Processing Mixed Mesopelagic Biomass from the North-East Atlantic into Aquafeed Resources; Implication for Food Safety
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling
2.1.1. Biomasses Obtained from Commercial Mesopelagic Trawling
2.1.2. Biological Material and Processing
2.1.3. Pelagic Fish Oils and Meals Currently Used in Aquafeeds
2.2. Chemical Analysis
2.2.1. Trace Elements
2.2.2. Fluoride
2.2.3. Crude Fat
2.2.4. Determination of Dioxins, Furans, Polychlorinated Biphenyls, Organochlorine Pesticides, and Polybrominated Flame-Retardants
2.3. Processing Factors
2.4. Predictions of PCDD/Fs+DL-PCBs in Atlantic Salmon Farmed on Mesopelagic Oil and Meal
3. Results and Discussion
3.1. Essential Minerals
3.2. Non-Essential Metals and Metalloids
3.3. Organic Pollutants (POPs) in Mesopelagic Oils and Meals
3.4. Processing Factors
3.5. Predicting Levels of PCDD/F+DL-PCBs in Farmed Seafood Raised on Mesopelagic Oils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costello, C.; Cao, L.; Gelcich, S. The Future of Food from the Sea; High. Level Panel for a Sustainable Ocean: Rome, Italy, 2019. [Google Scholar]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquac. 2020, 12, 703–758. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [Green Version]
- FAO. Sustainability in Action, in The State of World Fisheries and Aquaculture (SOFIA); World Healrh Organization (WHO): Rome, Italy, 2020; p. 244. [Google Scholar]
- Jusadi, D.; Ekasari, J.; Suprayudi, M.A.; Setiawati, M.; Fauzi, I.A. Potential of Underutilized Marine Organisms for Aquaculture Feeds. Front. Mar. Sci. 2021, 7, 9. [Google Scholar] [CrossRef]
- Cottrell, R.S.; Blanchard, J.L.; Halpern, B.S.; Metian, M.; Froehlich, H.E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 2020, 1, 301–308. [Google Scholar] [CrossRef]
- Aksnes, D.L.; Holm, P.; Bavinck, M.; Biermann, F.; Donovaro, R.; Harvey, P.; Hynes, S.; Ingram, J.; Kaiser, M.; Kaushik, S.; et al. Food from the Oceans-How Can More Food and Biomass Be Obtained from the Oceans in a Way that Does Not Deprive Future Generations of Their Benefits? 2017. Available online: https://gala.gre.ac.uk/id/eprint/20121/ (accessed on 1 May 2021).
- Olsen, R.E.; Strand, E.; Melle, W.; Nørstebø, J.T.; Lall, S.P.; Ringø, E.; Tocher, D.R.; Sprague, M. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep-Sea Res. Part. II-Top. Stud. Oceanogr. 2020, 180, 11. [Google Scholar] [CrossRef]
- Grimaldo, E.; Grimsmo, L.; Alvarez, P.; Herrmann, B.; Tveit, G.M.; Tiller, R.; Slizyte, R.; Aldanondo, N.; Guldberg, T.; Toldnes, B.; et al. Investigating the potential for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. 2020, 77, 2541–2556. [Google Scholar] [CrossRef]
- Martin, A.; Boyd, P.; Buesseler, K.; Cetinic, I.; Claustre, H.; Giering, S.; Henson, S.; Irigoien, X.; Kriest, I.; Memery, L.; et al. The oceans’ twilight zone must be studied now, before it is too late. Nat. Cell Biol. 2020, 580, 26–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buesseler, K.O.; Boyd, P.W.; Black, E.E.; Siegel, D.A. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl. Acad. Sci. USA 2020, 117, 9679–9687. [Google Scholar] [CrossRef] [Green Version]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Pirker, J.; Mosnier, A.; Kraxner, F.; Havlík, P.; Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Chang. Hum. Policy Dimens. 2016, 40, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Betancor, M.B.; Dam, T.M.C.; Walton, J.; Morken, T.; Campbell, P.J.; Tocher, D.R. Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients. Br. J. Nutr. 2016, 115, 1325–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasopoulou, C.; Zabetakis, I. Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT-Food Sci. Technol. 2012, 47, 217–224. [Google Scholar] [CrossRef]
