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Abstract: In sensory evaluation, there have been many attempts to obtain responses from the
autonomic nervous system (ANS) by analyzing heart rate, body temperature, and facial expressions.
However, the methods involved tend to be intrusive, which interfere with the consumers’ responses
as they are more aware of the measurements. Furthermore, the existing methods to measure different
ANS responses are not synchronized among them as they are measured independently. This paper
discusses the development of an integrated camera system paired with an Android PC application to
assess sensory evaluation and biometric responses simultaneously in the Cloud, such as heart rate,
blood pressure, facial expressions, and skin-temperature changes using video and thermal images
acquired by the integrated system and analyzed through computer vision algorithms written in
Matlab®, and FaceReaderTM. All results can be analyzed through customized codes for multivariate
data analysis, based on principal component analysis and cluster analysis. Data collected can be also
used for machine-learning modeling based on biometrics as inputs and self-reported data as targets.
Based on previous studies using this integrated camera and analysis system, it has shown to be a
reliable, accurate, and convenient technique to complement the traditional sensory analysis of both
food and nonfood products to obtain more information from consumers and/or trained panelists.

Keywords: autonomic nervous system; computer vision algorithms; integrated camera system;
nonintrusive biometrics; sensory evaluation

1. Introduction

Sensory is the science applied to acquire, measure, analyze, and interpret the consumer, trained
panelist, and/or expert responses to different food and beverages or any other nonfood products
experienced through one or more of the five human senses [1]. Taditional methods to assess sensory
attributes of a product for any type of test involve the use of paper ballots for self-reported questionaires;
however, these are time-consuming in terms of data collection, digitalization, and analysis [2].
Furthermore, other disadvantages can be related to food, beverages, or some nonfood products
combined with the use of paper forms, which tend to be un-neat and unclean due to spills and food
marks, making the process more difficult to read when collecting data. Therefore, nowadays many
companies have developed computer-based software to ease data collection and analysis such as
Compusense (Compusense Inc., Guelph, ON, Canada), SIMS 2000 software (SIMS Sensory Software,
Morristown, NJ, USA), RedJade sensory software (Curion, Redwood City, CA, USA), and FIZZ sensory
software (Biosystemes, Couternon, France), however, these can be cost-prohibitive for many small
and medium food and nonfood companies and/or research centers. Furthermore, the aforementioned

Sensors 2018, 18, 2958; doi:10.3390/s18092958 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0377-5085
https://orcid.org/0000-0003-3998-1240
http://www.mdpi.com/1424-8220/18/9/2958?type=check_update&version=1
http://dx.doi.org/10.3390/s18092958
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2958 2 of 14

software only offers the capability of making surveys to gather conscious responses based on traditional
sensory tests, but do not incorporate any biometric responses.

Sensory evaluation is divided into three main types of tests: (i) discriminative, (ii) acceptability,
and (iii) descriptive. The use of acceptability tests tends to give subjective responses; therefore,
there is a need for a larger number of consumers to evaluate the samples to get more consistent results,
which is more time-consuming [3,4]. On the other hand, discriminative and descriptive tests are usually
conducted using a smaller group of trained panelists and data are more objective. However, the use of
continuous scales in descriptive tests, such as a 10 or 15 cm nonstructured scale, through paper ballots
makes their data collection more time-consuming as the use of a ruler to measure each response is
involved [4,5]. Hence, an automated system to gather results is of high importance in all sensory tests
to reduce time and the use of consumables, such as paper and pens.

