A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation
Abstract
:1. Introduction
2. Agro-Food Industrial Residues
2.1. Agricultural Residues
2.2. Food industry Residues
2.3. Chemical Composition of AFIRs
3. Solid-State Fermentation (SSF)
3.1. General
3.2. Substrates Used in SSF
3.3. Microorganisms Used in SSF
3.3.1. Filamentous Fungi
3.3.2. Other Microorganisms
4. Enzyme Production by SSF
4.1. Lignocellulolytic Enzymes
4.2. Cellulolytic Enzymes
4.3. Hemicellulolytic Enzymes
5. Production of Phenolic Compounds and Other Value-Added Compounds
6. Biofuel Production
7. Feed Production
8. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EUR-Lex—52007DC0059—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52007DC0059 (accessed on 14 March 2021).
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Călinoiu, L.F.; Cătoi, A.-F.; Vodnar, D.C. Solid-State Yeast Fermented Wheat and Oat Bran as A Route for Delivery of Antioxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Bansal, S.; Mangal, M.; Dixit, A.K.; Gupta, R.K.; Mangal, A.K. Utilization of Food Processing By-Products as Dietary, Functional, and Novel Fiber: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1647–1661. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Use of Agro-Industrial Wastes in Solid-State Fermentation Processes. Ind. Waste 2012, 274. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food Waste: A Potential Bioresource for Extraction of Nutraceuticals and Bioactive Compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Allikian, K.; Edgar, R.; Syed, R.; Zhang, S. Fundamentals of Fermentation Media. In Essentials in Fermentation Technology; Berenjian, A., Ed.; Learning Materials in Biosciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 41–84. ISBN 978-3-030-16230-6. [Google Scholar]
- Mitchell, D.A.; Krieger, N. Solid-State Cultivation Bioreactors. In Essentials in Fermentation Technology; Berenjian, A., Ed.; Learning Materials in Biosciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–133. ISBN 978-3-030-16230-6. [Google Scholar]
- Plácido, J.; Capareda, S. Ligninolytic Enzymes: A Biotechnological Alternative for Bioethanol Production. Bioresour. Bioprocess. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Hildén, K.; Mäkelä, M.R. Role of Fungi in Wood Decay. In Reference Module in Life Sciences; Roitberg, B.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2018, ISBN 978-0-12-809633-8. [Google Scholar]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Improved Lignocellulolytic Enzyme Production and Antioxidant Extraction Using Solid-State Fermentation of Olive Pomace Mixed with Winery Waste. Biofuels Bioprod. Biorefining-Biofpr 2020, 14, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Dulf, F.V.; Vodnar, D.C.; Toşa, M.I.; Dulf, E.-H. Simultaneous Enrichment of Grape Pomace with γ-Linolenic Acid and Carotenoids by Solid-State Fermentation with Zygomycetes Fungi and Antioxidant Potential of the Bioprocessed Substrates. Food Chem. 2020, 310, 125927. [Google Scholar] [CrossRef] [PubMed]
- Sarsaiya, S.; Jain, A.; Kumar Awasthi, S.; Duan, Y.; Kumar Awasthi, M.; Shi, J. Microbial Dynamics for Lignocellulosic Waste Bioconversion and Its Importance with Modern Circular Economy, Challenges and Future Perspectives. Bioresour. Technol. 2019, 291, 121905. [Google Scholar] [CrossRef]
- Olivero, G.; Turrini, F.; Vergassola, M.; Boggia, R.; Zunin, P.; Donno, D.; Beccaro, G.L.; Grilli, M.; Pittaluga, A. The 3Rs: Reduction and Refinement through a Multivariate Statistical Analysis Approach in a Behavioural Study to Unveil Anxiolytic Effects of Natural Extracts of Tilia Tomentosa. Biomed. Sci. Eng. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Pinela, J.; Omarini, A.B.; Stojković, D.; Barros, L.; Postemsky, P.D.; Calhelha, R.C.; Breccia, J.; Fernández-Lahore, M.; Soković, M.; Ferreira, I.C.F.R. Biotransformation of Rice and Sunflower Side-Streams by Dikaryotic and Monokaryotic Strains of Pleurotus Sapidus: Impact on Phenolic Profiles and Bioactive Properties. Food Res. Int. 2020, 132, 109094. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Rameshaiah, G.N.; Jagadish Reddy, M.L. Applications of Ligninolytic Enzymes from a White-Rot Fungus Trametes Versicolor. Univers. J. Environ. Res. Technol. 2015, 5, 1–7. [Google Scholar]
- Tan, Y.X.; Mok, W.K.; Lee, J.; Kim, J.; Chen, W.N. Solid State Fermentation of Brewers’ Spent Grains for Improved Nutritional Profile Using Bacillus Subtilis WX-17. Fermentation 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Wai, A.; Guha, T.K.; Hausner, G.; Yuan, Q. Production of Endoglucanase and Xylanase Using Food Waste by Solid-State Fermentation. Waste Biomass Valorization 2018, 9, 2391–2398. [Google Scholar] [CrossRef]
- Kovačić, D.; Kralik, D.; Rupčić, S.; Jovičić, D.; Spajić, R.; Tišma, M. Soybean Straw, Corn Stover and Sunflower Stalk as Possible Substrates for Biogas Production in Croatia: A Review. Chem. Biochem. Eng. Q. 2017, 31, 187–198. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QD (accessed on 16 March 2021).
