Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Participants
2.3. Sensory Evaluation and Data Collection
2.4. Data Analysis
3. Results
3.1. Overall Liking of Yogurt Products
3.2. Comparison of Emotion Terms (CATA Emotions Method)
3.3. Comparison of Emojis (CATA Emojis Method)
3.4. Comparison of Facial Expression Recognition (FER) Method
3.5. Comparison and Relationship between Methods
3.6. Price Perception and Purchase Intent of Yogurts
4. Discussion
4.1. Traditional Sensory Method
4.2. Self-Reported Responses (CATA Methods)
4.3. Facial Expression Recognition Responses (FER Method)
4.4. Comparison and Relationship of Methods
5. Conclusions
6. Limitations and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Iannario, M.; Manisera, M.; Piccolo, D.; Zuccolotto, P. Sensory analysis in the food industry as a tool for marketing decisions. Adv. Data Anal. Classif. 2012, 6, 303–321. [Google Scholar] [CrossRef]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Prescott, J.; Bell, G. Cross-cultural determinants of food acceptability: Recent research on sensory perceptions and preferences. Trends Food Sci. Technol. 1995, 6, 201–205. [Google Scholar] [CrossRef]
- He, W.; Boesveldt, S.; de Graaf, C.; de Wijk, R.A. The relation between continuous and discrete emotional responses to food odors with facial expressions and non-verbal reports. Food Qual. Prefer. 2016, 48, 130–137. [Google Scholar] [CrossRef]
- Ng, M.; Chaya, C.; Hort, J. Beyond liking: Comparing the measurement of emotional response using EsSense Profile and consumer defined check-all-that-apply methodologies. Food Qual. Prefer. 2013, 28, 193–205. [Google Scholar] [CrossRef]
- Meiselman, H.L. The future in sensory/consumer research: Evolving to a better science. Food Qual. Prefer. 2013, 27, 208–214. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Xia, Y.; Lee, P.; Hunter, D.C.; Beresford, M.K.; Ares, G. Emoji questionnaires can be used with a range of population segments: Findings relating to age, gender and frequency of emoji/emoticon use. Food Qual. Prefer. 2018, 68, 397–410. [Google Scholar] [CrossRef]
- Rocha, C.; Lima, R.; Moura, A.; Costa, T.; Cunha, L. Implicit evaluation of the emotional response to premium organic herbal infusions through a temporal dominance approach: Development of the temporal dominance of facial emotions (TDFE). Food Qual. Prefer. 2019, 76, 71–80. [Google Scholar] [CrossRef]
- Ares, G.; Barreiro, C.; Deliza, R.; Giménez, A.; Gámbaro, A. Application of a check-all-that-apply question to the development of chocolate milk desserts. J. Sens. Stud. 2010, 25, 67–86. [Google Scholar] [CrossRef]
- Giacalone, D.; Bredie, W.; Frøst, M.B. “All-In-One Test” (AI1): A rapid and easily applicable approach to consumer product testing. Food Qual. Prefer. 2013, 27, 108–119. [Google Scholar] [CrossRef]