More recently, sensory studies with consumers have incorporated biometrics, which involve the
use of personal identification techniques to obtain physiological data, which are a response to stimuli
from the autonomic nervous system (ANS) such as heart rate, body temperature, and facial-expression
changes, which help to assess the unconscious responses of participants to different stimuli such as
videos, images, real-life situations [6,7], and food and beverages such as chocolate [8] and beer [3,7],
respectively. De Wijk et al. [9,10] have conducted studies involving the use of intrusive electrodes to
measure the heart rate on the ear lobe, and skin conductance and temperature sensors positioned on
fingers. Other authors such as Beyts et al. [11] have measured heart rate using an electrocardiogram
with electrodes attached to the participants, and skin temperature using a thermisor under the forearm,
while Verastegui-Tena et al. [12] used sensor pads attached to the participants to measure heart rate and
electrodermal-transducer sensors for skin conductance. Taamneh et al. [13,14] presented a web-based
tool, SubjectBook, to collect, arganize, and visualize multimodal data. However, this tool acts more
as a dashboard and, as the aforementioned studies, the SubjectBook tool works by accruing data
from wearable sensors to measure physiological responses. The use of contact sensors to measure
parameters from the autonomic nervous system such as heart rate and blood pressure, has showed to
have an effect on the participants physiological responses [15], as the awareness of being monitored
increases their anxiety, increasing their arousal and, thus, modifying their ANS responses. Increasing
the anxiety of participants when aware of being monitored also has an effect on their emotional
responses as it increases fearfulness, concern, and nervousness [16]. Pavlidis et al. [17] developed a
technique to measure breath rate, blood flow, and heart rate using thermal images. On the other hand,
authors such as Danner et al. [18] have studied facial expressions using a low-resolution webcam.
It is important to note that these studies do not involve an integrated system, as every component
is measured independently. This means that the sensory form, video recording, and electrodes for
temperature and heart rate have independent hardware and software components, which makes the
analysis more difficult. Moreover, the video recording is done during the whole sensory session,
which involves the use of more memory space and makes the analysis more difficult as, when just
some parts of the session are required, there is a need for manually cutting the videos for the specific
times of interest when the stimuli were presented to panellists.

This paper discusses an automatic and nonintrusive method based on the development of an
integrated camera system to record videos and thermal images coupled with a biosensory application
(app) for Android (Google, Mountain View, CA, USA) Tablet PCs. The biosensory app is able to create
digitally customized sensory forms for any type of scale used in sensory tests and can be used remotely
with any internet connection. The analyses of videos and images using computer vision algorithms
written in Matlab® ver. R2018a (Mathworks Inc., Matick, MA, USA) and FaceReaderTM 7.1 software
(Noldus Information Technology, Wageningen, The Netherlands) are also explained and discussed.
The functionality and performance of the integrated system are presented, along with examples of
the outcomes analyzed through principal component analysis obtained using Matlab® ver. 2018a.
The biosensory app and the integrated camera system have been already applied for the assessment of
different food and beverage products as well as nonfood products such as labels and images using
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the senroy laboratory booths belonging to the Faculty of Veterinary and Agricultural Sciences (FVAS)
from The University of Melbourne (UoM).

2. Materials and Methods

2.1. Integrated Video- and Thermal-Camera Description

An integrated camera system (Figure 1a), which is capable of recording videos and, optionally,
capturing infrared thermal images (IRTI) every two seconds was developed. The videos are configured
to a resolution of 1640 × 1232 pixels, aspect ratio of 4:3, 30 frames per second (fps), and full field
of view (FoV) using the internal camera included in the Android tablet. For the optional use of the
thermal camera, the IRTIs were recorded using a FLIR AX8™ camera (FLIR Systems, Wilsonville, OR,
USA), which is able to take both thermal and visible images. When using both cameras, these were
integrated and connected to a small Raspberry Pi board (Raspberry Pi Foundation, Cambridge, UK)
placed at the back of the device, where they were able to connect through a dedicated WiFi network,
so they could be automatically controlled by the biosensory app. The integrated cameras were located
in each of the 20 booths of the sensory laboratory from FVAS-UoM (Figure 1b). The position of the
tablets was adjustable according to the height of each participant.
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Figure 1. Images of the (a) integrated camera system with: (1) the thermal camera FLIR AX8™,
and (2) Android tablet displaying the (3) biosensory app start screen; and (b) booths in the of
the sensory laboratory of the Faculty of Veterinary and Agricultural Sciences of The University of
Melbourne, Australia.