- Berger, K.; Falck, P.; Linninge, C.; Nilsson, U.; Axling, U.; Grey, C.; Stalbrand, H.; Karlsson, E.N.; Nyman, M.; Holm, C.; et al. Cereal Byproducts Have Prebiotic Potential in Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2014, 62, 8169–8178. [Google Scholar] [CrossRef]
- Kohli, D.; Garg, D.S.; Jana, D.A.K. Thermal and Morphological Properties of Chemically Treated Barley Husk Fiber. Int. J. Res. Mech. Eng. Technol. 2013, 3, 4. [Google Scholar]
- Anukam, A.I.; Goso, B.P.; Okoh, O.O.; Mamphweli, S.N. Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. J. Chem. 2017, 2017, 6478389. [Google Scholar] [CrossRef] [Green Version]
- Daud, Z.; Mohd Zainuri, M.H.; Angzzas Sari, M.K.; Awang, H.; Aripin, A.M. Analysis the Chemical Composition and Fiber Morphology Structure of Corn Stalk. Aust. J. Basic Appl. Sci. 2013, 7, 401–405. [Google Scholar]
- Maj, G.; Krzaczek, P.; Kuranc, A.; Piekarski, W. Energy Properties of Sunflower Seed Husk as Industrial Extrusion Residue. Agric. Eng. 2017, 21, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.E.; Osman, S.; Idris, S.; Alfa, M. Influence of Irrigation System on Characteristics of Pulp and Paper Manufactured from Sunflower Stalks. Int. J. Sci. Technol. 2012, 1, 248–252. [Google Scholar]
- ElMekawy, A.; Diels, L.; De Wever, H.; Pant, D. Valorization of Cereal Based Biorefinery Byproducts: Reality and Expectations. Environ. Sci. Technol. 2013, 47, 9014–9027. [Google Scholar] [CrossRef] [PubMed]
- nee’Nigam, P.S.; Gupta, N.; Anthwal, A. Pre-treatment of Agro-Industrial Residues. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; nee’Nigam, P.S., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 13–33. ISBN 978-1-4020-9942-7. [Google Scholar]
- de Barros, R.D.R.O.; Becarelli, P.; de Oliveira, R.A.; Tognotti, L.; da Silva Bon, E.P. Triticum Spelta Straw Hydrothermal Pretreatment for the Production of Glucose Syrups via Enzymatic Hydrolysis. Biochem. Eng. J. 2019, 151, 107340. [Google Scholar] [CrossRef]
- Ezejiofor, T.I.N.; Enebaku, U.E.; Ogueke, C. Waste to Wealth- Value Recovery from Agro-Food Processing Wastes Using Biotechnology: A Review. Br. Biotechnol. J. 2014, 4, 418–481. [Google Scholar] [CrossRef]
- Šimić, G.; Lalić, A.; Horvat, D.; Zdunić, Z.; Koceva Komlenić, D.; Bucić-Kojić, A.; Planinić, M.; Tišma, M. Production and Analysis of the Flour from the Hull-Less Barley. J. Food Meas. Charact. 2021. [Google Scholar] [CrossRef]
- Belen Diaz, A.; de Ory, I.; Caro, I.; Blandino, A. Enhance Hydrolytic Enzymes Production by Aspergillus Awamori on Supplemented Grape Pomace. Food Bioprod. Process. 2012, 90, 72–78. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives. J. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional Components of Grape Pomace: Their Composition, Biological Properties and Potential Applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Planinić, M.; Aliakbarian, B.; Perego, P.; Greganić, K.; Tomas, S.; Bucić-Kojić, A. Influence of Temperature and Drying Time on Extraction Yield of Phenolic Compounds from Grape Pomace Variety “Portogizac”. Chem. Biochem. Eng. Q. 2015, 29, 343–350. [Google Scholar] [CrossRef]
- Baray Guerrero, M.R.; Salinas Gutierrez, J.M.; Melendez Zaragoza, M.J.; Lopez Ortiz, A.; Collins-Martinez, V. Optimal Slow Pyrolysis of Apple Pomace Reaction Conditions for the Generation of a Feedstock Gas for Hydrogen Production. Int. J. Hydrog. Energy 2016, 41, 23232–23237. [Google Scholar] [CrossRef]
- Kosmala, M.; Kołodziejczyk, K.; Zduńczyk, Z.; Juśkiewicz, J.; Boros, D. Chemical Composition of Natural and Polyphenol-Free Apple Pomace and the Effect of This Dietary Ingredient on Intestinal Fermentation and Serum Lipid Parameters in Rats. J. Agric. Food Chem. 2011, 59, 9177–9185. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Ferulic and P-Coumaric Acids Extraction by Alkaline Hydrolysis of Brewer’s Spent Grain. Ind. Crops Prod. 2007, 25, 231–237. [Google Scholar] [CrossRef]
- Muthusamy, N. Chemical Composition of Brewers SSpent Grain—A Review. Int. J. Sci. Environ. Technol. 2014, 3, 2109–2112. [Google Scholar]