- Son, J.-S.; Do, V.B.; Kim, K.-O.; Cho, M.S.; Suwonsichon, T.; Valentin, D. Understanding the effect of culture on food representations using word associations: The case of “rice” and “good rice”. Food Qual. Prefer. 2014, 31, 38–48. [Google Scholar] [CrossRef]
- Vidal, L.; Ares, G.; Jaeger, S. Use of emoticon and emoji in tweets for food-related emotional expression. Food Qual. Prefer. 2016, 49, 119–128. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- De Wijk, R.A.; He, W.; Mensink, M.G.J.; Verhoeven, R.H.G.; De Graaf, C. ANS Responses and Facial Expressions Differentiate between the Taste of Commercial Breakfast Drinks. PLoS ONE 2014, 9, e93823. [Google Scholar] [CrossRef]
- Masupha, L.; Zuva, T.; Ngwira, S.; Esan, O. Face recognition techniques, their advantages, disadvantages and performance evaluation. In Proceedings of the 2015 International Conference on Computing, Communication and Security (ICCCS), Pamplemousses, Mauritius, 4–5 December 2015; pp. 1–5. [Google Scholar]
- Bartkiene, E.; Steibliene, V.; Adomaitiene, V.; Juodeikiene, G.; Cernauskas, D.; Lele, V.; Klupsaite, D.; Zadeike, D.; Jarutiene, L.; Guiné, R.P.F. Factors Affecting Consumer Food Preferences: Food Taste and Depression-Based Evoked Emotional Expressions with the Use of Face Reading Technology. BioMed Res. Int. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Terzis, V.; Moridis, C.N.; Economides, A.A. Measuring instant emotions based on facial expressions during computer-based assessment. Pers. Ubiquitous Comput. 2011, 17, 43–52. [Google Scholar] [CrossRef]
- Jain, A.; Ross, A.; Prabhakar, S. An Introduction to Biometric Recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Bech, A.C.; Waehrens, S.S.; Bredie, W.L. Perception and liking of yogurts with different degrees of granularity in relation to ethnicity, preferred oral processing and lingual tactile acuity. Food Qual. Prefer. 2021, 90, 104158. [Google Scholar] [CrossRef]
- Viejo, C.G.; Zhang, H.; Khamly, A.; Xing, Y.; Fuentes, S. Coffee Label Assessment Using Sensory and Biometric Analysis of Self-Isolating Panelists through Videoconference. Beverages 2021, 7, 5. [Google Scholar] [CrossRef]
- Gunaratne, T.M.; Fuentes, S.; Gunaratne, N.M.; Torrico, D.D.; Viejo, C.G.; Dunshea, F.R. Physiological Responses to Basic Tastes for Sensory Evaluation of Chocolate Using Biometric Techniques. Foods 2019, 8, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viejo, C.G.; Fuentes, S.; Howell, K.; Torrico, D.D.; Dunshea, F.R. Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers. Physiol. Behav. 2019, 200, 139–147. [Google Scholar] [CrossRef]