- Vera, L.M.; Hamre, K.; Espe, M.; Hemre, G.-I.; Skjærven, K.; Lock, E.-J.; Prabhu, A.J.; Leeming, D.; Migaud, H.; Tocher, D.R.; et al. Higher dietary micronutrients are required to maintain optimal performance of Atlantic salmon (Salmo salar) fed a high plant material diet during the full production cycle. Aquaculture 2020, 528, 17. [Google Scholar] [CrossRef]
- Prabhu, P.A.J.; Lock, E.-J.; Hemre, G.-I.; Hamre, K.; Espe, M.; Olsvik, P.A.; Silva, J.; Hansen, A.-C.; Johansen, J.; Sissener, N.H.; et al. Recommendations for dietary level of micro-minerals and vitamin D3 to Atlantic salmon (Salmo salar) parr and post-smolt when fed low fish meal diets. PeerJ 2019, 7, e6996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berntssen, M.H.G.; Julshamn, K.; Lundebye, A.-K. Chemical contaminants in aquafeeds and Atlantic salmon (Salmo salar) following the use of traditional- versus alternative feed ingredients. Chemosphere 2010, 78, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Waagbø, R.; Berntssen, M.; Danielsen, T.; Helberg, H.; Kleppa, A.; Lea, T.B.; Rosenlund, G.; Tvenning, L.; Susort, S.; Vikeså, V.; et al. Feeding Atlantic salmon diets with plant ingredients during the seawater phase—A full-scale net production of marine protein with focus on biological performance, welfare, product quality and safety. Aquac. Nutr. 2013, 19, 598–618. [Google Scholar] [CrossRef]
- Wiech, M.; Silva, M.; Meier, S.; Tibon, J.; Berntssen, M.H.G.; Duinker, A.; Sanden, M. Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords. Foods 2020, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Alvheim, A.R.; Kjellevold, M.; Strand, E.; Sanden, M.; Wiech, M. Mesopelagic Species and Their Potential Contribution to Food and Feed Security—A Case Study from Norway. Foods 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- El-Mowafi, A.; Nanton, D.; Berntssen, M.H.G. Evaluation of lantern fish (Benthosema Pterotum) as marine source in fish feeds: Nutrient composition and contaminants assessment. In Proceedings of the 3rd Global Fisheries Aquaculture Research Conference Foreign Agricultural Relations (FAR), Cairo, Egypt, 29 November–1 December 2010. [Google Scholar]
- Corsolini, S.; Sarà, G. The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs. Chemosphere 2017, 177, 189–199. [Google Scholar] [CrossRef]
- BfR. Bundesinstitut fur Risikobewertung (BfR) Data Collection on Processing Factors. Available online: https://www.bfr.bund.de/cm/349/bfr-data-collection-on-processing-factors.pdf (accessed on 1 July 2019).
- EC. Council Directive 2002/32/EC of the European parliament and of the council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Commu. 2002, 140, 10. [Google Scholar]
- EFSA. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018, 16, e05333. [Google Scholar]
- Berntssen, M.H.G.; Sanden, M.; Hove, H.; Lie, Ø. Modelling scenarios on feed-to-fillet transfer of dioxins and dioxi-like PCBs in future feeds to farmed Atlantic salmon (Salmo salar). Chemosphere 2016, 163, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Ørnsrud, R.; Sanden, M.; Hemre, G.-I.; Måge, A.; Lunestad, B.T.; Espe, M.; Lie, K.K.; Lundebye, A.-K.; Amlund, H.; Waagbø, R. Program for overvåking av fiskefôr Årsrapport for prøver innsamlet i 2019. In Norwegian. IMR Report NR. 2020-34; 2020; Available online: https://www.mattilsynet.no/dyr_og_dyrehold/for/overvaakingsprogram_for_fiskefor_2019.40655/binary/Overv%C3%A5kingsprogram%20for%20fiskef%C3%B4r%202019 (accessed on 1 July 2020).