- Budžaki, S.; Strelec, I.; Krnić, M.; Alilović, K.; Tišma, M.; Zelić, B. Proximate Analysis of Cold-Press Oil Cakes after Biological Treatment with Trametes Versicolor and Humicola Grisea. Eng. Life Sci. 2018, 18, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Manara, P.; Zabaniotou, A.; Vanderghem, C.; Richel, A. Lignin Extraction from Mediterranean Agro-Wastes: Impact of Pretreatment Conditions on Lignin Chemical Structure and Thermal Degradation Behavior. Catal. Today 2014, 223, 25–34. [Google Scholar] [CrossRef]
- Zheng, Y.; Lee, C.; Yu, C.; Cheng, Y.-S.; Simmons, C.W.; Zhang, R.; Jenkins, B.M.; VanderGheynst, J.S. Ensilage and Bioconversion of Grape Pomace into Fuel Ethanol. J. Agric. Food Chem. 2012, 60, 11128–11134. [Google Scholar] [CrossRef] [PubMed]
- Ducom, G.; Gautier, M.; Pietraccini, M.; Tagutchou, J.-P.; Lebouil, D.; Gourdon, R. Comparative Analyses of Three Olive Mill Solid Residues from Different Countries and Processes for Energy Recovery by Gasification. Renew. Energy 2020, 145, 180–189. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sanchez-Monedero, M.A. An Overview on Olive Mill Wastes and Their Valorisation Methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Kodali, B.; Pogaku, R. Pretreatment Studies of Rice Bran for the Effective Production of Cellulose. Electron. J. Environ. Agric. Food Chem. 2006, 5, 1253–1264. [Google Scholar]
- Kamal-Eldin, A.; Larke, H.N.; Knudsen, K.-E.B.; Lampi, A.-M.; Piironen, V.; Adlercreutz, H.; Katina, K.; Poutanen, K.; Man, P. Physical, Microscopic and Chemical Characterisation of Industrial Rye and Wheat Brans from the Nordic Countries. Food Nutr. Res. 2009, 53. [Google Scholar] [CrossRef] [Green Version]
- de Moraes Rocha, G.J.; Nascimento, V.M.; Goncalves, A.R.; Nunes Silva, V.F.; Martin, C. Influence of Mixed Sugarcane Bagasse Samples Evaluated by Elemental and Physical-Chemical Composition. Ind. Crops Prod. 2015, 64, 52–58. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Babiker, S.A.; Elnasir, A.; Elseed, M.; Mohammed, A. Effect of Urea-Treatment on Nutritive Value of Sugarcane Bagasse. ARPN J. Sci. Technol. 2013, 3, 839–843. [Google Scholar]
- Cripwell, R.; Favaro, L.; Rose, S.H.; Basaglia, M.; Cagnin, L.; Casella, S.; van Zyl, W. Utilisation of Wheat Bran as a Substrate for Bioethanol Production Using Recombinant Cellulases and Amylolytic Yeast. Appl. Energy 2015, 160, 610–617. [Google Scholar] [CrossRef]
- Kajala, I.; Makela, J.; Coda, R.; Shukla, S.; Shi, Q.; Maina, N.H.; Juvonen, R.; Ekholm, P.; Goyal, A.; Tenkanen, M.; et al. Rye Bran as Fermentation Matrix Boosts in Situ Dextran Production by Weissella Confusa Compared to Wheat Bran. Appl. Microbiol. Biotechnol. 2016, 100, 3499–3510. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and Functionality of Wheat Bran and Its Application in Some Cereal Food Products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Berovic, M.; Krieger, N. Overview of Solid State Bioprocessing. Biotechnol. Annu. Rev. 2002, 8, 183–225. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioeng. Basel Switz. 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn Silage Fungal-Based Solid-State Pretreatment for Enhanced Biogas Production in Anaerobic Co-Digestion with Cow Manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Fernandes, H.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Bio-Enrichment of Oilseed Cakes by Mortierella Alpina under Solid-State Fermentation. LWT 2020, 134, 109981. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Diaconeasa, Z.; Socaciu, C. Liberation and Recovery of Phenolic Antioxidants and Lipids in Chokeberry (Aronia melanocarpa) Pomace by Solid-State Bioprocessing Using Aspergillus Niger and Rhizopus Oligosporus Strains. LWT 2018, 87, 241–249. [Google Scholar] [CrossRef]
- Mao, M.; Wang, P.; Shi, K.; Lu, Z.; Bie, X.; Zhao, H.; Zhang, C.; Lv, F. Effect of Solid State Fermentation by Enterococcus Faecalis M2 on Antioxidant and Nutritional Properties of Wheat Bran. J. Cereal Sci. 2020, 94, 102997. [Google Scholar] [CrossRef]
- Rodríguez Couto, S.; López, E.; Sanromán, M.Á. Utilisation of Grape Seeds for Laccase Production in Solid-State Fermentors. J. Food Eng. 2006, 74, 263–267. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C.; Das, U.; Panda, S.K.; Saranraj, P. Microorganisms in Fermentation. In Essentials in Fermentation Technology; Berenjian, A., Ed.; Learning Materials in Biosciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–39. ISBN 978-3-030-16230-6. [Google Scholar]