2.2. Integrated System and Biosensory App Development

2.2.1. Biosensory App Development

The biosensory app was developed for Android devices (Google, Mountain View, CA, USA) using
Android Studio (Google, Mountain View, CA, USA). It is intended to be used in tablets with Android 5.1
or 6.0, 2 GB random access memory (RAM), a 1920 × 1080 screen, front webcam, and a minimum of
8 GB free space in a Secure Digital (SD) card. The app was designed according to the participants’
needs to be easy to use by being self-explanatory and dynamic. Furthermore, it was designed to be
easy and flexible for test makers (users) to create new sensory forms and questionnaires according to
the type of test and product(s) to evaluate. The sensory forms were designed through a user-friendly
configuration file generator in an application program interface (API) on the Amazon Web Service
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Elastic Compute Cloud (AWS EC2) in which the user is able to add the title of the assessment, codes
for samples, select whether or not to randomize the order of samples presentation, and whether or not
to repeat the same questions for all samples. A ranking option is also available and can be switched
on and off according to the tests’ objective. This feature is flexible as it can be specified in which
part of the test the ranking should appear and how many samples need to be assessed for this test.
Additionally, the user can define the type of scale to use (categorical scale, face scale, continuous-line
scale), specify the descriptors and categories or levels, and if the question is conditional, which means
that, depending on the answers given, it will determine which the following question is. It also has the
option to add images, videos, and/or sound within the questionnaire to increase the number and type
of stimuli to panellists. The API on the AWS EC2 is able to build a configuration file (config file) in
JavaScript Object Notation (Json) format, which is then deployed to the tablets to be used for a test.

The biosensory app is also capable of recording videos and, optionally, thermal images while
the participant is evaluating the sample and answering the questions only or for the entire session.
These videos and images would allow the sensory-session leader to further analyze the panelists’
reactions when tasting the products by assessing heart rate, blood pressure, skin temperature, and facial
expressions (explained later). The user is able to use either the integrated system or just the video
camera if the thermal camera is not present; this gives the option to use any tablet available as it has
the capability of being mobile and work with any internet connection. Furthermore, there is an option
of either recording the whole session or selecting the questions and samples in which videos and
images are required. The user is also able to select the time to display each question, which allows to
determine the video time in case there is a minimum required.

2.2.2. Monitoring-System and Cloud-System Description

The integrated system works through a Cloud system that allows it to be used remotely (not only
at the FVAS-UoM sensory laboratory) (Figure 2) After downloading and installing the app, the user
must (1) log in with a unique username and password, which would aid with the security measures
required for data management. Furthermore, the user defines the questions and sample codes in
the (2) Json file generator in the API on the AWS EC2, which then is (3) saved into a zip folder and
retrieved by the app along with any other files such as video, audio, and/or image to be used for
the test; once this is completed, the participants are able to (4) start the test. While the app is being
used, it sends (4.1) status updates to the AWS EC2 so that both the user and administrator can monitor
remotely which devices are being used, who is taking the test, the system status, and which the next
sample to evaluate is. The system is also able to (5) submit and encrypt the files (videos and answers)
in real time to the AWS S3 storage, from which the administrator can (5.1) retrieve all decrypted data
for further analysis.

2.3. How the Biosensory App Works

Once the Json file is created, it must be sent remotely through the AWS EC2 to all devices
(20 devices in the FVAS-UoM sensory-lab case), so that the app can display it. After the file is set up,
the participants are required to enter their name and press the “Begin” button (Figure 1). The app
then takes the participant to complete the demographics section (age, gender, country of origin,
among others), followed by the questionnaire with the pre-established set of descriptors for each
sample. In Figure 3, examples of a categorical (Figure 3a) and 15-point nonstructured continuous
scales (Figure 3b) are shown.