- Sele, V.; Sanden, M.; Berntssen, M.; Storesund, J.E.; Lie, K.K.; Espe, M.; Lundebye, A.K.; Hemre, G.I.; Waagbø, R.; Ørnsrud, R. Program for overvåking av fiskefôr. Årsrapport for prøver innsamlet i 2018. Rapp. Havforskningen 2019. Available online: https://imr.brage.unit.no/imr-xmlui/handle/11250/2611618 (accessed on 1 July 2020).
- Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P.; Hentschel, A.; De La Hinojosa, I.M.; Viehweger, L.; Mindak, W.R.; et al. Determination of Arsenic, Cadmium, Mercury, and Lead by Inductively Coupled Plasma/Mass Spectrometry in Foods after Pressure Digestion: NMKL Interlaboratory Study. J. AOAC Int. 2007, 90, 844–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malde, M.K.; Bjorvatn, K.; Julshamn, K. Determination of fluoride in food by the use of alkali fusion and fluoride ion-selective electrode. Food Chem. 2001, 73, 373–379. [Google Scholar] [CrossRef]
- Julshamn, K.; Duinker, A.; Nilsen, B.M.; Frantzen, S.; Maage, A.; Valdersnes, S.; Nedreaas, K. A baseline study of levels of mercury, arsenic, cadmium and lead in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Mar. Pollut. Bull. 2013, 67, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Berntssen, M.; Olsvik, P.; Torstensen, B.; Julshamn, K.; Midtun, T.; Goksøyr, A.; Johansen, J.; Sigholt, T.; Joerum, N.; Jakobsen, J.-V.; et al. Reducing persistent organic pollutants while maintaining long chain omega-3 fatty acid in farmed Atlantic salmon using decontaminated fish oils for an entire production cycle. Chemosphere 2010, 81, 242–252. [Google Scholar] [CrossRef]
- USEPA. Method 1613: Tetra-Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS; USEPA: Washington, DC, USA, 1994. [Google Scholar]
- Sijm, D.T.H.M.; Seinen, W.; Opperhuizen, A. Life-cycle biomagnification study in fish. Environ. Sci. Technol. 1992, 26, 2162–2174. [Google Scholar] [CrossRef]
- Aas, T.S.; Ytrestøyl, T.; Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquac. Rep. 2019, 15, 100216. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Dong, F.M.; Hardy, R.W. Effects of dietary supplements on the availability of minerals in fish meal; preliminary observations. Aquaculture 1998, 160, 283–303. [Google Scholar] [CrossRef]
- EFSA. Specific Reporting Requirements for Contaminants and Food Additives Occurrence Data Submission; EFSA Supporting publication, 2017; p. 1262. [Google Scholar]
- EC. Commission directive 2008/76/EC of 25 July 2008 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed. Off. J. Eur. Union 2008, 198, 37. [Google Scholar]
- Moren, M.; Malde, M.; Olsen, R.; Hemre, G.; Dahl, L.; Karlsen, Ø.; Julshamn, K. Fluorine accumulation in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), rainbow trout (Onchorhyncus mykiss) and Atlantic halibut (Hippoglossus hippoglossus) fed diets with krill or amphipod meals and fish meal based diets with sodium fluoride (NaF) inclusion. Aquac. 2007, 269, 525–531. [Google Scholar] [CrossRef]
- Jung, H.R.; Kim, M.-A.; Seo, Y.-S.; Lee, Y.-B.; Chun, B.-S.; Kim, S.-B. Decreasing effect of fluoride content in Antarctic krill (Euphausia superba) by chemical treatments. Int. J. Food Sci. Technol. 2013, 48, 1252–1259. [Google Scholar] [CrossRef]
- Yoshitomi, B.; Nagano, I. Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata). Chemosphere 2012, 86, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.Ø.; Penn, M.; Øverland, M.; Shearer, K.D.; Krogdahl, Å.; Mydland, L.T.; Storebakken, T. High inclusion of partially deshelled and whole krill meals in diets for Atlantic salmon (Salmo salar). Aquaculture 2010, 310, 164–172. [Google Scholar] [CrossRef]
- Jansson, S.T.; Ervik, J.R.; Grimsmo, L. Process for Reducing the Fluoride Content When Producing Proteinaceous Concentrates from Krill, in United States Patent Application Publication. U.S. Patent 2011/0217386 A1, 8 September 2011. [Google Scholar]
- Hansen, J.Ø.; Shearer, K.D..; Øverland, M.; Storebakken, T. Dietary calcium supplementation reduces the bioavailability of fluoride from krill shell and NaF in rainbow trout (Oncorhynchus mykiss) reared in fresh water. Aquaculture 2011, 318, 85–89. [Google Scholar] [CrossRef]