- Steudler, S.; Werner, A.; Walther, T. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. In Solid State Fermentation: Research and Industrial Applications; Steudler, S., Werner, A., Cheng, J.J., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer International Publishing: Cham, Switzerland, 2019; pp. 51–81. ISBN 978-3-030-23675-5. [Google Scholar]
- Planinić, M.; Zelić, B.; Čubel, I.; Bucić-Kojić, A.; Tišma, M. Corn Forage Biological Pretreatment by Trametes Versicolor in a Tray Bioreactor. Waste Manag. Res. 2016, 34, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Jana, A.K. Sweet Sorghum Bagasse Pretreatment by Coriolus Versicolor in Mesh Tray Bioreactor for Selective Delignification and Improved Saccharification. Waste Biomass Valorization 2019, 10, 2689–2702. [Google Scholar] [CrossRef]
- Pinheiro, V.E.; Michelin, M.; Vici, A.C.; de Almeida, P.Z.; de Moraes Polizeli, M.D. Trametes Versicolor Laccase Production Using Agricultural Wastes: A Comparative Study in Erlenmeyer Flasks, Bioreactor and Tray. Bioprocess Biosyst. Eng. 2020, 43, 507–514. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Rodriguez Couto, S. Exploitation of Biological Wastes for the Production of Value-Added Products under Solid-State Fermentation Conditions. Biotechnol. J. 2008, 3, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent Advances in Solid-State Fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Jain, A.; Morlok, C.K.; Henson, J.M. Comparison of Solid-State and Submerged-State Fermentation for the Bioprocessing of Switchgrass to Ethanol and Acetate by Clostridium Phytofermentans. Appl. Microbiol. Biotechnol. 2013, 97, 905–917. [Google Scholar] [CrossRef]
- Tišma, M.; Žnidaršić-Plazl, P.; Šelo, G.; Tolj, I.; Šperanda, M.; Bucić-Kojić, A.; Planinić, M. Trametes Versicolor in Lignocellulose-Based Bioeconomy: State of the Art, Challenges and Opportunities. Bioresour. Technol. 2021, 124997. [Google Scholar] [CrossRef] [PubMed]
- Farinas, C.S. Developments in Solid-State Fermentation for the Production of Biomass-Degrading Enzymes for the Bioenergy Sector. Renew. Sustain. Energy Rev. 2015, 52, 179–188. [Google Scholar] [CrossRef]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Pirota, R.D.; Tonelotto, M.; da Silva Delabona, P.; Fonseca, R.F.; Paixão, D.A.; Baleeiro, F.C.; Neto, V.B.; Farinas, C.S. Enhancing Xylanases Production by a New Amazon Forest Strain of Aspergillus Oryzae Using Solid-State Fermentation under Controlled Operation Conditions. Ind. Crops Prod. 2013, 45, 465–471. [Google Scholar] [CrossRef]
- Figueroa-Montero, A.; Esparza-Isunza, T.; Saucedo-Castañeda, G.; Huerta-Ochoa, S.; Gutiérrez-Rojas, M.; Favela-Torres, E. Improvement of Heat Removal in Solid-State Fermentation Tray Bioreactors by Forced Air Convection. J. Chem. Technol. Biotechnol. 2011, 86, 1321–1331. [Google Scholar] [CrossRef]
- Mitchell, D.A.; von Meien, O.F.; Luz, L.F.L.; Berovič, M. Substrate, Air, and Thermodynamic Parameters for SSF Bioreactor Models. Solid-State Ferment. Bioreact. Fundam. Des. Oper. 2006, 265–278. [Google Scholar] [CrossRef]
- Osma, J.F.; Toca Herrera, J.L.; Rodríguez Couto, S. Banana Skin: A Novel Waste for Laccase Production by Trametes Pubescens under Solid-State Conditions. Application to Synthetic Dye Decolouration. Dyes Pigments 2007, 75, 32–37. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of Solid-State Fermentation with Two Filamentous Fungi on the Total Phenolic Contents, Flavonoids, Antioxidant Activities and Lipid Fractions of Plum Fruit (Prunus domestica L.) by-Products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-M.; Guo, X.-N.; Zhu, K.-X. Impact of Solid State Fermentation on Nutritional, Physical and Flavor Properties of Wheat Bran. Food Chem. 2017, 217, 28–36. [Google Scholar] [CrossRef]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of Sugarcane Bagasse and Sugar Beet Molasses Using Kluyveromyces Marxianus for Producing Value-Added Aroma Compounds via Solid-State Fermentation. J. Clean. Prod. 2017, 158, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, X.; Zhang, T.; Wang, Z.; Xu, J.; Xia, J.; He, A.; Yan, Y.; Xu, J. Novel Two-Stage Solid-State Fermentation for Erythritol Production on Okara–Buckwheat Husk Medium. Bioresour. Technol. 2018, 266, 439–446. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Ramteke, P.W.; Mishra, P.K. Chapter 23—Solid-State Fermentation Strategy for Microbial Metabolites Production: An Overview. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 345–354. ISBN 978-0-444-63504-4. [Google Scholar]