- Leitch, K.; Duncan, S.; O’Keefe, S.; Rudd, R.; Gallagher, D. Characterizing consumer emotional response to sweeteners using an emotion terminology questionnaire and facial expression analysis. Food Res. Int. 2015, 76, 283–292. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, K.; Parker, M.; Ameerally, A.; Drake, S.; Drake, M. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? J. Dairy Sci. 2017, 100, 6125–6138. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Torrico, D.D.; Dunshea, F.R. Development of a Biosensory Computer Application to Assess Physiological and Emotional Responses from Sensory Panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- Gelici-Zeko, M.; Lutters, D.; Klooster, R.T.; Weijzen, P.L.G. Studying the Influence of Packaging Design on Consumer Perceptions (of Dairy Products) Using Categorizing and Perceptual Mapping. Packag. Technol. Sci. 2012, 26, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, T.M.; Viejo, C.G.; Fuentes, S.; Torrico, D.D.; Gunaratne, N.M.; Ashman, H.; Dunshea, F.R. Development of emotion lexicons to describe chocolate using the Check-All-That-Apply (CATA) methodology across Asian and Western groups. Food Res. Int. 2019, 115, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Torrico, D.D.; Fuentes, S.; Viejo, C.G.; Ashman, H.; Dunshea, F.R. Cross-cultural effects of food product familiarity on sensory acceptability and non-invasive physiological responses of consumers. Food Res. Int. 2019, 115, 439–450. [Google Scholar] [CrossRef]
- Gutjar, S.; De Graaf, C.; Kooijman, V.; De Wijk, R.A.; Nys, A.; Ter Horst, G.J.; Jager, G. The role of emotions in food choice and liking. Food Res. Int. 2015, 76, 216–223. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S. Examination of sensory product characterization bias when check-all-that-apply (CATA) questions are used concurrently with hedonic assessments. Food Qual. Prefer. 2015, 40, 199–208. [Google Scholar] [CrossRef]
- Jaeger, S.; Vidal, L.; Kam, K.; Ares, G. Can emoji be used as a direct method to measure emotional associations to food names? Preliminary investigations with consumers in USA and China. Food Qual. Prefer. 2017, 56, 38–48. [Google Scholar] [CrossRef]
- Meiselman, H.L. A review of the current state of emotion research in product development. Food Res. Int. 2015, 76, 192–199. [Google Scholar] [CrossRef]
- Danner, L.; Sidorkina, L.; Joechl, M.; Duerrschmid, K. Make a face! Implicit and explicit measurement of facial expressions elicited by orange juices using face reading technology. Food Qual. Prefer. 2014, 32, 167–172. [Google Scholar] [CrossRef]
- Mojet, J.; Dürrschmid, K.; Danner, L.; Jöchl, M.; Heiniö, R.-L.; Holthuysen, N.; Köster, E. Are implicit emotion measurements evoked by food unrelated to liking? Food Res. Int. 2015, 76, 224–232. [Google Scholar] [CrossRef]