- Hardy, R.W.; Shearer, K.D. Effect of Dietary Calcium Phosphate and Zinc Supplementation on Whole Body Zinc Concentration of Rainbow Trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 1985, 42, 181–184. [Google Scholar] [CrossRef]
- Handy, R. The effect of acute exposure to dietary Cd and Cu on organ toxicant concentrations in rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 1993, 27, 1–14. [Google Scholar] [CrossRef]
- Chowdhury, M.; Pane, E.; Wood, C. Physiological effects of dietary cadmium acclimation and waterborne cadmium challenge in rainbow trout: Respiratory, ionoregulatory, and stress parameters. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2004, 139, 163–173. [Google Scholar] [CrossRef]
- Whitehead, P.J.P.; Nelson, G.J.; Wongratana, T. FAO Species Catalogue. Vol. 7. Clupeoid fishes of the world (Suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. In FAO Fish. Synop. 125(7/2):305–579; (Ref. 189); FAO: Rome, Italy, 1988. [Google Scholar]
- ICES. Workshop on Age estimation of Blue Whiting (Micromesistius poutassou) WKARBLUE2. In ICES CM 2017/ SSGIEOM:22; ICES: Lisbon, Portugal, 2017. [Google Scholar]
- Alves, L.C.; Wood, C.M. The chronic effects of dietary lead in freshwater juvenile rainbow trout (Oncorhynchus mykiss) fed elevated calcium diets. Aquat. Toxicol. 2006, 78, 217–232. [Google Scholar] [CrossRef]
- Ruus, A.; Overjordet, I.B.; Braaten, H.F.V.; Evenset, A.; Christensen, G.; Heimstad, E.S.; Gabrielsen, G.W.; Borgå, K. Methylmercury biomagnification in an Arctic pelagic food web. Environ. Toxicol. Chem. 2015, 34, 2636–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra, C.M.; Santelli, R.E.; Abrão, J.J.; de la Guardia, M. Arsenic speciation—A review. Quim. Nova 2000, 23, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Wrobel, K.; Wrobel, K.; Parker, B.; Kannamkumarath, S.S.; Caruso, J.A. Determination of As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-ICP-MS: Analysis of reference materials, fish tissues and urine. Talanta 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Francesconi, K.A.; Kuehnelt, D. Arsenic compounds in the environment. In Environmental Chemistry of Arsenic; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 51–94. [Google Scholar]
- EFSA. Scientific opinion Scientific Opinion on Arsenic in Food EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2009, 7, 1351. [Google Scholar]
- Pétursdóttir, Á.H.; Sloth, J.J.; Feldmann, J.; Feldmann, J. Introduction of regulations for arsenic in feed and food with emphasis on inorganic arsenic, and implications for analytical chemistry. Anal. Bioanal. Chem. 2015, 407, 8385–8396. [Google Scholar] [CrossRef]
- EFSA. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to arsenic as undesirablen substance in animal feed Question N° EFSA-Q-2003-031. EFSA J. 2005, 180, 1–35. [Google Scholar]
- Luvonga, C.; Rimmer, C.A.; Yu, L.L.; Lee, S.B. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations—A Review. J. Agric. Food Chem. 2019, 68, 943–960. [Google Scholar] [CrossRef]
- Sele, V.; Sloth, J.J.; Lundebye, A.-K.; Larsen, E.H.; Berntssen, M.H.; Amlund, H. Arsenolipids in marine oils and fats: A review of occurrence, chemistry and future research needs. Food Chem. 2012, 133, 618–630. [Google Scholar] [CrossRef]
- Bornhorst, J.; Ebert, F.; Meyer, S.; Ziemann, V.; Xiong, C.; Guttenberger, N.; Raab, A.; Baesler, J.; Aschner, M.; Feldmann, J.; et al. Toxicity of three types of arsenolipids: Species-specific effects inCaenorhabditis elegans. Metallomics 2020, 12, 794–798. [Google Scholar] [CrossRef]
- Finke, H.; Wandt, V.K.; Ebert, F.; Guttenberger, N.; Glabonjat, R.A.; Stiboller, M.; Francesconi, K.A.; Raber, G.; Schwerdtle, T. Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells. Metallomics 2020, 12, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Ebert, F.; Bornhorst, J.; Galla, H.-J.; Francesconi, K.; Schwerdtle, T. Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier. J. Trace Elem. Med. Biol. 2018, 49, 171–177. [Google Scholar] [CrossRef] [PubMed]
- EC. EuropeanCommission. Opinion of the Scientific Committee on Animal Nutrition on the Dioxin Contamination of Feedingstuffs and Their Contribution to the Contamination of Food of Animal Origin. Available online: http://europa.eu.int/comm/food/fs/sc/scan/outcome.en.html (accessed on 15 April 2021).
