Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Physicochemical Properties of Yam Flour
2.3. Total Phenolics
2.4. Polyphenol Oxidase Activities
2.5. Peroxidase Activities
2.6. DPPH Radical Scavenging Capacities
2.7. Inulin
2.8. Organic Acids
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Yam Flour
3.2. Functional Properties of Yam Flour
3.3. Correlation between Color, Functional Properties, and Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhandari, M.R.; Kawabata, J. Organic Acid, Phenolic Content and Antioxidant Activity of Wild Yam (Dioscorea spp.) Tubers of Nepal. Food Chem. 2004, 88, 163–168. [Google Scholar] [CrossRef]
- Chen, J.-C.; Yeh, J.-Y.; Chen, P.-C.; Hsu, C.-K. Phenolic Content and DPPH Radical Scavenging Activity of Yam-Containing Surimi Gels Influenced by Salt and Heating. Asian J. Health Inf. Sci. 2007, 2, 1–11. [Google Scholar]
- Takeuchi, J.; Nagashima, T. Preparation of Dried Chips from Jerusalem Artichoke (Helianthus tuberosus) Tubers and Analysis of Their Functional Properties. Food Chem. 2011, 126, 922–926. [Google Scholar] [CrossRef]
- Winarti, S.; Harmayani, E.; Nurismanto, R. Characteristic and Inulin Profil of Wild Yam (Dioscorea spp.). Agritech 2011, 31, 378–383. [Google Scholar]
- Toneli, J.T.C.L.; Park, K.J.; Ramalho, J.R.P.; Murr, F.E.X.; Fabbro, I.M.D. Rheological Characterization of Chicory Root (Cichorium intybus L.) Inulin Solution. Braz. J. Chem. Eng. 2008, 25, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, Health Benefits and Food Applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Gupta, A.K. Applications of Inulin and Oligofructose in Health and Nutrition. J. Biosci. 2002, 27, 703–714. [Google Scholar] [CrossRef]
- Gargari, B.P.; Dehghan, P.; Aliasgharzadeh, A.; Jafar-Abadi, M.A. Effects of High Performance Inulin Supplementation on Glycemic Control and Antioxidant Status in Women with Type 2 Diabetes. Diabetes Metab. J. 2013, 37, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Sinden, M.R.; Kennedy, A.H.; Chai, H.; Watson, L.E.; Graham, T.L.; Kinghorn, A.D. Bioactive Constituents of Helianthus tuberosus (Jerusalem Artichoke). Phytochem. Lett. 2009, 2, 15–18. [Google Scholar] [CrossRef]
- Dobrange, E.; Peshev, D.; Loedolff, B.; Van Den Ende, W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules 2019, 9, 615. [Google Scholar] [CrossRef] [Green Version]
- Nawirska-Olszan’ska, A.; Biesiada, A.; Sokół-Łe˛towska, A.; Kucharska, A.Z. Characteristics of Organic Acids in the Fruit of Different Pumpkin Species. Food Chem. 2014, 148, 415–419. [Google Scholar] [CrossRef]
- Carocho, M.; Barros, L.; Antonio, A.L.; Barreira, J.C.M.; Bento, A.; Kaluska, I.; Ferreira, I.C.F.R. Analysis of Organic Acids in Electron Beam Irradiated Chestnuts (Castanea sativa Mill.): Effects of Radiation Dose and Storage Time. Food Chem. Toxicol. 2013, 55, 348–352. [Google Scholar] [CrossRef]
- Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S. Study on Antioxidant Activity of Certain Plants in Thailand: Mechanism of Antioxidant Action of Guava Leaf Extract. Food Chem. 2007, 103, 381–388. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N.; Kai, N.; Tanoue, Y. Functional Properties of Autolysate and Enzymatic Hydrolysates from Yam Tsukuneimo (Dioscorea opposita Thunb.) Tuber Mucilage Tororo: Antioxidative Activity and Antihypertensive Activity. J. Food Sci. Technol. 2014, 51, 3838–3845. [Google Scholar] [CrossRef] [Green Version]
- Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical Properties of Flours and Starches Derived from Traditional Indonesian Tubers and Roots. J. Food Sci. Technol. 2014, 51, 3669–3679. [Google Scholar] [CrossRef] [Green Version]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its E Ff Ect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Chen, X.; Lu, J.; Li, X.; Wang, Y.; Miao, J.; Mao, X.; Zhao, C.; Gao, W. Effect of Blanching and Drying Temperatures on Starch-Related Physicochemical Properties, Bioactive Components and Antioxidant Activities of Yam Flours. LWT Food Sci. Technol. 2017, 82, 303–310. [Google Scholar] [CrossRef]
