Macromol. 2014, 66, 281–288. [Google Scholar] [CrossRef]
- Ammar, H.H.; Lajili, S.; Said, R.B.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Physico-chemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of Mediterranean brown algae of the genus Cystoseira. DARU J. Pharm. Sci. 2015, 23, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Ammar, H.H.; Hafsa, J.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Antioxidant and gastroprotective activities of polysaccharides from the Tunisian brown algae (Cystoseira sedoides). J. Tunis. Chem. Soc. 2016, 18, 80–88. [Google Scholar]
- Sahera, M.F.; Thani, S.M.; Salha, S.Y. Characterization of sulphated polysaccharide with antiviral activity from marine brown alga Cystoseira myrica collected from Jazan coasts, KSA. Int. J. PharmTech Res. 2015, 8, 198–203. [Google Scholar]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring ultrasound, microwave and ultrasound-microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wu, S.-Y.; Chen, L.; Li, Q.-J.; Shen, Y.-Z.; Jin, L.; Zhang, X.; Chen, P.-C.; Wu, M.-J.; Choi, J.; et al. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans. Int. J. Biol. Macromol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Saleem Ahmad, T. Bin Methods for Quantification and Extraction of Fucoidan, and Quantification of the Release of Total Carbohydrate and Fucoidan from the Brown Algae Laminaria Hyperborea; Norwegian University of Science and Technology: Trondheim, Norway, 2015. [Google Scholar]
- García-Ríos, V.; Ríos-Leal, E.; Robledo, D.; Freile-Pelegrin, Y. Polysaccharides composition from tropical brown seaweeds. Phycol. Res. 2012, 60, 305–315. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym. 2010, 82, 118–121. [Google Scholar] [CrossRef]
- Lutfia, F.N.; Isnansetyo, A.; Susidarti, R.A.; Nursid, M. Chemical composition diversity of fucoidans isolated from three tropical brown seaweeds (Phaeophyceae) species. Biodiversitas J. Biol. Divers. 2020, 21, 3170–3177. [Google Scholar] [CrossRef]
- Rodríguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. J. Appl. Phycol. 2013, 25, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Bilan, M.I.; Grachev, A.A.; Ustuzhanina, N.E.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohydr. Res. 2004, 339, 511–517. [Google Scholar] [CrossRef]
- Imbs, T.I.; Skriptsova, A.V.; Zvyagintseva, T.N. Antioxidant activity of fucose-containing sulfated polysaccharides obtained from Fucus evanescens by different extraction methods. J. Appl. Phycol. 2015, 27, 545–553. [Google Scholar] [CrossRef]
- Hamid, N.; Ma, Q.; Boulom, S.; Liu, T.; Zheng, Z.; Balbas, J.; Robertson, J. Seaweed Minor Constituents; Tiwari, B.K., Troy, D.J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780124199583. [Google Scholar]