- Danner, L.; Haindl, S.; Joechl, M.; Duerrschmid, K. Facial expressions and autonomous nervous system responses elicited by tasting different juices. Food Res. Int. 2014, 64, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pato, V.M.; Sánchez, C.N.; Domínguez-Soberanes, J.; Méndoza-Pérez, D.E.; Velázquez, R. A Multisensor Data Fusion Approach for Predicting Consumer Acceptance of Food Products. Foods 2020, 9, 774. [Google Scholar] [CrossRef]
- van Bommel, R.; Stieger, M.; Visalli, M.; de Wijk, R.; Jager, G. Does the face show what the mind tells? A comparison between dynamic emotions obtained from facial expressions and Temporal Dominance of Emotions (TDE). Food Qual. Prefer. 2020, 85, 103976. [Google Scholar] [CrossRef]
- Beyts, C.; Chaya, C.; Dehrmann, F.; James, S.; Smart, K.; Hort, J. A comparison of self-reported emotional and implicit responses to aromas in beer. Food Qual. Prefer. 2017, 59, 68–80. [Google Scholar] [CrossRef]
- Zhi, R.; Wan, J.; Zhang, D.; Li, W. Correlation between hedonic liking and facial expression measurement using dynamic affective response representation. Food Res. Int. 2018, 108, 237–245. [Google Scholar] [CrossRef] [PubMed]
- King, S.C.; Meiselman, H.L. Development of a method to measure consumer emotions associated with foods. Food Qual. Prefer. 2010, 21, 168–177. [Google Scholar] [CrossRef]
- Barrena, R.; Sánchez, M. Neophobia, personal consumer values and novel food acceptance. Food Qual. Prefer. 2013, 27, 72–84. [Google Scholar] [CrossRef]
- Desai, N.; Shepard, L.; Drake, M. Sensory properties and drivers of liking for Greek yogurts. J. Dairy Sci. 2013, 96, 7454–7466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Yogurt Product Type | Product Code (as Used in This Study) | Overall Liking Scores (Asian Consumers) | Overall Liking Scores (Western Consumers) |
---|---|---|---|
Dairy Greek yogurt | Reference | 5.03 ± 2.33 cd | 5.39 ± 2.26 bc |
(plain) | |||
Coconut-based yogurt (plain) | Coconut | 3.73 ± 2.05 d | 4.39 ± 2.30 c |
Drinkable yogurt (sweetened) | Drinkable | 6.15 ± 2.16 b | 5.51 ± 2.11 b |
Soy-based yogurt | Soy | 5.45 ± 2.25 bc | 5.64 ± 2.11 b |
(plain) | |||
Dairy yogurt with crunchies (sweetened) | Cookies | 7.82 ± 0.94 a | 6.87 ± 1.43 a |
Dairy yogurt with berries (sweetened) | Berry | 1.90 ± 0.92 e | 2.02 ± 1.12 d |
* F-value | 38.93 | 20.86 |
Western Consumers | Asian Consumers | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attributes | Reference | Coconut | Drinkable | Soy | Cookies | Berry | p-Values | Attributes | Reference | Coconut | Drinkable | Soy | Cookies | Berry | p-Values |
Cheerful ** | 0.17 bcd | 0.14 cd | 0.38 abc | 0.52 ab | 0.59 a | 0.00 d | <0.001 | Cheerful ** | 0.12 xy | 0.09 xy | 0.36 y | 0.39 y | 0.88 z | 0.00 x | <0.001 |
Neutral ns | 0.21 a | 0.24 a | 0.35 a | 0.17 a | 0.14 a | 0.17 a | 0.280 | Neutral ns | 0.24 x | 0.21 x | 0.18 x | 0.12 x | 0.09 x | 0.09 x | 0.341 |
Nasty ** | 0.10 b | 0.21 b | 0.03 b | 0.07 b | 0.00 b | 0.72 a | <0.001 | Nasty ** | 0.15 xy | 0.21 xy | 0.09 x | 0.09 x | 0.00 x | 0.55 y | <0.001 |