- López-Pérez, M.; Viniegra-González, G. Production of Protein and Metabolites by Yeast Grown in Solid State Fermentation: Present Status and Perspectives. J. Chem. Technol. Biotechnol. 2016, 91, 1224–1231. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Šelo, G.; Zelić, B.; Planinić, M.; Tišma, M. Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes Versicolor. Appl. Biochem. Biotechnol. 2017, 181, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Pintea, A. Phenolic Compounds, Flavonoids, Lipids and Antioxidant Potential of Apricot (Prunus armeniaca L.) Pomace Fermented by Two Filamentous Fungal Strains in Solid State System. Chem. Cent. J. 2017, 11, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iandolo, D.; Piscitelli, A.; Sannia, G.; Faraco, V. Enzyme Production by Solid Substrate Fermentation of Pleurotus Ostreatus and Trametes Versicolor on Tomato Pomace. Appl. Biochem. Biotechnol. 2011, 163, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Tišma, M.; Šalić, A.; Planinić, M.; Zelić, B.; Potočnik, M.; Šelo, G.; Bucić-Kojić, A. Production, Characterisation and Immobilization of Laccase for an Efficient Aniline-Based Dye Decolourization. J. Water Process Eng. 2020, 36, 101327. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Solid-State Fermentation of Apple Pomace Using Phanerocheate Chrysosporium—Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Elisashvili, V.; Kachlishvili, E.; Tsiklauri, N.; Metreveli, E.; Khardziani, T.; Agathos, S.N. Lignocellulose-Degrading Enzyme Production by White-Rot Basidiomycetes Isolated from the Forests of Georgia. World J. Microbiol. Biotechnol. 2009, 25, 331–339. [Google Scholar] [CrossRef]
- Ozcirak Ergun, S.; Ozturk Urek, R. Production of Ligninolytic Enzymes by Solid State Fermentation Using Pleurotus Ostreatus. Ann. Agrar. Sci. 2017, 15, 273–277. [Google Scholar] [CrossRef]
- Rashad, M.M.; Abdou, H.M.; Mahmoud, A.E. Production of Some Bioactive Materials by Pleurotus Ostreatus from Pineapple Residues and Rice Straw via Solid State Fermentation. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2730–2736. [Google Scholar]
- Ibarra-Cantún, D.; Ramos-Cassellis, M.E.; Marín-Castro, M.A.; Castelán-Vega, R.D.C. Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse. J. Fungi 2020, 6, 137. [Google Scholar] [CrossRef]
- Santos, T.R.J.; Feitosa, P.R.B.; Gualberto, N.C.; Narain, N.; Santana, L.C.L.A. Improvement of Bioactive Compounds Content in Granadilla (Passiflora ligularis) Seeds after Solid-State Fermentation. Food Sci. Technol. Int. 2020, 1082013220944009. [Google Scholar] [CrossRef]
- Feitosa, P.R.B.; Santos, T.R.J.; Gualberto, N.C.; Narain, N.; de Aquino Santana, L.C.L. Solid-State Fermentation with Aspergillus Niger for the Bio-Enrichment of Bioactive Compounds in Moringa Oleifera (Moringa) Leaves. Biocatal. Agric. Biotechnol. 2020, 27, 101709. [Google Scholar] [CrossRef]
- Sharma, A.; Vivekanand, V.; Singh, R.P. Solid-State Fermentation for Gluconic Acid Production from Sugarcane Molasses by Aspergillus Niger ARNU-4 Employing Tea Waste as the Novel Solid Support. Bioresour. Technol. 2008, 99, 3444–3450. [Google Scholar] [CrossRef]
- Soares, M.; Christen, P.; Pandey, A.; Soccol, C.R. Fruity Flavour Production by Ceratocystis Fimbriata Grown on Coffee Husk in Solid-State Fermentation. Process Biochem. 2000, 35, 857–861. [Google Scholar] [CrossRef]
- Martins, E.S.; Silva, D.; Da Silva, R.; Gomes, E. Solid State Production of Thermostable Pectinases from Thermophilic Thermoascus Aurantiacus. Process Biochem. 2002, 37, 949–954. [Google Scholar] [CrossRef]
- Šibalić, D.; Šalić, A.; Tušek, A.J.; Sokač, T.; Brekalo, K.; Zelić, B.; Tran, N.N.; Hessel, V.; Tišma, M. Sustainable Production of Lipase from Thermomyces Lanuginosus: Process Optimization and Enzyme Characterization. Ind. Eng. Chem. Res. 2020, 59, 21144–21154. [Google Scholar] [CrossRef]