The biosensory app has the ability to use a face countinuous scale that goes from very sad
(Figure 4a) to very happy (Figure 4b), being the middle a neutral response (Figure 4c). To answer the
question, the panelist is required to move the blue circle to the desired position and press the face
once it is ready to continue. This can be added as a welcoming screen and will help the user to have a
baseline of the participants feeling when starting the test to be able to assess how this is affected along
the session.
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Figure 4. Welcome screen to validate the participants feelings when starting the test, showing: (a) the
negative or sad face as the lower anchor, (b) the neutral for the middle anchor, and (c) the happy or
positive side of the scale.

Once the participant has finished evaluating one sample, a break screen can be added. This allows
the participant to take a break if needed and take a palate cleanser during the session. The app will
not record videos while this message is shown, thereby providing more stability to the system and
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reducing the length of videos, which, at the same time, eases the analysis when the camera is set to
record the entire session.

When the participant has finished evaluating either a set of samples or the whole session
(depending on the setting specified), for consumer evaluation, a ranking test to assess preference can
be added. As shown in Figure 5, the screen shows the three-digit random codes of each sample and
the participant is able to drag and drop the boxes containing the codes to order them from most to
least preferred.
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When the session is finished, the app saves the results (data file), videos, and images in both
the Cloud AWS S3 and internal computer to create backups of the data. The videos are created in
Motion Pictures Expert Group-4 (.mp4) format, images in Joint Photographic Experts Group format
(.JPG), and the data in a text file (.txt), each saved with the date, time, participants' name, sample,
and question number in a folder created for each participant, sample, and question. The text file can
be opened using Excel, where data are presented in a pre-established ordered manner (Table 1) to
facilitate gathering the values of all participants into a single file. The app is also able to record the
specific time at which the participant responded to each question.

Table 1. Example of the output of data obtained from the biosensory app in text file when opened
in Excel.

Assessment Image Sample Baby Face scale Progress 85 Time: 10:23:03
Assessment Image Sample Dark room Face scale Progress 13 Time: 10:24:48
Assessment Image Sample Spider Face scale Progress 22 Time: 10:26:06
Assessment Image Sample Stairs Face scale Progress 48 Time: 10:28:55
Assessment Image Sample Boat Face scale Progress 79 Time: 10:29:23
Assessment Image Sample Dentist Face scale Progress 30 Time: 10:31:01
Assessment Image Sample Door Face scale Progress 52 Time: 10:31:53
Assessment Image Sample Wheel Face scale Progress 55 Time: 10:32:14
Assessment Image Sample Dog Face scale Progress 94 Time: 10:33:23

Rank Sample Baby Position 1 Sample Dog Position 2 Sample Boat Position 3

2.4. Algorithms Used for Image, Video, and Infrared Thermography Analyses

The images recorded during the session are analyzed for facial expressions using FaceReaderTM

7.1 software (Noldus Information Technology, Wageningen, The Netherlands). The software uses
face-detection algorithms and is capable of detecting movements from different parts of the face,
which are related to a database integrated in the program to associate them with distinct expressions.
Once these are detected, they are classified into eight different parameters: (i) happy, (ii) neutral,
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(iii) sad, (iv) scared, (v) surprised, (vi) angry, (vii) contempt, and (viii) disgusted; additionally it is
able to calculate two dimentions: (ix) valence and (x) arousal, which are related to the positive and
negative responses to the stimuli presented to the participant. Furthermore, it is able to assess the head
orientation in the x- (X-Head), y- (Y-Head), and z- (Z-Head) axes.

The videos are then processed to assess the heart rate (HR) and blood pressure (systolic = SP and
diastolic = DP) of the participants during the presentation of the stimuli. To obtain these data, videos
are processed using an algorithm written in Matlab® ver. R2018a (Mathworks Inc., Matick, MA, USA)
based on luminosity changes of the face in the green color component using the photoplethysmography
principle. Once the videos are processed using the aforementioned algorithm, a machine-learning
model is fed with the input data obtained to calculate the real mean values for heart rate and blood
pressure (SP and DP) [19].