- NORA. Dioxin and Dioxin Like PCB in Four Commercially Important Pelagic Fish. Stocks in the North. East. Atlantic Ocean; NORA: Reykjavík, Iceland, 2003. [Google Scholar]
- Lundebye, A.-K.; Berntssen, M.; Lie, O.; Ritchie, G.; Isosaari, P.; Kiviranta, H.; Vartiainen, T. Dietary uptake of dioxins (PCDD/PCDFs) and dioxin-like PCBs in Atlantic salmon (Salmo salar). Aquac. Nutr. 2004, 10, 199–207. [Google Scholar] [CrossRef]
- Staby, A.; Srisomwong, J.; Rosland, R. Variation in DVM behaviour of juvenile and adult pearlside (Maurolicus muelleri) linked to feeding strategies and related predation risk. Fish. Oceanogr. 2013, 22, 90–101. [Google Scholar] [CrossRef]
- Le Croizier, G.; Schaal, G.; Gallon, R.; Fall, M.; Le Grand, F.; Munaron, J.-M.; Rouget, M.-L.; Machu, E.; Le Loc’H, F.; Laë, R.; et al. Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses. Sci. Total Environ. 2016, 573, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Processing | Commercial Samples | Comparison to Legislation | |||
---|---|---|---|---|---|---|
Mesopelagic Biomass | Mesopelagic Meal | Pelagic Fish Meal | Mesopelagic Meal 88%DW | Feed Material | Animal Feed | |
Mean | Mean | Mean | Mean | |||
(min–max) | (min–max) | (min–max) | (min–max) | ML | ML | |
Fe | 46 | 80 | 171 | 70 | 750 | |
(38–61) | (70–94) | (52–470) | (62–82) | |||
Se | 2.3 | 2.7 | 2.5 | 2.6 | 0.7 | |
(1.4–3.1) | (2.1–3.9) | (1.7–3.8) | (2.1–3.8) | |||
Mn | 2.8 | 5.0 | 5.7 | 4.42 | 100 | |
(1.8–3.5) | (3.4–6.8) | (2.5–10) | (3.0–5.9) | |||
Zn | 35 | 63 | 68 | 55 | 180 ** | |
(29–43) | (57–70) | (52–81) | (50–62) | |||
Cu | 7.6 | 11 | 6.2 | 9.9 | 25 | |
(2.5–18) | (3.63–28) | (2.6–26) | (3.2–25) | |||
Co | 0.053 | 0.035 | 0.05 | 0.031 | 1 | |
(0.035–0.074) | (0–0.076) | (0.02–0.08) | (0–0.055) | |||
Mo | 0.15 | 0.15 | 0.23 | 0.13 | 2.5 | |
(0–0.23) | (0.02–0.23) | (0.18–3.8) | (0.018–0.20) | |||
F | 433 | 863 | NA | 853 | 500/3000 * | 350 |
(17–1157) | (92–1804) | NA | (92–1782) |
Processing | Surveillance of Commercial Samples | Comparison to Legislation | ||||
---|---|---|---|---|---|---|
Mesopelagic Biomass | Mesopelagic Meal | Pelagic Fish Meal | Mesopelagic Meal | Fish Meal | Animal Feed | |
Mean | Mean | Mean 88%DW | ML | ML | ||
(min–max) | (min–max) | (min–max) | ||||