- Mak, W.W.F. Extraction, Characterization and Antioxidant Activity of Fucoidan from New Zealand Undaria Pinnatifida (Harvey) Suringar; Auckland University of Technology: Auckland, New Zealand, 2012. [Google Scholar]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.G.; Mariatti, F.; Cravotto, G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 128, 244–253. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.G.; Lembo, D.; Cravotto, G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2018, 124, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Saravana, P.S.; Tilahun, A.; Gerenew, C.; Tri, V.D.; Kim, N.H.; Kim, G.D.; Woo, H.C.; Chun, B.S. Subcritical water extraction of fucoidan from Saccharina japonica: Optimization, characterization and biological studies. J. Appl. Phycol. 2018, 30, 579–590. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Baba, B.M.; Mustapha, W.A.W.; Joe, L.S. Effects of extraction solvent on fucose content in fucoidan extracted from brown seaweed (Sargassum sp.) from Pulau Langkawi, Kedah, Malaysia. AIP Conf. Proc. 2016, 1784. [Google Scholar] [CrossRef]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum. Food Hydrocoll. 2019, 90, 462–471. [Google Scholar] [CrossRef]
- Luo, X.; Duan, Y.; Yang, W.; Zhang, H.; Li, C.; Zhang, J. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr. Polym. 2017, 157, 794–802. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.G. Bioactivities of Nizamuddinia zanardinii sulfated polysaccharides extracted by enzyme, ultrasound and enzyme-ultrasound methods. J. Food Sci. Technol. 2019, 56, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2008, 42, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.A.; Mulloy, B.; Tuohy, M.G. An unfractionated fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J. Nat. Prod. 2011, 74, 1851–1861. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D.J. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour. Technol. 2015, 198, 819–827. [Google Scholar] [CrossRef]
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S. Therapies from fucoidan: An update. Mar. Drugs 2015, 13, 5920–5946. [Google Scholar] [CrossRef] [Green Version]
- van Weelden, G.; Bobi, M.; Okła, K.; van Weelden, W.J.; Romano, A.; Pijnenborg, J.M.A. Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar. Drugs 2019, 17, 32. [Google Scholar] [CrossRef] [Green Version]
- Barahona, T.; Chandía, N.P.; Encinas, M.V.; Matsuhiro, B.; Zúñiga, E.A. Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocoll. 2011, 25, 529–535. [Google Scholar] [CrossRef]
PMP Sugar | Standard Curve | R2 |
---|---|---|
arabinose | y = 1.2784x − 0.2645 | 0.9948 |
glucose | y = 2.8327x − 0.6781 | 0.9925 |
fucose | y = 0.3549x − 0.0712 | 0.9940 |
galacturonic acid | y = 2.3517x − 0.6414 | 0.9951 |
rhamnose | y = 0.0706x + 0.0064 | 0.9961 |
fructose | y = 0.1633x − 0.0453 | 0.9925 |
N | % PS | Total Sugar (%) | Fucose (%) | Sulfate Group (%) | |
---|---|---|---|---|---|
Algae | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides | 54 | 13.19 ± 0.02 b | 15.40 ± 0.12 b | 58.55 ± 0.44 b | 25.60 ± 0.25 a |
C. barbata | 54 | 6.43 ± 0.02 a | 6.37 ± 0.12 a | 26.13 ± 0.44 a | 34.80 ± 0.25 b |