- Pathania, S.; Sharma, N.; Handa, S. Utilization of Horticultural Waste (Apple pomace) for Multiple Carbohydrase Production from Rhizopus Delemar F2 under Solid State Fermentation. J. Genet. Eng. Biotechnol. 2018, 16, 181–189. [Google Scholar] [CrossRef]
- Kaaniche, F.; Hamed, A.; Elleuch, L.; Chakchouk-Mtibaa, A.; Smaoui, S.; Karray-Rebai, I.; Koubaa, I.; Arcile, G.; Allouche, N.; Mellouli, L. Purification and Characterization of Seven Bioactive Compounds from the Newly Isolated Streptomyces Cavourensis TN638 Strain via Solid-State Fermentation. Microb. Pathog. 2020, 142, 104106. [Google Scholar] [CrossRef] [PubMed]
- Verduzco-Oliva, R.; Gutierrez-Uribe, J.A. Beyond Enzyme Production: Solid State Fermentation (SSF) as an Alternative Approach to Produce Antioxidant Polysaccharides. Sustainability 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S.; Khushk, I.; Ali, C.H.; Chisti, Y.; Ahmad, A.; Majeed, H. Coproduction of Protease and Amylase by Thermophilic Bacillus Sp. BBXS-2 Using Open Solid-State Fermentation of Lignocellulosic Biomass. Biocatal. Agric. Biotechnol. 2016, 8, 146–151. [Google Scholar] [CrossRef]
- Medeiros, A.B.; Pandey, A.; Freitas, R.J.; Christen, P.; Soccol, C.R. Optimization of the Production of Aroma Compounds by Kluyveromyces Marxianus in Solid-State Fermentation Using Factorial Design and Response Surface Methodology. Biochem. Eng. J. 2000, 6, 33–39. [Google Scholar] [CrossRef]
- Dessie, W.; Zhang, W.; Xin, F.; Dong, W.; Zhang, M.; Ma, J.; Jiang, M. Succinic Acid Production from Fruit and Vegetable Wastes Hydrolyzed by On-Site Enzyme Mixtures through Solid State Fermentation. Bioresour. Technol. 2018, 247, 1177–1180. [Google Scholar] [CrossRef]
- Gupta, V.; Garg, S.; Capalash, N.; Gupta, N.; Sharma, P. Production of Thermo-Alkali-Stable Laccase and Xylanase by Co-Culturing of Bacillus Sp. and B. Halodurans for Biobleaching of Kraft Pulp and Deinking of Waste Paper. Bioprocess Biosyst. Eng. 2015, 38, 947–956. [Google Scholar] [CrossRef]
- David, A.; Singh Chauhan, P.; Kumar, A.; Angural, S.; Kumar, D.; Puri, N.; Gupta, N. Coproduction of Protease and Mannanase from Bacillus Nealsonii PN-11 in Solid State Fermentation and Their Combined Application as Detergent Additives. Int. J. Biol. Macromol. 2018, 108, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.K.; Adhikari, H.; Rai, S.K. Production of Alkaline Protease by a Thermophilic Bacillus Subtilis under Solid-State Fermentation (SSF) Condition Using Imperata Cylindrica Grass and Potato Peel as Low-Cost Medium: Characterization and Application of Enzyme in Detergent Formulation. Biochem. Eng. J. 2008, 39, 353–361. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, M.; Sharma, K.K.; Nair, L.M.; Kuhad, R.C. Production and Recovery of an Alkaline Exo-Polygalacturonase from Bacillus Subtilis RCK under Solid-State Fermentation Using Statistical Approach. Bioresour. Technol. 2008, 99, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Ballardo, C.; Barrena, R.; Artola, A.; Sánchez, A. A Novel Strategy for Producing Compost with Enhanced Biopesticide Properties through Solid-State Fermentation of Biowaste and Inoculation with Bacillus Thuringiensis. Waste Manag. 2017, 70, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Kiran, G.S.; Thomas, T.A.; Selvin, J. Production of a New Glycolipid Biosurfactant from Marine Nocardiopsis Lucentensis MSA04 in Solid-State Cultivation. Colloids Surf. B Biointerfaces 2010, 78, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kiran, G.S.; Sabu, A.; Selvin, J. Synthesis of Silver Nanoparticles by Glycolipid Biosurfactant Produced from Marine Brevibacterium Casei MSA19. J. Biotechnol. 2010, 148, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Nalini, S.; Parthasarathi, R. Production and Characterization of Rhamnolipids Produced by Serratia Rubidaea SNAU02 under Solid-State Fermentation and Its Application as Biocontrol Agent. Bioresour. Technol. 2014, 173, 231–238. [Google Scholar] [CrossRef]
- Castilho, L.R.; Mitchell, D.A.; Freire, D.M.G. Production of Polyhydroxyalkanoates (PHAs) from Waste Materials and by-Products by Submerged and Solid-State Fermentation. Bioresour. Technol. 2009, 100, 5996–6009. [Google Scholar] [CrossRef]
- Sindhu, R.; Pandey, A.; Binod, P. Solid-State Fermentation for the Production of Poly(Hydroxyalkanoates). Chem. Biochem. Eng. Q. 2015, 29, 173–181. [Google Scholar] [CrossRef]