Both the thermal and visible images from the infrared camera are separated and the raw data file is
obtained using the FLIR® Tools software (FLIR Systems, Wilsonville, OR, USA), to be further analyzed
using a code written in Matlab® ver. R2018a (Mathworks Inc., Matick, MA, USA), which is based on the
cascade object detector to allow the automatic recognition of the eye section of the participants using
the visible image [20]. The code is designed to recognize the entire face in case it is not able to find the
area of the eyes. Once it detects the area of interest, the images are coregistered to obtain the maximum
temperature in each thermal image, which gives the skin temperature (IR) of the participants [3,7,8].

2.5. Examples of the Use of the Integrated Camera System in Sensory Sessions Using Beer and Images
as Stimuli

To show a possible application of the integrated camera system and biosensory app, data from
n = 30 consumers who participated in a sensory session using beer as stimulus is presented. In this
session, nine commercial beer samples from different styles (porter, aged ale, kolsh, lager, American
lager, pilsner, lambic cassis, lambic framboise, and lambic kriek) were used. Participants were
seated in individual booths in the sensory laboratory of FVAS-UoM, Australia. Each individual
booth was equipped with an integrated camera system (Figure 1b) and uniform lighting conditions.
Participants were asked to taste the sample and respond to the questionnaire presented in the tablet;
videos and IRTIs were recorded while participants were tasting the samples. The questions asked
of the participants were: (i) foam-staibility liking (FStability), (ii) foam-height liking (FHeight),
(iii) aroma liking (Aroma), (iv) bitterness-taste liking (TBitter), (v) carbonation-mouthfeel liking
(MCarb), (vi) flavor liking (Flavor), and (vii) overall liking (Overall). Subconscious responses such
as the aforementioned eight emotions, two dimensions, head orientation in x, y and z, gaze direction
from FaceReader™, plus heart rate and temperature were obtained. All data were analyzed through
multivariate data analysis based on principal component analysis (PCA) using Matlab® ver. R2018a.
This analysis allows to find relationships between the conscious and subconscious responses when
tasting different beer samples. Data of the heart rate and skin temperature changes from two
participants (Asian and Westerner) when tasting the porter beer were developed over time to show an
example of the results obtained using the computer vision algorithms.

Another sensory session using nine images (three positive, three neutral, and three negative)
from the Geneva Affective PicturE Database (GAPED) as stimuli [21] was conducted. This session
involved n = 59 participants using individual booths in the sensory laboratory of the FVAS-UoM,
Australia. As in the previous example, each individual booth was equipped with an integrated camera
system (Figure 1b) and uniform lighting conditions. Participants were asked to look at each image and
respond to the questionnaire presented in the tablet; videos and IRTIs were recorded while participants
were assessing the stimuli. The participants were asked to look at a blank screen for three seconds
to neutralize emotions, followed by a seven-second image display; videos were recorded during this
task. Following the latter, participants were asked to respond to a face-scale question to assess how
the image made them feel. In this example the videos and images were analyzed only for emotions,
skin temperature, and heart rate. Multivariate data analysis based on PCA and cluster analysis were
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performed using Matlab® ver. R2018a. This analysis allows to find relationships between multivariate
data and how stimuli are clusterd according to consumers' responses.

3. Results from Examples

3.1. Results Obtained from the Biosensory App Using the Integrated Camera System for the Sensory Sessions
Using Beer Samples as Stimuli

Figure 6 shows an example of the heart-rate response of two participants, an Asian and a Westerner,
when tasting the porter beer within the time they took to taste the sample. Likewise, Figure 7 shows
the results of skin-temperature changes when tasting the same porter sample. In both graphs, it is
shown that both participants had a different response when tasting the same sample.
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of an Asian and a Western participant.
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Figure 7. Example of the skin-temperature changes overtime when tasting a porter beer using the
responses of an Asian and a Western participant.