Solvent | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
H2O | 36 | 5.87 ± 0.03 a | 9.07 ± 0.14 a | 33.49 ± 0.54 a | 19.26 ± 0.31 a |
0.1 M HCl | 36 | 8.14 ± 0.03 b | 13.20 ± 0.14 b | 50.67 ± 0.54 c | 25.11 ± 0.31 b |
0.1 M H2SO4 | 36 | 15.43 ± 0.03 c | 10.39 ± 0.14 a | 42.86 ± 0.54 b | 46.22 ± 0.31 c |
Time (min) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.05 † | |
10 | 36 | 9.91 ± 0.03 b | 10.35 ± 0.14 a | 43.67 ± 0.53 b | 30.02 ± 0.31 a,b |
20 | 36 | 9.79 ± 0.03 a | 10.58 ± 0.14 a | 42.16 ± 0.53 a,b | 30.89 ± 0.31 b |
30 | 36 | 9.74 ± 0.03 a | 11.72 ± 0.14 b | 41.19 ± 0.53 a | 29.68 ± 0.31 a |
Temperature (°C) | p ≤ 0.01 † | p ≤ 0.01 † | p = 0.34 ‡ | p ≤ 0.05 † | |
60 | 36 | 8.54 ± 0.03 a | 9.39 ± 0.14 a | 42.43 ± 0.54 a | 31.59 ± 0.31 b |
80 | 36 | 10.30 ± 0.03 b | 11.69 ± 0.14 b | 42.85 ± 0.54 a | 31.26 ± 0.31 b |
100 | 36 | 10.60 ± 0.03 b | 11.58 ± 0.14 b | 41.74 ± 0.54 a | 27.75 ± 0.31 a |
Algae; solvent | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides; H2O | 18 | 8.30 ± 0.04 b | 14.22 ± 0.20 c | 47.30 ± 0.76 c | 18.77 ± 0.43 a |
F. virsoides; 0.1 M HCl | 18 | 12.93 ± 0.04 c | 19.95 ± 0.20 d | 72.60 ± 0.76 e | 21.71 ± 0.43 a |
F. virsoides; 0.1 M H2SO4 | 18 | 18.35 ± 0.04 d | 12.04 ± 0.20 c | 55.76 ± 0.76 d | 36.30 ± 0.43 c |
C. barbata; H2O | 18 | 3.43 ± 0.04 a | 3.92 ± 0.20 a | 19.69 ± 0.76 a | 19.76 ± 0.43 a |
C. barbata; 0.1 M HCl | 18 | 3.35 ± 0.04 a | 6.45 ± 0.20 b | 28.73 ± 0.76 b | 28.51 ± 0.43 b |
C. barbata; 0.1 M H2SO4 | 18 | 12.51 ± 0.04 c | 8.74 ± 0.20 b | 29.96 ± 0.76 b | 56.13 ± 0.43 d |
Algae; time (min) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p = 16 ‡ | |
F. virsoides; 10 | 18 | 13.85 ± 0.04 d | 15.24 ± 0.20 c | 62.23 ± 0.76 d | 26.17 ± 0.43 a |
F. virsoides; 20 | 18 | 12.67 ± 0.04 c | 14.68 ± 0.20 c | 55.86 ± 0.76 c | 25.11 ± 0.43 a |
F. virsoides; 30 | 18 | 13.06 ± 0.04 c,d | 16.29 ± 0.20 d | 57.57 ± 0.76 c | 25.51 ± 0.43 a |
C. barbata; 10 | 18 | 5.96 ± 0.04 a | 5.48 ± 0.20 a | 25.11 ± 0.76 a | 33.88 ± 0.43 b |
C. barbata; 20 | 18 | 6.91 ± 0.04 b | 6.48 ± 0.20 b | 28.45 ± 0.76 b | 36.67 ± 0.43 c |
C. barbata; 30 | 18 | 6.42 ± 0.04 a,b | 7.16 ± 0.20 b | 24.82 ± 0.76 a | 33.85 ± 0.43 b |
Algae; temperature (°C) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides; 60 | 18 | 11.72 ± 0.04 d | 13.78 ± 0.20 d | 61.51 ± 0.76 c | 26.46 ± 0.43 b |
F. virsoides; 80 | 18 | 14.36 ± 0.04 f | 16.85 ± 0.20 f | 60.51 ± 0.76 c | 27.41 ± 0.43 b |
F. virsoides; 100 | 18 | 13.50 ± 0.04 e | 15.58 ± 0.20 e | 53.64 ± 0.76 b | 22.92 ± 0.43 a |
C. barbata; 60 | 18 | 5.37 ± 0.04 a | 5.00 ± 0.20 a | 23.34 ± 0.76 a | 36.72 ± 0.43 d |
C. barbata; 80 | 18 | 6.24 ± 0.04 b | 6.53 ± 0.20 b | 25.20 ± 0.76 a | 35.10 ± 0.43 d |
C. barbata; 100 | 18 | 6.69 ± 0.04 c | 7.59 ± 0.20 c | 29.84 ± 0.76 a | 32.58 ± 0.43 c |
N | % PS | Total Sugar (%) | Fucose (%) | Sulfate Group (%) | |
---|---|---|---|---|---|
Algae | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides | 72 | 10.22 ± 0.03 a | 14.50 ± 0.09 b | 42.03 ± 0.19 b | 65.70 ± 0.42 b |