- Akissoe, N.; Hounhouigan, J.; Mestres, C.; Nago, M. Effect of Tuber Storage and Pre- and Post-Blanching Treatments on the Physicochemical and Pasting Properties of Dry Yam Flour. Food Chem. 2004, 85, 141–149. [Google Scholar] [CrossRef]
- Akissoe, N.; Mestres, C.; Hounhouigan, J.; Nago, M. Biochemical Origin of Browning during the Processing of Fresh Yam (Dioscorea spp.) into Dried Product. J. Agric. Food Chem. 2005, 53, 141–149. [Google Scholar] [CrossRef]
- Adejumo, B.A.; Okundare, R.O.; Afolayan, O.I.; Balogun, S.A. Quality Attributes of Yam Flour (Elubo) As Affected By Blanching Water Temperature and Soaking Time. Int. J. Eng. Sci. 2013, 2, 216–221. [Google Scholar]
- Hsu, C.L.; Chen, W.; Weng, Y.M.; Tseng, C.Y. Chemical Composition, Physical Properties, and Antioxidant Activities of Yam Flours as Affected by Different Drying Methods. Food Chem. 2003, 83, 85–92. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., George, W., Latimer, J., Eds.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Hung, P.V.; Maeda, T.; Miyatake, K.; Morita, N. Total Phenolic Compounds and Antioxidant Capacity of Wheat Graded Flours by Polishing Method. Food Res. Int. 2009, 42, 185–190. [Google Scholar] [CrossRef]
- Okarter, N. Phenolic Compounds from the Insoluble-Bound Fraction of Whole Grains Do Not Have Any Cellular Antioxidant Activity. Life Sci. Med. Res. 2012, 2012, 37. [Google Scholar]
- Bach, V.; Jensen, S.; Clausen, M.R.; Bertram, H.C.; Edelenbos, M. Enzymatic Browning and After-Cooking Darkening of Jerusalem Artichoke Tubers (Helianthus tuberosus L.). Food Chem. 2013, 141, 1445–1450. [Google Scholar] [CrossRef]
- Mestres, C.; Dorthe, S.; Akissoe, N.; Hounhouigan, J.D. Prediction of Sensorial Properties (Color and Taste) of Amala, a Paste from Yam Chips Flour of West Africa, through Flour Biochemical Properties. Plant Foods Hum. Nutr. 2004, 59, 93–99. [Google Scholar] [CrossRef]
- Sdiri, S.; Bermejo, A.; Aleza, P.; Navarro, P.; Salvador, A. Phenolic Composition, Organic Acids, Sugars, Vitamin C and Antioxidant Activity in the Juice of Two New Triploid Late-Season Mandarins. Food Res. Int. 2012, 49, 462–468. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat. J. Agric. Food Chem. 2006, 54, 1256–1264. [Google Scholar] [CrossRef]
- Xiao, H.W.; Pan, Z.; Deng, L.Z.; El-Mashad, H.M.; Yang, X.H.; Mujumdar, A.S.; Gao, Z.J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching–A Comprehensive Review. Inf. Process. Agric. 2017, 4, 101–127. [Google Scholar] [CrossRef]
- Codex Stan 152-1985. Standard for Wheat Flour. Codex Alimentarius. 2019. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B152-1985%252FCXS_152e.pdf (accessed on 8 April 2021).
- Andrieu, J.; Vessot, S. A Review on Experimental Determination and Optimization of Physical Quality Factors during Pharmaceuticals Freeze-Drying Cycles. Dry. Technol. 2018, 36, 129–145. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods-the Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Ioannou, I.; Ghoul, M. Prevention of Enzymatic Browning in Fruits and Vegetables. Eur. Sci. J. 2013, 9, 310–341. [Google Scholar] [CrossRef]
- Al-Amrani, M.; Al-Alawi, A.; Al-Marhobi, I. Assessment of Enzymatic Browning and Evaluation of Antibrowning Methods on Dates. Int. J. Food Sci. 2020, 2020. [Google Scholar] [CrossRef]