Luxury * | 0.07 b | 0.24 ab | 0.10 b | 0.14 ab | 0.38 a | 0.00 b | 0.001 | Luxury ** | 0.06 x | 0.21 xy | 0.03 x | 0.18 xy | 0.33 y | 0.00 x | 0.000 |
Guilt-free ns | 0.24 a | 0.14 a | 0.10 a | 0.07 a | 0.17 a | 0.00 a | 0.077 | Guilt-free * | 0.24 x | 0.09 x | 0.09 x | 0.03 x | 0.03 x | 0.09 x | 0.045 |
Deceitful * | 0.00 b | 0.10 ab | 0.07 ab | 0.10 ab | 0.03 b | 0.28 a | 0.003 | Deceitful ns | 0.09 x | 0.09 x | 0.12 x | 0.15 x | 0.00 x | 0.12 x | 0.313 |
Trusted ** | 0.34 a | 0.03 b | 0.14 ab | 0.07 b | 0.24 ab | 0.00 b | 0.000 | Trusted * | 0.24 y | 0.03 xy | 0.09 xy | 0.15 xy | 0.18 xy | 0.00 x | 0.007 |
Basic ns | 0.24 a | 0.24 a | 0.31 a | 0.21 a | 0.10 a | 0.10 a | 0.193 | Basic * | 0.36 y | 0.18 xy | 0.33 y | 0.15 xy | 0.24 xy | 0.03 x | 0.008 |
Pretentious ns | 0.00 a | 0.10 a | 0.00 a | 0.00 a | 0.00 a | 0.07 a | 0.060 | Pretentious ns | 0.06 x | 0.12 x | 0.00 x | 0.09 x | 0.00 x | 0.06 x | 0.094 |
Uplifting ** | 0.10 bc | 0.20 abc | 0.28 abc | 0.31 ab | 0.45 a | 0.00 c | 0.000 | Uplifting ** | 0.06 x | 0.09 x | 0.24 xy | 0.15 x | 0.51 y | 0.00 x | <0.001 |
Indifferent ns | 0.14 a | 0.21 a | 0.14 a | 0.03 a | 0.03 a | 0.07 a | 0.210 | Indifferent ns | 0.06 x | 0.09 x | 0.00 x | 0.09 x | 0.03 x | 0.12 x | 0.315 |
Cheap ns | 0.07 a | 0.03 a | 0.17 a | 0.14 a | 0.10 a | 0.14 a | 0.562 | Cheap * | 0.06 x | 0.21 x | 0.27 x | 0.18 x | 0.06 x | 0.33 x | 0.015 |
Dependable * | 0.24 a | 0.03 ab | 0.07 ab | 0.00 b | 0.17 ab | 0.00 b | 0.002 | Dependable ns | 0.09 x | 0.00 x | 0.06 x | 0.06 x | 0.09 x | 0.00 x | 0.247 |
Artificial * | 0.10 b | 0.38 ab | 0.24 ab | 0.48 a | 0.24 ab | 0.24 ab | 0.023 | Artificial ** | 0.18 xy | 0.52 z | 0.27 xyz | 0.36 xyz | 0.06 x | 0.46 yz | 0.000 |
Common ns | 0.07 a | 0.10 a | 0.10 a | 0.07 a | 0.10 a | 0.03 a | 0.911 | Common * | 0.36 y | 0.09 x | 0.15 xy | 0.21 xy | 0.15 xy | 0.06 x | 0.013 |
Western Consumers | Asian Consumers | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attributes | Reference | Coconut | Drinkable | Soy | Cookies | Berry | p-Values | Attributes | Reference | Coconut | Drinkable | Soy | Cookies | Berry | p-Values |
| 0.14 a | 0.21 a | 0.21 a | 0.10a | 0.14a | 0.14 a | 0.817 | | 0.12 xy | 0.24 x | 0.12 xy | 0.15 xy | 0.00 y | 0.09 xy | 0.087 |
| 0.28 ab | 0.21 ab | 0.24 ab | 0.31 ab | 0.41 a | 0.00 b | 0.007 | | 0.15 yz | 0.09 z | 0.42 xy | 0.30 xyz | 0.52 x | 0.00 z | <0.001 |
| 0.03 a | 0.03 a | 0.03 a | 0.00 a | 0.00 a | 0.10 a | 0.267 | | 0.00 y | 0.09 xy | 0.00 y | 0.03 xy | 0.00 y | 0.18 x | 0.001 |
| 0.07 b | 0.14 ab | 0.03 b | 0.07 b | 0.03 b | 0.35 a | 0.001 | | 0.06 x | 0.15 x | 0.06 x | 0.09 x | 0.00 x | 0.12 x | 0.255 |
| 0.10 a | 0.00 a | 0.00 a | 0.03 a | 0.10 a | 0.00 a | 0.098 | | 0.03 xy | 0.00 y | 0.03 xy | 0.03 xy | 0.18 x | 0.00 y | 0.004 |