C. barbata | 72 | 11.77 ± 0.03 b | 7.83 ± 0.09 a | 13.57 ± 0.19 a | 60.45 ± 0.42 a |
Solvent | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
H2O | 72 | 5.07 ± 0.03 a | 17.19 ± 0.09 b | 33.18 ± 0.19 b | 58.32 ± 0.42 a |
0.1 M H2SO4 | 72 | 16.93 ± 0.03 b | 5.14 ± 0.09 a | 22.41 ± 0.19 a | 67.83 ± 0.42 b |
Temperature (°C) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.05 † | p ≤ 0.01 † | |
60 | 48 | 8.39 ± 0.04 a | 11.86 ± 0.11 c | 27.24 ± 0.24 a | 75.42 ± 0.52 b |
100 | 48 | 10.96 ± 0.04 b | 11.17 ± 0.11 b | 28.02 ± 0.24 a,b | 57.26 ± 0.52 a |
140 | 48 | 13.64 ± 0.04 c | 10.48 ± 0.11 a | 28.13 ± 0.24 b | 56.55 ± 0.52 a |
No. of cycles | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
1 | 72 | 10.67 ± 0.03 a | 11.70 ± 0.09 b | 28.54 ± 0.19 b | 64.86 ± 0.42 b |
2 | 72 | 11.33 ± 0.03 b | 10.64 ± 0.09 a | 27.05 ± 0.19 a | 61.29 ± 0.42 a |
Time (min) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
5 | 48 | 9.94 ± 0.04 a | 12.37 ± 0.11 b | 28.48 ± 0.24 b | 62.29 ± 0.52 a |
10 | 48 | 11.21 ± 0.04 b | 10.49 ± 0.11 a | 26.22 ± 0.24 a | 60.64 ± 0.52 a |
15 | 48 | 11.84 ± 0.04 c | 10.65 ± 0.11 a | 28.69 ± 0.24 b | 66.30 ± 0.52 b |
Algae; solvent | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides; H2O | 36 | 6.40 ± 0.05 b | 22.03 ± 0.13 d | 54.85 ± 0.27 d | 63.48 ± 0.60 b |
F. virsoides; 0.1 M H2SO4 | 36 | 14.04 ± 0.05 c | 6.98 ± 0.13 b | 29.20 ± 0.27 c | 67.93 ± 0.60 c |
C. barbata; H2O | 36 | 3.73 ± 0.05 a | 12.36 ± 0.13 c | 11.51 ± 0.27 a | 53.17 ± 0.60 a |
C. barbata; 0.1 M H2SO4 | 36 | 19.81 ± 0.05 d | 3.31 ± 0.13 a | 15.62 ± 0.27 b | 67.73 ± 0.60 c |
Algae; temperature (°C) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides; 60 | 24 | 7.10 ± 0.06 a | 15.49 ± 0.16 d | 45.17 ± 0.33 d | 80.52 ± 0.73 d |
F. virsoides; 100 | 24 | 9.17 ± 0.06 b | 14.21 ± 0.16 c | 39.99 ± 0.33 c | 58.12 ± 0.73 b |
F. virsoides; 140 | 24 | 14.40 ± 0.06 e | 13.82 ± 0.16 c | 40.92 ± 0.33 c | 58.46 ± 0.73 b |
C. barbata; 60 | 24 | 9.68 ± 0.06 c | 8.22 ± 0.16 b | 9.31 ± 0.33 a | 70.32 ± 0.73 c |
C. barbata; 100 | 24 | 12.75 ± 0.06 d | 8.14 ± 0.16 b | 16.05 ± 0.33 b | 56.40 ± 0.73 a,b |
C. barbata; 140 | 24 | 12.89 ± 0.06 d | 7.13 ± 0.16 a | 15.34 ± 0.33 b | 54.63 ± 0.73 a |
Algae; no. of cycle | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides; 1 | 36 | 10.02 ± 0.05 a | 15.49 ± 0.13 a | 44.32 ± 0.27 d | 65.13 ± 0.60 b |
F. virsoides; 2 | 36 | 10.43 ± 0.05 b | 13.52 ± 0.13 b | 39.74 ± 0.27 c | 66.27 ± 0.60 b |
C. barbata; 1 | 36 | 11.31 ± 0.05 c | 7.91 ± 0.13 a | 12.76 ± 0.27 a | 64.59 ± 0.60 b |
C. barbata; 2 | 36 | 12.23 ± 0.05 d | 7.76 ± 0.13 a | 14.37 ± 0.27 b | 56.31 ± 0.60 a |
Algae; time (min) | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | |
F. virsoides; 5 | 24 | 8.47 ± 0.06 a | 16.04 ± 0.16 e | 44.24 ± 0.33 e | 63.54 ± 0.73 b,c |
F. virsoides; 10 | 24 | 10.33 ± 0.06 b | 13.92 ± 0.16 d | 39.22 ± 0.33 c | 67.90 ± 0.73 d |
F. virsoides; 15 | 24 | 11.87 ± 0.06 d,e | 13.55 ± 0.16 d | 42.63 ± 0.33 d | 65.66 ± 0.73 c,d |