- Li, R.; Shang, H.; Wu, H.; Wang, M.; Duan, M.; Yang, J. Thermal Inactivation Kinetics and Effects of Drying Methods on the Phenolic Profile and Antioxidant Activities of Chicory (Cichorium intybus L.) Leaves. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Noreña, C.Z.; Rigon, R.T. Effect of Blanching on Enzyme Activity and Bioactive Compounds of Blackberry. Braz. Arch. Biol. Technol. 2018, 61, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Compd. Biol. Act. 2017, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, L.; Kulig, B.; Moscetti, R.; Massantini, R.; Pawelzik, E.; Hensel, O.; Sturm, B. Optimisation of Physical and Chemical Treatments to Control Browning Development and Enzymatic Activity on Fresh-Cut Apple Slices. Foods 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.A.; Ali, R.F.M. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower. Biomed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef]
- He, J.; Monica Giusti, M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Sikora, E.; Cieślik, E.; Leszczyńska, T.; Filipiak-Florkiewicz, A.; Pisulewski, P.M. The Antioxidant Activity of Selected Cruciferous Vegetables Subjected to Aquathermal Processing. Food Chem. 2008, 107, 55–59. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, Ascorbic Acid, Carotenoids and Antioxidant Activity of Broccoli and Their Changes during Conventional and Microwave Cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total Antioxidant Activity and Phenolic Content in Selected Vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Ciska, E.; Pawlak-Lemańska, K.; Chmielewski, J.; Borkowski, T.; Tyrakowska, B. Changes in the Content of Health-Promoting Compounds and Antioxidant Activity of Broccoli after Domestic Processing. Food Addit. Contam. 2006, 23, 1088–1098. [Google Scholar] [CrossRef]
- Polycarp, D.; Afoakwa, E.O.; Budu, A.S.; Otoo, E. Characterization of Chemical Composition and Anti-Nutritional Factors in Seven Species within the Ghanaian Yam (Dioscorea) Germplasm. Int. Food Res. J. 2012, 19, 985–992. [Google Scholar]
- Sergio, L.; Cardinali, A.; Paola, A.D.; Venere, D.D. Biochemical Properties of Soluble and Bound Peroxidases from Artichoke Heads and Leaves. Food Technol. Biotechnol. 2009, 47, 32–38. [Google Scholar]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key Issues and Challenges in Whole Wheat Flour Milling and Storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, M.; Cai, J.; Li, S.; Marszałek, K.; Lorenzo, J.M.; Barba, F.J. Optimization of Spray-Drying Process of Jerusalem Artichoke Extract for Inulin Production. Molecules 2019, 24, 1674. [Google Scholar] [CrossRef] [Green Version]
- Akram, W.; Garud, N. Optimization of Inulin Production Process Parameters Using Response Surface Methodology. Future J. Pharm. Sci. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Poyrazoğlu, E.; Gökmen, V.; Artιk, N. Organic Acids and Phenolic Compounds in Pomegranates (Punica granatum L.) Grown in Turkey. J. Food Compos. Anal. 2002, 15, 567–575. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Organic Acids Composition of Cydonia Oblonga Miller Leaf. Food Chem. 2008, 111, 393–399. [Google Scholar] [CrossRef]
- Granchi, D.; Baldini, N.; Ulivieri, F.M.; Caudarella, R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019, 11, 2576. [Google Scholar] [CrossRef] [Green Version]
- Akissoe, N.; Hounhouigan, J.; Mestres, C.; Nago, M. How Blanching and Drying Affect the Colour and Functional Characteristics of Yam (Dioscorea Cayenensis-Rotundata) FLour. Food Chem. 2003, 82, 257–264. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanità 2007, 43, 348–361. [Google Scholar]
Treatment | Description |
---|---|
Oven | Yam slices were only oven-dried at 60 °C until the weight stabilized |
B-Oven | Yam slices were blanched (70 °C, 10 min) and oven-dried as Oven |
SB-Oven | Yam slices were steeped in water (28–30 °C, 1 h) then blanched and oven-dried as B-Oven |