Figure 8 shows the PCA from the beer-tasting test in which the first principal component (PC1)
represents 45.14% of data variability, while the second principal component (PC2) accounts for 26.70%,
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explaining a total of 71.84%. PC1 was mainly represented by conscious responses such as Aroma,
Flavour, and Overall liking on the positive side, and sad and X-Head on the negative side. On the
other hand, PC2 was mainly represented by GDir and FHeight on the positive, and IR and X-Head
on the negative side of the axis. In this example it can be observed that the IR was negatively related
with FHeight and FStability, and positively related with Z-Head and X-Head. Furthermore, HR had a
positive relationship with happy, and a negative relationship with scared and FHeight and FStability.
All conscious responses related to taste, aroma, and mouthfeel were positively related with neutral,
and negatively related with sad.
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3.2. Results Obtained from the Biosensory App Using the Integrated Camera System for the Sensory Sessions
Using Images as Stimuli

Figure 9 shows an example of the results obtained from the multivatriate data analysis using
the data from GAPED images as part of the biosensory app. In Figure 9a, the PCA is presented and
it can be observed that it explains 65.60% of the total data variability (PC1 = 42.99%; PC2 = 22.61%).
PC1 was mainly represented by Disgusted and Angry on the positive side, and the emotions Neutral
and Contempt as well as Valence on the negative side. PC2 is mainly represented by Arousal on the
positive side and Surprised, Sad, and HR on the negative side of the axis. In this figure, the relationship
between the negative facial expressions (angry, scared, and disgusted) assessed using FaceReader™,
along with their negative relationship with the face scale (FS) used in the test and the positioning of the
negative images, can be depicted. Likewise, Figure 9b shows the clusters obtained using the eucledian
linkage based on the PCA, in which negative images are found within the same group. Furthermore,
it can be seen that positive images such as baby and dog were the highest in happy and the FS, as well
as skin temperature. A positive relationship between HR and sad, and between skin temperature and
FS and happy, can also be observed.
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4. Discussions

4.1. Application of the Biosensory App Using the Integrated Camera System for the Sensory Sessions Using
Beer and Images as Stimuli

Results from both the beer tasting and the presentation of image stimuli showed that the integrated
camera system and biometric analysis are an effective way to obtain the conscious and subconscious
(physiological) responses from consumers and that these two types of responses are related. Therefore,
it is easy to identify the performance of the physiological responses when participants are subjected
to different types of stimuli. Some interesting findings in the presented results were the negative
relationship between skin temperature and the liking of foam height and stability, and the negative
relationship between HR and the scared emotion when tasting beer. Other interesting findings were
the positive relationship between heart rate and emotions such as sad and surprised, and between skin
temperature and the conscious response from the FS and happy emotion when looking at image stimuli.
Some other studies using the presented system and biometric algorithms have obtained useful results,
such as the negative relationship between HR and the bitter-taste intensity using a just-about-right
(JAR) scale in beer samples [3], the positive correlation between HR and the perceived quality of beer
and the positive correlation between happy and liking of foam height when assessing the pouring
of the beer samples [7]. Figures 6 and 7 show the responses of heart rate and skin temperature
over time while tasting a sample; this continuous analysis can potentially be used for temporal
dominance of sensations (TDS) and time-intensity tests. Hence, this integrated system is a useful
tool for sensory evaluation to make it easier for participants to use the questionaires, reduce time of
analysis, and gather physiological responses remotely, as it has been found that the awareness of being
in contact with sensors affects participants' reactions [16]. This system also allows for its mobile use,
which would allow to gather data from any part of the world and in any environment. Furthermore,
it is capable of being coupled with other biometrics such as eye-tracking and electroencephalogram
(EEG) headsets [3,7].
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4.2. Example of Application of the Biosensory App Using an Integrated Camera System to Other Products to
Obtain Machine-Learning Models