C. barbata; 5 | 24 | 11.41 ± 0.06 c | 8.69 ± 0.16 c | 12.71 ± 0.33 a | 61.03 ± 0.73 b |
C. barbata; 10 | 24 | 12.10 ± 0.06 e | 7.06 ± 0.16 a | 13.23 ± 0.33 a | 53.38 ± 0.73 a |
C. barbata; 15 | 24 | 11.80 ± 0.06 d | 7.74 ± 0.16 b | 14.75 ± 0.33 b | 66.95 ± 0.73 d |
% PS | Total Sugar (%) | Fucose (%) | Sulfate Group (%) | Uronic Acid (%) | ||
---|---|---|---|---|---|---|
F. virsoides | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | |
CE | 18.53 ± 0.00 a | 20.17 ± 0.00 c | 41.54 ± 0.01 a | 28.46 ± 0.01 a | 20.06 ± 0.00 c | |
MAE | 20.42 ± 0.28 a | 15.65 ± 0.09 a | 48.48 ± 1.36 b | 37.13 ± 0.26 b | 15.93 ± 0.77 b | |
PLE | 24.22 ± 0.94 b | 18.24 ± 0.13 b | 60.08 ± 0.22 c | 51.82 ± 1.72 c | 5.32 ± 0.51 a | |
C. barbata | p ≤ 0.05 † | p ≤ 0.05 † | p = 0.11 ‡ | p ≤ 0.05 † | p ≤ 0.05 † | |
CE | 16.47 ± 0.18 a,b | 6.34 ± 0.18 a,b | 22.53 ± 0.14 a | 35.53 ± 0.80 a | 15.72 ± 0.34 c | |
MAE | 15.27 ± 0.17 a | 7.14 ± 0,53 b | 26.61 ± 2.15 a | 45.56 ± 0.34 b | 12.52 ± 0.08 b | |
PLE | 18.77 ± 0.82 b | 4.40 ± 0.19 a | 28.06 ± 0.44 a | 57.58 ± 2.19 c | 7.15 ± 0.36 a |
Monosacharide Composition (%) | Molecular Properties | |||||||
---|---|---|---|---|---|---|---|---|
Glucose | Fucose | Galacturonic Acid | Arabinose | Mw (kDa) | Mn (kDa) | Polydispersity (Mw/Mn) | ||
F. virsoides | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | ||||
CE | 18.65 ± 0.24 b | 44.83 ± 0.45 b | 19.48 ± 0.26 b | 17.04 ± 0.25 c | 693.43 | 264.42 | 2.62 | |
MAE | 13.26 ± 0.36 a | 78.35 ± 0.21 c | n.d. a | 8.39 ± 0.19 a | 891.25 | 332.14 | 2.68 | |
PLE | 19.04 ± 0.41 b | 41.90 ± 0.33 a | 26.52 ± 0.31 c | 12.55 ± 0.35 b | 521.72 | 149.64 | 3.49 | |
C. barbata | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | p ≤ 0.05 † | ||||
CE | n.d.a | 100 ± 0.00 c | n.d. a | n.d. a | 766.00 | 322.87 | 2.37 | |
MAE | 27.22 ± 0.16 c | 61.27 ± 0.51 b | n.d. a | 11.52 ± 0.32 b | 1252.19 | 681.34 | 1.84 | |
PLE | 16.95 ± 0.38 b | 49.5 ± 0.28 a | 19.75 ± 0.38 b | 13.79 ± 0.48 c | 1031.94 | 415.75 | 2.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrinčić, A.; Pedisić, S.; Zorić, Z.; Jurin, M.; Roje, M.; Čož-Rakovac, R.; Dragović-Uzelac, V. Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata. Foods 2021, 10, 1481. https://doi.org/10.3390/foods10071481
Dobrinčić A, Pedisić S, Zorić Z, Jurin M, Roje M, Čož-Rakovac R, Dragović-Uzelac V. Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata. Foods. 2021; 10(7):1481. https://doi.org/10.3390/foods10071481
Chicago/Turabian StyleDobrinčić, Ana, Sandra Pedisić, Zoran Zorić, Mladenka Jurin, Marin Roje, Rozelindra Čož-Rakovac, and Verica Dragović-Uzelac. 2021. "Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata" Foods 10, no. 7: 1481. https://doi.org/10.3390/foods10071481
APA StyleDobrinčić, A., Pedisić, S., Zorić, Z., Jurin, M., Roje, M., Čož-Rakovac, R., & Dragović-Uzelac, V. (2021). Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata. Foods, 10(7), 1481. https://doi.org/10.3390/foods10071481