As | 9.6 | 9.7 | 7.3 | 8.6 | 25 | 10 |
(7.2–13) | (5.8–12) | (2.6–12) | (5.1–10) | |||
Cd | 0.61 | 0.79 | 0.47 | 0.68 | 2 | 1 |
(0.1–1.3) | (0.24–1.9) | (0.12–1.0) | (0.19–1.7) | |||
Hg | 0.028 | 0.05 | 0.13 | 0.05 | 0.5 | 0.2 |
(0.016–0.046) | (0.016–0.15) | (0.02–0.19) | (0.014–0.13) | |||
Pb | 0.05 | 0.06 | 0.08 | 0.06 | 10 | 5 |
(0.016–0.046) | (0–0.13) | (<0.005–0.13) | (0–0.12) |
Compounds | Processing | Surveillance of Commercial Samples | Comparison to Legislation | |
---|---|---|---|---|
Mesopelagic Oil | Pelagic Fish Oil | Fish Oil | Animal Feed | |
Mean | Mean | |||
(min–max) | (min–max) | ML | ML | |
Sum (PCDD+PCDF) (UB) | 1.4 | 1.6 | 5.00 | 1.75 |
(1.1–1.6) | (0.9–3.2) | |||
Sum (PCDD+PCDF) (LB) | 0.50 | |||
(0.28–0.71) | ||||
DL-PCBs (UB) | 0.74 | 2.4 | ||
(0.39–0.90) | (0.4–5.1) | |||
DL-PCBs (LB) | 0.73 | |||
(0.38–0.89) | ||||
Sum PCDD/F Dl-PCBs (UB) | 2.1 | 4.0 | 20 | 6 |
(1.5–2.4) | (1.0–8.0) | |||
Sum PCDD/F Dl-PCBs (LB) | 1.2 | |||
(0.66–1.6) | ||||
PCB-6 UB | 8.9 | 37 | 175 | 40 |
(6.1–12) | (3.0–79) | |||
PCB-6 LB | 8.9 | |||
(6.1–12) | ||||
PBDE (UB) | 1.4 | 4.1 | ||
(0.83–2.3) | (0.8–9.0) | |||
PBDE(LB) | 1.2 | |||
(0.54–2.3) | ||||
HCB (UB) | 5.3 | 7.5 | 200 | 10 |
(3.3–7.0) | (1.2–21) | |||
HCB (LB) | 5.33 | |||
(3.3–7.0) | ||||
sum DDT/E/D (UB) | 8.4 | 40 | 500 | 50 |
(6.1–11) | (9.0–73) | |||
sum DDT/E/D (LB) | 6.8 | |||
(3.8–11) | ||||
sum HCH (UB) | 1.1 | 0.92 | ||
(1–1.3) | (0.0–3.3) | |||
sum HCH (LB) | 0.65 | |||
(0.50–0.80) | ||||
sun aldrin dieldrin (UB) | 8.3 | 8.50 | 100 | 20 |
(6.3–10) | (0.6–15) | |||
sun aldrin dieldrin (LB) | 8.0 | |||
(5.2–10) | ||||
chlordane (UB) | 2.9 | 5.90 | 50 | 20 |
(2.3–3.3) | (1.5–17) | |||
chlordane (LB) | 0.26 | |||
(0–0.39) |
Compound. | Processing | Surveillance of Commercial Samples | Comparison to Legislation | |||
---|---|---|---|---|---|---|
Mesopelagic Biomass | Mesopelagic Meal | Pelagic Fish Meal | Mesopelagic Meal 88% DW | Fish Meal | Animal Feed | |
Mean | Mean | Mean | ||||
(min–max) | (min–max) | (min–max) | ML | ML | ||
Sum (PCDD+PCDF) (UB) | 0.64 | 0.49 | 0.33 | 0.43 | 1.25 | 1.75 |
(0.49–0.80) | (0.38–0.55) | (0.26–0.42) | (0.39–0.48) | |||
Sum (PCDD+PCDF) (LB) | 0.11 | 0.01 | 0.01 | |||
(0.05–0.17) | (0–0.04) | (0–0.02) | ||||