- Naveena, B.J.; Altaf, M.; Bhadrayya, K.; Madhavendra, S.S.; Reddy, G. Direct Fermentation of Starch to l(+) Lactic Acid in SSF by Lactobacillus amylophilus GV6 Using Wheat Bran as Support and Substrate: Medium Optimization Using RSM. Process Biochem. 2005, 40, 681–690. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Zhang, M.; Zhang, Z.; Song, L.; Wang, G.; Zhang, J. Metabolism Analysis for Enhanced Nutritional Profile of Chestnuts Subjected to Anerobic Solid-State Fermentation by Probiotic Lactic Acid Bacteria. J. Food Process. Preserv. 2020, 44, e14360. [Google Scholar] [CrossRef]
- Sabu, A.; Augur, C.; Swati, C.; Pandey, A. Tannase Production by Lactobacillus Sp. ASR-S1 under Solid-State Fermentation. Process Biochem. 2006, 41, 575–580. [Google Scholar] [CrossRef]
- Faisal, P.A.; Hareesh, E.S.; Priji, P.; Unni, K.N.; Sajith, S.; Sreedevi, S.; Josh, M.S.; Benjamin, S. Optimization of Parameters for the Production of Lipase from Pseudomonas Sp. BUP6 by Solid State Fermentation. Adv. Enzyme Res. 2014, 2, 125–133. [Google Scholar] [CrossRef]
- Xu, D.; Yao, H.; Xu, Z.; Wang, R.; Xu, Z.; Li, S.; Feng, X.; Liu, Y.; Xu, H. Production of ε-Poly-Lysine by Streptomyces Albulus PD-1 via Solid-State Fermentation. Bioresour. Technol. 2017, 223, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Borrero-López, A.M.; Blánquez, A.; Valencia, C.; Hernández, M.; Arias, M.E.; Eugenio, M.E.; Fillat, Ú.; Franco, J.M. Valorization of Soda Lignin from Wheat Straw Solid-State Fermentation: Production of Oleogels. ACS Sustain. Chem. Eng. 2018, 6, 5198–5205. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Moawad, H.; Abdelwahed, N.A.M. Optimization of Fermentation Conditions for Enhancing Extracellular Production of L -Asparaginase, an Anti-Leukemic Agent, by Newly Isolated Streptomyces Brollosae NEAE-115 Using Solid State Fermentation. Ann. Microbiol. 2017, 67, 1–15. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. Fed-Batch and Sequential-Batch Approaches To Enhance the Bioproduction of 2-Phenylethanol and 2-Phenethyl Acetate in Solid-State Fermentation Residue-Based Systems. J. Agric. Food Chem. 2019, 67, 3389–3399. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. 2-Phenylethanol (Rose aroma) Production Potential of an Isolated Pichia Kudriavzevii through Solid-State Fermentation. Process Biochem. 2020, 93, 94–103. [Google Scholar] [CrossRef]
- Astolfi, V.; Joris, J.; Verlindo, R.; Oliveira, J.V.; Maugeri, F.; Mazutti, M.A.; de Oliveira, D.; Treichel, H. Operation of a Fixed-Bed Bioreactor in Batch and Fed-Batch Modes for Production of Inulinase by Solid-State Fermentation. Biochem. Eng. J. 2011, 58–59, 39–49. [Google Scholar] [CrossRef]
- Nimnoi, P.; Lumyong, S. Improving Solid-State Fermentation of Monascus Purpureus on Agricultural Products for Pigment Production. Food Bioprocess Technol. 2011, 4, 1384–1390. [Google Scholar] [CrossRef]
- Correa, H.T.; Vieira, W.F.; Pinheiro, T.M.A.; Cardoso, V.L.; Silveira, E.; Sette, L.D.; Pessoa, A.; Filho, U.C. L-Asparaginase and Biosurfactants Produced by Extremophile Yeasts from Antarctic Environments. Ind. Biotechnol. 2020, 16, 107–116. [Google Scholar] [CrossRef]
- Santos da Silveira, J.; Durand, N.; Lacour, S.; Belleville, M.-P.; Perez, A.; Loiseau, G.; Dornier, M. Solid-State Fermentation as a Sustainable Method for Coffee Pulp Treatment and Production of an Extract Rich in Chlorogenic Acids. Food Bioprod. Process. 2019, 115, 175–184. [Google Scholar] [CrossRef]
- Zheng, T.; Yu, H.; Liu, S.; Jiang, J.; Wang, K. Achieving High Ethanol Yield by Co-Feeding Corncob Residues and Tea-Seed Cake at High-Solids Simultaneous Saccharification and Fermentation. Renew. Energy 2020, 145, 858–866. [Google Scholar] [CrossRef]
- Estrada-Martínez, R.; Favela-Torres, E.; Soto-Cruz, N.O.; Escalona-Buendía, H.B.; Saucedo-Castañeda, G. A Mild Thermal Pre-Treatment of the Organic Fraction of Municipal Wastes Allows High Ethanol Production by Direct Solid-State Fermentation. Biotechnol. Bioprocess Eng. 2019, 24, 401–412. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Toro, M.E.; Vazquez, F.; Correa-Daneri, M.L.; Gouiric, S.C.; Vallejo, M.D. Bioethanol Production from Grape and Sugar Beet Pomaces by Solid-State Fermentation. Int. J. Hydrog. Energy 2010, 35, 5914–5917. [Google Scholar] [CrossRef]