| 0.10 ab | 0.10 ab | 0.00 b | 0.03 b | 0.00 b | 0.31 a | 0.000 | | 0.21 x | 0.09 x | 0.03 x | 0.12 x | 0.00 x | 0.21 x | 0.026 |
| 0.03 a | 0.21 a | 0.21 a | 0.17 a | 0.17 a | 0.00 a | 0.051 | | 0.09 xy | 0.00 y | 0.06 y | 0.09 xy | 0.27 x | 0.00 y | 0.001 |
| 0.28 a | 0.14 a | 0.24 a | 0.35 a | 0.07 a | 0.10 a | 0.050 | | 0.15 x | 0.18 x | 0.09 x | 0.18 x | 0.03 x | 0.03 x | 0.146 |
| 0.00 b | 0.17 ab | 0.03 b | 0.14 ab | 0.00 b | 0.31 a | 0.000 | | 0.06 y | 0.15 xy | 0.00 y | 0.09 y | 0.00 y | 0.33 x | <0.001 |
| 0.10 ab | 0.17 ab | 0.24 ab | 0.21 ab | 0.35 a | 0.00 b | 0.005 | | 0.06 y | 0.03 y | 0.15 y | 0.09 xy | 0.42 x | 0.00 y | <0.001 |
| 0.07 b | 0.07 b | 0.00 b | 0.00 b | 0.00 b | 0.31 a | <0.001 | | 0.06 y | 0.09 y | 0.06 y | 0.06 y | 0.00 y | 0.49 x | <0.001 |
| 0.00 | 0.00 | 0.03 ab | 0.03 ab | 0.00 | 0.17 b | 0.004 | | 0.06 xy | 0.03 y | 0.03 y | 0.00 y | 0.00 y | 0.21 x | 0.001 |
| 0.28 ab | 0.07 b | 0.45 a | 0.35 ab | 0.55 a | 0.03 b | <0.001 | | 0.18 xy | 0.18 xy | 0.30 x | 0.12 xy | 0.15 xy | 0.00 y | 0.014 |
Product Code | Neutral NS | Happy NS | Sad NS | Angry NS | Surprised NS | Scared NS | Disgusted NS | Contempt NS | Valence NS | Arousal NS |
---|---|---|---|---|---|---|---|---|---|---|
Reference | 0.53 ± 0.21 | 0.02 ± 0.02 | 0.12 ± 0.18 | 0.12 ± 0.14 | 0.04 ± 0.05 | 0.02 ± 0.02 | 0.07 ± 0.11 | 0.01 ± 0.02 | −0.23 ± 0.19 | 0.30 ± 0.11 |
Coconut | 0.51 ± 0.20 | 0.03 ± 0.08 | 0.10 ± 0.14 | 0.14 ± 0.22 | 0.03 ± 0.04 | 0.02 ± 0.02 | 0.11 ± 0.13 | 0.01 ± 0.02 | −0.24 ± 0.25 | 0.32 ± 0.12 |
Drinkable | 0.51 ± 0.17 | 0.03 ± 0.10 | 0.16 ± 0.18 | 0.08 ± 0.10 | 0.02 ± 0.03 | 0.03 ± 0.04 | 0.11 ± 0.16 | 0.02 ± 0.03 | −0.22 ± 0.23 | 0.27 ± 0.12 |
Soy | 0.54 ± 0.21 | 0.03 ± 0.05 | 0.15 ± 0.19 | 0.11 ± 0.13 | 0.03 ± 0.04 | 0.02 ± 0.02 | 0.10 ± 0.13 | 0.01 ± 0.01 | −0.25 ± 0.20 | 0.28 ± 0.11 |
Cookies | 0.55 ± 0.18 | 0.01 ± 0.02 | 0.12 ± 0.15 | 0.13 ± 0.13 | 0.03 ± 0.05 | 0.02 ± 0.02 | 0.07 ± 0.08 | 0.01 ± 0.02 | −0.22 ± 0.15 | 0.26 ± 0.12 |
Berry | 0.47 ± 0.19 | 0.03 ± 0.04 | 0.11 ± 0.17 | 0.16 ± 0.18 | 0.03 ± 0.04 | 0.02 ± 0.02 | 0.12 ± 0.12 | 0.01 ± 0.02 | −0.27 ± 0.20 | 0.33 ± 0.11 |
F-value | 0.65 | 0.53 | 0.51 | 0.93 | 0.39 | 0.69 | 0.97 | 0.93 | 0.20 | 1.71 |
Product Code | Neutral NS | Happy NS | Sad NS | Angry NS | Surprised | Scared NS | Disgusted | Contempt NS | Valence NS | Arousal NS |
---|---|---|---|---|---|---|---|---|---|---|
Reference | 0.41 ± 0.14 | 0.05 ± 0.05 | 0.20 ± 0.17 | 0.10 ± 0.08 | 0.06 ± 0.10 ab | 0.04 ± 0.04 | 0.09 ± 0.09 b | 0.01 ± 0.02 | −0.22 ± 0.17 | 0.30 ± 0.14 |
Coconut | 0.41 ± 0.11 | 0.05 ± 0.05 | 0.19 ± 0.14 | 0.11 ± 0.12 | 0.06 ± 0.08 ab | 0.05 ± 0.04 | 0.08 ± 0.07 b | 0.01 ± 0.02 | −0.22 ± 0.15 | 0.30 ± 0.12 |
Drinkable | 0.40 ± 0.12 | 0.04 ± 0.05 | 0.23 ± 0.18 | 0.11 ± 0.14 | 0.08 ± 0.12 ab | 0.03 ± 0.03 | 0.06 ± 0.08 b | 0.01 ± 0.01 | −0.26 ± 0.21 | 0.29 ± 0.10 |