This integrated camera system has been used in sensory-evaluation studies of food, beverages, and
nonfood products such as packaging and images with different purposes and findings. Torrico et al. [8]
used the system and biosensory app to assess consumers’ physiological and emotional responses
when tasting different chocolate samples and image stimuli and compared the responses from
Asian and Western consumers, finding differences between both cultures. Another study was
conducted using image stimuli from the GAPED database with the earliest version of the integrated
system and biosensory app and it was found that, by using subconscious responses along with six
conscious questions, it is possible to cluster the images according to the GAPED classification [22].
A study using thermochromic labels as stimuli included the use of the integrated system along
with eye-tracking techniques to assess acceptability from consumers, finding that there is no
difference in preference and acceptability when assessing physical labels compared to their virtual
version [23]. Gonzalez Viejo et al. [3] used the system along with an electroencephalogram device
to assess acceptability of different beers and were able to develop machine-learning models using
only the biometric responses as inputs to predict the level of liking (low and high) of some sensory
attributes such as flavor, carbonation, and overall liking with over 80% accuracy. Likewise, a study
including eye-tracking techniques was conducted to assess the acceptability and preference of different
beer samples through their visual evaluation by watching videos from their pouring and they were
able to develop a machine-learning model using the biometric responses from consumers, along with
the objective parameters related to foam and color, maeasured using a robotic pourer RoboBEER,
as inputs to classify the samples into high and low liking of the foamability with 82% accuracy [7].
The biosensory app without the video and IRTI recording has also been used in other beer studies
to assess the intensity of the samples’ descriptors using a 15 cm nonstructured scale based on the
quantitative descriptive analysis method obtaining the expected results according to the samples
tested [24,25].

This integrated system and biosensory app have the advantage of being mobile and that they can
be used not only in a sensory laboratory, but also in any environment, which only needs to have a WiFi
connection. Despite that, there are other software such as Compusense (Compusense Inc., Guelph,
ON, Canada) and RedJade sensory software (Curion, Redwood City, CA, USA) that have the ability of
being mobile, but they can only be used to present sensory forms for self-reported responses and does
not have the capability of recording biometrics. This feature of gathering self-reported responses and
nonintrusive biometrics (heart rate, blood pressure, facial expressions, among others) in an integrated
manner and remotely is uninque and, therefore, along with the development of machine-learning
models, has a wide range of potential uses in the assessment of food, beverages, packaging, and any
other nonfood products.

5. Conclusions

The newly developed integrated camera system and biosensory app have shown to be an
accurate and convenient tool that, at the same time, reduces the time of data gatheriang and analysis.
Furthermore, the use of nonintrusive methods to obtain data from unconscious responses is a more
reliable way to assess these responses without affecting participant behavior due to stress caused by
contact with, or exposure to, several sensors. Data obtained using the biosensory app and integrated
cameras can be readily used to create machine-learning models to further assess other products based
on biometrics and/or physiological responses without the necessity of asking questions to panelists.
There is considerable potential in this sense in the application of these machine-learning models on
consumers that do not have the skills to follow questionaires based on different scales, such as children
and the elderly with mental ilnness such as dementia.
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16. Frelih, N.G.; Podlesek, A.; Babič, J.; Geršak, G. Evaluation of psychological effects on human postural stability.
Measurement 2017, 98, 186–191. [CrossRef]

17. Pavlidis, I.; Dowdall, J.; Sun, N.; Puri, C.; Fei, J.; Garbey, M. Interacting with human physiology. Comput. Vis.
Image Underst. 2007, 108, 150–170. [CrossRef]

http://dx.doi.org/10.1111/j.1745-459X.1999.tb00102.x
http://dx.doi.org/10.1016/j.physbeh.2018.02.051
http://www.ncbi.nlm.nih.gov/pubmed/29501558
http://dx.doi.org/10.1016/j.biopsycho.2010.03.010
http://www.ncbi.nlm.nih.gov/pubmed/20371374
http://dx.doi.org/10.1016/j.foodcont.2018.04.037
http://dx.doi.org/10.1016/j.foodqual.2017.11.010
http://dx.doi.org/10.1371/journal.pone.0093823
http://www.ncbi.nlm.nih.gov/pubmed/24714107
http://dx.doi.org/10.1016/j.foodqual.2012.04.015
http://dx.doi.org/10.1016/j.foodqual.2017.02.006
http://dx.doi.org/10.1016/j.physbeh.2017.07.025
http://www.ncbi.nlm.nih.gov/pubmed/28736213
http://dx.doi.org/10.1038/sdata.2017.110
http://www.ncbi.nlm.nih.gov/pubmed/28809848
http://dx.doi.org/10.1186/1743-0003-9-21
http://www.ncbi.nlm.nih.gov/pubmed/22520559
http://dx.doi.org/10.1016/j.measurement.2016.11.039
http://dx.doi.org/10.1016/j.cviu.2006.11.018