DL-PCBs (UB) | 0.19 | 0.13 | 0.50 | 0.12 | ||
(0.11–0.29) | (0.08–0.18) | (0.08–0.8) | (0.07–0.15) | |||
DL-PCBs (LB) | 0.19 | 0.022 | 0.021 | |||
(0.11–0.29) | (0.001–0.06) | (0–0.059) | ||||
Sum PCDD/Fs+DL-PCBs (UB) | 0.83 | 0.64 | 0.80 | 0.54 | 4 | 6 |
(0.64–1.0) | 0.46–0.73 | (0.4–1.2) | (0.41–0.64) | |||
Sum PCDD/Fs+DL-PCBs (LB) | 0.3 | 0.10 | 0.089 | |||
(0.16–0.42) | (0.01–0.22) | (0–0.1) | ||||
PCB-6 UB | 2.4 | 2.2 | 4.7 | 2.0 | 30 | 40 |
(1.7–3.7) | (0.85–1.6) | (0.6–8.7) | (1.3–2.8) | |||
PCB-6 LB | 2.4 | 1.7 | 1.5 | |||
(1.6–3.7) | (0.86–3.0) | (0.75–2.6) | ||||
PBDE (UB) | 0.33 | 0.48 | 0.52 | 0.42 | ||
(0.24–0.48) | (0.45–0.54) | (0.06–1.0) | (0.40–0.47) | |||
PBDE(LB) | 0.26 | 0.06 | 0.05 | |||
(0.12–0.43) | (0–0.23) | (0–0.20) | ||||
HCB (UB) | 1.6 | 1.4 | 2.4 | 1.2 | 10 | 10 |
(1.3–2.2) | (1.0–1.8) | (1.2–3.3) | (0.91–1.6) | |||
HCB (LB) | 1.6 | 1.4 | 1.2 | |||
(1.3–2.2) | (1.4–1.8) | (0.91–1.6) | ||||
Sum DDT/E/D (UB) | 3.4 | 1.8 | 6.8 | 1.6 | 50 | 50 |
(2.7–4.2) | (1.0–3.5) | (0.6–13.3) | (0.91–3.1) | |||
Sum DDT/E/D (LB) | 1.1 | 1.2 | 1.1 | |||
(0.94–2.8) | (0.62–2.3) | (0.55–2.1) | ||||
Sum HCH (UB) | 2.4 | 1.4 | 1.2 | |||
(1.6–3.5) | (1.3–1.5) | (1.1–1.3 | ||||
Sum HCH (LB) | 0.16 | 0.16 | 0.14 | |||
(0–0.26) | (0.10–0.21) | (0.09–0.18) | ||||
Sum aldrin+dieldrin (UB) | 2.2 | 1.8 | 1.3 | 1.6 | 10 | 20 |
(1.2–4.2) | (0.68–2.9) | (0.2–2.0) | (0.60–2.4) | |||
Sum aldrin+dieldrin (LB) | 1.6 | 0.8 | 0.69 | |||
(0.0–3.3) | (0–1.1) | (0–1.1) | ||||
Chlordane (UB) | 4.3 | 1.8 | 1.6 | 1.6 | 20 | 20 |
(3.8–4.9) | (1.7–2.0) | (0.5–2.6) | (1.5–1.8) | |||
Chlordane (LB) | 0.25 | 0.19 | 0.17 | |||
(0–0.99) | (0–0.78) | (0–0.69) |
Oil | Meal | Oil | Meal | ||
---|---|---|---|---|---|
Mean | Mean | Mean | Mean | ||
(min–max) | (min–max) | (min–max) | (min–max) | ||
Sum (PCDD+PCDF) (UB) | 2.2 | 1.3 | sum aldrin dieldrin (UB) | 3.8 | 0.7 |
(2.0–2.3) | (1.2–1.6) | (2.5–5.3) | (0.6–0.8) | ||
Sum (PCDD+PCDF) (LB) | 4.5 | 0.2 | sum aldrin dieldrin (LB) | 5.1 | 0.6 |
(4.0–5.5) | (0.0–0.3) | (3.0–5.6) | (0.5–0.8) | ||
DL-PCBs (UB) | 3.9 | 0.7 | sum chlordane (UB) | 0.7 | 0.6 |
(3.1–3.4) | (0.6–0.8) | (0.6–0.8) | (0.6–0.7) | ||
DL-PCBs (LB) | 3.9 | 0.4 | sum chlordane (LB) | 1.1 | 0.6 |
(3.1–3.4) | (0.05–0.6) | (0.4–1.3) | (0.5–0.7) | ||