Soy | 0.38 ± 0.13 | 0.04 ± 0.06 | 0.25 ± 0.19 | 0.12 ± 0.13 | 0.09 ± 0.13 a | 0.05 ± 0.06 | 0.05 ± 0.05 b | 0.01 ± 0.01 | −0.27 ± 0.19 | 0.29 ± 0.14 |
Cookies | 0.40 ± 0.15 | 0.05 ± 0.06 | 0.23 ± 0.20 | 0.11 ± 0.12 | 0.05 ± 0.07 ab | 0.05 ± 0.04 | 0.04 ± 0.05 b | 0.01 ± 0.04 | −0.23 ± 0.22 | 0.82 ± 2.84 |
Berry | 0.36 ± 0.11 | 0.03 ± 0.04 | 0.20 ± 0.16 | 0.12 ± 0.13 | 0.03 ± 0.04 b | 0.04 ± 0.05 | 0.15 ± 0.17 a | 0.01 ± 0.01 | −0.31 ± 0.15 | 0.33 ± 0.17 |
F-value | 0.69 | 0.68 | 0.59 | 0.16 | 1.34 | 0.65 | 5.26 | 0.11 | 1.07 | 1.03 |
Model | Fixed Factor | Difference between Means | Standard Error (SE) | p Value | F-Value | Random Factor | Overall Mean | Standard Error of Difference | Percentage Variance |
---|---|---|---|---|---|---|---|---|---|
Check-all-that-apply (CATA) emotions | Artificial | −0.87 | 0.18 | <0.001 | 24.16 | Yogurt Samples | 4.91 | 0.20 | 66 |
Cheerful | 2.29 | 0.21 | <0.001 | 116.49 | |||||
Nasty | −2.31 | 0.22 | <0.001 | 106.11 | |||||
Neutral | 0.84 | 0.21 | <0.001 | 15.86 | |||||
Trusted | 1.16 | 0.25 | <0.001 | 21.77 | |||||
Uplifting | 0.81 | 0.23 | <0.001 | 11.17 | |||||
Indifferent | 0.93 | 0.28 | 0.001 | 10.67 | |||||
Check-all-that-apply (CATA) emojis | | −1.88 | 0.38 | <0.001 | 24.59 | None | 4.91 | 0.14 | 67.8 |
| 1.69 | 0.27 | <0.001 | 38.15 | |||||
| 2.08 | 0.38 | <0.001 | 30.58 | |||||
| −1.32 | 0.27 | <0.001 | 23.86 | |||||
| −1.60 | 0.25 | <0.001 | 39.28 | |||||
| 1.28 | 0.19 | <0.001 | 43.97 | |||||
| 1.90 | 0.19 | <0.001 | 101.36 | |||||
| 1.35 | 0.25 | <0.001 | 29.30 | |||||
| −1.05 | 0.26 | <0.001 | 16.28 | |||||
| −0.13 | 0.37 | <0.001 | 12.49 | |||||
Culture | −0.36 | 0.15 | 0.019 | 5.52 | |||||
FER | Disgusted | −4.73 | 1.15 | <0.001 | 11.11 | Yogurt Samples | 5.52 | 0.29 | 8.8 |
Surprised | 5.73 | 1.72 | <0.001 | 16.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, M.; Torrico, D.D.; Hepworth, G.; Gras, S.L.; Ong, L.; Cottrell, J.J.; Dunshea, F.R. Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study. Foods 2021, 10, 1237. https://doi.org/10.3390/foods10061237
Gupta M, Torrico DD, Hepworth G, Gras SL, Ong L, Cottrell JJ, Dunshea FR. Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study. Foods. 2021; 10(6):1237. https://doi.org/10.3390/foods10061237
Chicago/Turabian StyleGupta, Mitali, Damir D. Torrico, Graham Hepworth, Sally L. Gras, Lydia Ong, Jeremy J. Cottrell, and Frank R. Dunshea. 2021. "Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study" Foods 10, no. 6: 1237. https://doi.org/10.3390/foods10061237
APA StyleGupta, M., Torrico, D. D., Hepworth, G., Gras, S. L., Ong, L., Cottrell, J. J., & Dunshea, F. R. (2021). Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study. Foods, 10(6), 1237. https://doi.org/10.3390/foods10061237