Sensors 2018, 18, 2958 14 of 14

18. Danner, L.; Sidorkina, L.; Joechl, M.; Duerrschmid, K. Make a face! Implicit and explicit measurement of
facial expressions elicited by orange juices using face reading technology. Food Qual. Preference 2014, 32,
167–172. [CrossRef]

19. Viejo, C.G.; Fuentes, S.; Torrico, D.D.; Dunshea, F.R. Non-Contact Heart Rate and Blood Pressure Estimations
from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study
for Chocolate. Sensors 2018, 18, 1802. [CrossRef] [PubMed]

20. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA,
8–14 December 2001; Volume 1, pp. I-511–I-518.

21. Dan-Glauser, E.S.; Scherer, K.R. The Geneva affective picture database (GAPED): A new 730-picture database
focusing on valence and normative significance. Behav. Res. Methods 2011, 43, 468. [CrossRef] [PubMed]

22. Gunaratne, N.M.; Gonzalez Viejo, C.; Gunaratne, T.M.; Torrico, D.D.; Ashman, H.; Dunshea, F.R. Image
stimuli affect self-reported emotions and biometric facial expression responses. J. Sens. Stud. submitted.

23. Torrico, D.D.; Fuentes, S.; Viejo, C.G.; Ashman, H.; Gurr, P.A.; Dunshea, F.R. Analysis of thermochromic
label elements and colour transitions using sensory acceptability and eye tracking techniques. LWT 2018, 89,
475–481. [CrossRef]

24. Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.D.; Howell, K.; Dunshea, F.R. Assessment of Beer Quality Based on
a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci.
2018, 83, 1381–1388. [CrossRef] [PubMed]

25. Gonzalez Viejo, C.; Fuentes, S.; Li, G.; Collmann, R.; Condé, B.; Torrico, D. Development of a robotic
pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using
computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 2016, 89, 504–513. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.foodqual.2013.01.004
http://dx.doi.org/10.3390/s18061802
http://www.ncbi.nlm.nih.gov/pubmed/29865289
http://dx.doi.org/10.3758/s13428-011-0064-1
http://www.ncbi.nlm.nih.gov/pubmed/21431997
http://dx.doi.org/10.1016/j.lwt.2017.10.048
http://dx.doi.org/10.1111/1750-3841.14114
http://www.ncbi.nlm.nih.gov/pubmed/29603223
http://dx.doi.org/10.1016/j.foodres.2016.08.045
http://www.ncbi.nlm.nih.gov/pubmed/28460945
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Integrated Video- and Thermal-Camera Description 
	Integrated System and Biosensory App Development 
	Biosensory App Development 
	Monitoring-System and Cloud-System Description 

	How the Biosensory App Works 
	Algorithms Used for Image, Video, and Infrared Thermography Analyses 
	Examples of the Use of the Integrated Camera System in Sensory Sessions Using Beer and Images as Stimuli 

	Results from Examples 
	Results Obtained from the Biosensory App Using the Integrated Camera System for the Sensory Sessions Using Beer Samples as Stimuli 
	Results Obtained from the Biosensory App Using the Integrated Camera System for the Sensory Sessions Using Images as Stimuli 

	Discussions 
	Application of the Biosensory App Using the Integrated Camera System for the Sensory Sessions Using Beer and Images as Stimuli 
	Example of Application of the Biosensory App Using an Integrated Camera System to Other Products to Obtain Machine-Learning Models 

	Conclusions 
	References