Sum PCDD/F DL-PCBs (UB) | 2.6 | 1.2 | As | 0.6 | 0.6 |
(2.3–2.9) | (1.0–1.5) | (0.6–0.7) | (0.5–0.8) | ||
Sum PCDD/F DL-PCBs (LB) | 4.1 | 0.3 | Cd | 1.1 | |
(3.4–4.4) | (0.05–0.5) | (0.8–1.5) | |||
PCB-6 UB | 3.6 | 0.9 | Hg | 1.6 | |
(3.3–3.7) | (0.7–1.0) | (1.5–2.0) | |||
PCB-6 LB | 3.6 | 0.7 | Fe | 1.8 | |
(3.3–3.8) | (0.5–0.8) | (1.5–1.8) | |||
PBDE (UB) | 4.2 | 1.5 | Se | 1.0 | |
(3.5–4.8) | (1.1–1.9) | (0.8–1.2) | |||
PBDE(LB) | 4.7 | 0.2 | Mn | 1.8 | |
(4.5–5.3) | (0–0.5) | (1.8–1.9) | |||
HCB (UB) | 3.1 | 0.8 | Zn | 1.8 | |
(2.5–3.3) | (0.7–0.9) | (1.6–1.9) | |||
HCB (LB) | 3.1 | 0.8 | Cu | 1.5 | |
(2.5–3.3) | (0.7–0.9) | (1.5–1.6) | |||
Sum DDT/E/D (UB) | 2.5 | 0.8 | Co | 0.3 | |
(2.3–2.6) | (0.7–0.9) | (0.0–1.0) | |||
Sum DDT/E/D (LB) | 4.4 | 0.5 | Mo | 1.2 | |
(4.0–4.9) | (0.4–0.8) | (0.5–2.0) | |||
Sum HCH (UB) | 0.5 | 1.0 | F | 1.2 | |
(0.4–0.6) | (0.8–1.2) | (1.1–4.6) | |||
Sum HCH (LB) | 4.1 | 0.6 | |||
(3.0–4.7) | (0.4–0.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berntssen, M.H.G.; Thoresen, L.; Albrektsen, S.; Grimaldo, E.; Grimsmo, L.; Whitaker, R.D.; Sele, V.; Wiech, M. Processing Mixed Mesopelagic Biomass from the North-East Atlantic into Aquafeed Resources; Implication for Food Safety. Foods 2021, 10, 1265. https://doi.org/10.3390/foods10061265
Berntssen MHG, Thoresen L, Albrektsen S, Grimaldo E, Grimsmo L, Whitaker RD, Sele V, Wiech M. Processing Mixed Mesopelagic Biomass from the North-East Atlantic into Aquafeed Resources; Implication for Food Safety. Foods. 2021; 10(6):1265. https://doi.org/10.3390/foods10061265
Chicago/Turabian StyleBerntssen, Marc H. G., Lars Thoresen, Sissel Albrektsen, Eduardo Grimaldo, Leif Grimsmo, Ragnhild Dragøy Whitaker, Veronika Sele, and Martin Wiech. 2021. "Processing Mixed Mesopelagic Biomass from the North-East Atlantic into Aquafeed Resources; Implication for Food Safety" Foods 10, no. 6: 1265. https://doi.org/10.3390/foods10061265
APA StyleBerntssen, M. H. G., Thoresen, L., Albrektsen, S., Grimaldo, E., Grimsmo, L., Whitaker, R. D., Sele, V., & Wiech, M. (2021). Processing Mixed Mesopelagic Biomass from the North-East Atlantic into Aquafeed Resources; Implication for Food Safety. Foods, 10(6), 1265. https://doi.org/10.3390/foods10061265