SB-Freeze | Yam slices were treated as SB-Oven except the drying was by freeze-dryer |
Yam Species/Treatment | Moisture Content (%) | Yield (%) |
---|---|---|
D. esculenta | ||
Oven | 5.62 ± 0.16 | 29.17 ± 0.30 |
B-Oven | 5.92 ± 0.19 | 25.28 ± 0.52 |
SB-Oven | 5.22 ± 0.18 | 20.64 ± 0.31 |
SB-Freeze | 3.46 ± 0.11 | 22.24 ± 0.44 |
D. bulbifera | ||
Oven | 6.72 ± 0.19 | 27.52 ± 1.65 |
B-Oven | 5.78 ± 0.27 | 22.46 ± 0.36 |
SB-Oven | 5.67 ± 0.03 | 18.02 ± 2.23 |
SB-Freeze | 2.49 ± 0.13 | 21.31 ± 0.14 |
Yam Species/Treatment | Color Attributes | |||
---|---|---|---|---|
L-Value | a-Value | b-Value | Whiteness Index | |
D. esculenta | ||||
Oven | 79.80 ** | 0.74 ± 0.17 b* | 12.94 ± 0.13 ab* | 76.03 ** |
B-Oven | 80.58 ** | 1.57 ± 0.69 a* | 14.44 ± 1.41 a* | 75.44 ** |
SB-Oven | 83.37 ** | 0.92 ± 0.05 ab* | 11.84 ± 0.55 b* | 79.80 ** |
SB-Freeze | 92.39 ** | −0.27 ± 0.14 c* | 6.91 ± 0.31 c* | 89.91 ** |
p-Value | 0.025 | 0.024 | ||
D. bulbifera | ||||
Oven | 74.84 ± 1.03 b* | 3.44 ± 0.32 a* | 18.46 ** | 68.84 ± 1.32 b* |
B-Oven | 76.01 ± 4.02 b* | 2.62 ± 0.96 a* | 17.87 ** | 70.45 ± 4.66 b* |
SB-Oven | 77.23 ± 4.04 b* | 2.75 ± 1.04 a* | 18.12 ** | 71.02 ± 4.54 b* |
SB-Freeze | 92.24 ± 0.69 a* | −0.18 ± 0.35 b* | 6.59 ** | 89.04 ± 1.80 a* |
p-Value | 0.094 *** |
Treatment | PPO (ΔA450 nm min−1 g−1 DW) | TP (mg GAE/g) | POD (unit g−1 DW) | DPPH (%) |
---|---|---|---|---|
D. esculenta | ||||
Oven | 1.01 ** | 11.87 ** | 6958.25 ** | 14.92 ** |
B-Oven | 0.14 ** | 4.39 ** | 2376.24 ** | 4.98 ** |
SB-Oven | 0.30 ** | 3.25 ** | 3000.00 ** | 5.70 ** |
SB-Freeze | 0.02 ** | 3.56 ** | 6336.63 ** | 4.18 ** |
p-value | 0.016 | 0.024 | 0.094 *** | 0.082 *** |
D. bulbifera | ||||
Oven | 0.37 ± 0.18 a* | 7.95 ± 0.32 a* | 3311.70 ± 238.01 b* | 18.24 ± 3.45 a* |
B-Oven | 0.31 ± 0.09 a* | 6.36 ± 0.76 ab* | 2249.78 ± 618.33 b* | 9.44 ± 2.15 a* |
SB-Oven | 0.22 ± 0.02 ab* | 5.47 ± 0.57 bc* | 2652.09 ± 409.96 b* | 12.21 ± 2.44 a* |
SB-Freeze | 0.04 ± 0.00 b* | 4.17 ± 1.31 c* | 5642.65 ± 1461.65 a* | 10.43 ± 8.04 a* |
Yam Species/ Treatment | Inulin (g/100 g DW) | Organic Acids (mg/100 g DW) | ||
---|---|---|---|---|
Oxalic Acid | Citric Acid | Succinic Acid | ||
D. esculenta | ||||
Oven | 22.58 ** | 31.16 ± 0.79 a* | 1632.86 ** | 7957.72 ± 147.76 a* |
B-Oven | 4.13 ** | 11.79 ± 1.20 c* | 227.46 ** | 2760.39 ± 448.07 b* |
SB-Oven | 7.24 ** | 12.74 ± 1.62 c* | 35.11 ** | 1262.96 ± 255.27 c* |
SB-Freeze | 3.60 ** | 19.47 ± 2.00 b* | 49.86 ** | 549.68 ± 234.35 d* |
p-Value | 0.066 *** | 0.016 | ||
D. bulbifera | ||||
Oven | 27.80 ** | 14.62 ± 2.39 a* | 1336.72 ** | 7653.66 ± 583.98 a* |
B-Oven | 8.29 ** | 15.98 ± 6.08 a* | 154.17 ** | 5488.22 ± 450.02 b* |
SB-Oven | 7.08 ** | 18.77 ± 1.77 a* | 33.37 ** | 2283.08 ± 502.47 c* |
SB-Freeze | 7.13 ** | 11.81 ± 0.63 a* | 29.07 ** | 447.83 ± 164.99 d* |
p -Value | 0.092 *** | 0.024 |
Parameters | TP (mg GAE/g DW) | PPO (ΔA450 nm min−1 g−1 DW) | POD (unit g−1 DW) |
---|---|---|---|
D. esculenta | |||
Antioxidant Activities (% DPPH scavenging) | 0.931 **** | ns | ns |
D. bulbifera | |||
L | −0.754 ** | −0.807 ** | 0.781 ** |
WI | −0.766 ** | −0.802 ** | 0.804 ** |
TP (mg GAE/g DW) | 1.00 | ns | ns |
PPO (ΔA450 nm min−1 g−1 DW) | ns | 1.00 | ns |
POD (unit g−1 DW) | ns | ns | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setyawan, N.; Maninang, J.S.; Suzuki, S.; Fujii, Y. Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods 2021, 10, 1341. https://doi.org/10.3390/foods10061341
Setyawan N, Maninang JS, Suzuki S, Fujii Y. Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods. 2021; 10(6):1341. https://doi.org/10.3390/foods10061341
Chicago/Turabian StyleSetyawan, Nurdi, John Solomon Maninang, Sakae Suzuki, and Yoshiharu Fujii. 2021. "Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques" Foods 10, no. 6: 1341. https://doi.org/10.3390/foods10061341