- Try, S.; De-Coninck, J.; Voilley, A.; Chunhieng, T.; Waché, Y. Solid State Fermentation for the Production of γ-Decalactones by Yarrowia Lipolytica. Process Biochem. 2018, 64, 9–15. [Google Scholar] [CrossRef]
- Iyer, P.; Singhal, R.S. Production of Glutaminase (E.C. 3.2.1.5) from Zygosaccharomyces Rouxii in Solid-State Fermentation and Modeling the Growth of Z. Rouxii Therein. J. Microbiol. Biotechnol. 2010, 20, 737–748. [Google Scholar] [CrossRef]
- Saroj, P.; Manasa, P.; Narasimhulu, K. Characterization of Thermophilic Fungi Producing Extracellular Lignocellulolytic Enzymes for Lignocellulosic Hydrolysis under Solid-State Fermentation. Bioresour. Bioprocess. 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Ashok, A.; Doriya, K.; Rao, D.R.M.; Kumar, D.S. Design of Solid State Bioreactor for Industrial Applications: An Overview to Conventional Bioreactors. Biocatal. Agric. Biotechnol. 2017, 9, 11–18. [Google Scholar] [CrossRef]
- Singh, S.K.; Sczakas, G.; Soccol, C.R.; Pandey, A. Production of Enzymes by Solid-state Fermentation. In Current Developments in Solid-state Fermentation; Pandey, A., Soccol, C.R., Larroche, C., Eds.; Springer: New York, NY, USA, 2008; pp. 183–204. ISBN 978-0-387-75213-6. [Google Scholar]
- Abdel-Azeem, A.M.; Abdel-Azeem, M.A.; Abdul-Hadi, S.Y.; Darwish, A.G. Aspergillus: Biodiversity, Ecological Significances, and Industrial Applications. In Recent Advancement in White Biotechnology Through Fungi: Volume 1: Diversity and Enzymes Perspectives; Yadav, A.N., Mishra, S., Singh, S., Gupta, A., Eds.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 121–179. ISBN 978-3-030-10480-1. [Google Scholar]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent Trends in Fungal Laccase for Various Industrial Applications: An Eco-Friendly Approach—A Review. Biotechnol. Bioprocess Eng. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Niladevi, K.N. Ligninolytic Enzymes. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; nee’Nigam, P.S., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 397–414. ISBN 978-1-4020-9942-7. [Google Scholar]
- Xu, X.; Lin, M.; Zang, Q.; Shi, S. Solid State Bioconversion of Lignocellulosic Residues by Inonotus Obliquus for Production of Cellulolytic Enzymes and Saccharification. Bioresour. Technol. 2018, 247, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Dave, B.R.; Sudhir, A.P.; Subramanian, R.B. Purification and Properties of an Endoglucanase from Thermoascus Aurantiacus. Biotechnol. Rep. Amst. Neth. 2015, 6, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Yeoman, C.J.; Han, Y.; Dodd, D.; Schroeder, C.M.; Mackie, R.I.; Cann, I.K.O. Thermostable Enzymes as Biocatalysts in the Biofuel Industry. Adv. Appl. Microbiol. 2010, 70, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Grassick, A.; Murray, P.G.; Thompson, R.; Collins, C.M.; Byrnes, L.; Birrane, G.; Higgins, T.M.; Tuohy, M.G. Three-Dimensional Structure of a Thermostable Native Cellobiohydrolase, CBH IB, and Molecular Characterization of the Cel7 Gene from the Filamentous Fungus, Talaromyces Emersonii. Eur. J. Biochem. 2004, 271, 4495–4506. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Ellagic Acid Production and Phenolic Antioxidant Activity in Cranberry Pomace (Vaccinium macrocarpon) Mediated by Lentinus Edodes Using a Solid-State System. Process Biochem. 2003, 39, 367–379. [Google Scholar] [CrossRef]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic Compounds: Natural Alternative in Inflammation Treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar] [CrossRef]
- Shahzadi, T.; Anwar, Z.; Iqbal, Z.; Anjum, A.; Aqil, T.; Bakhtawar Afzal, A.; Kamran, M.; Mehmood, S.; Irshad, M. Induced Production of Exoglucanase, and β-Glucosidase from Fungal Co-Culture of T. Viride and G. Lucidum. Adv. Biosci. Biotechnol. 2014, 5, 426–433. [Google Scholar] [CrossRef]
- Tišma, M.; Jurić, A.; Bucić-Kojić, A.; Panjičko, M.; Planinić, M. Biovalorization of Brewers’ Spent Grain for the Production of Laccase and Polyphenols. J. Inst. Brew. 2018, 124, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Akpinar, M.; Ozturk Urek, R. Induction of Fungal Laccase Production under Solid State Bioprocessing of New Agroindustrial Waste and Its Application on Dye Decolorization. 3 Biotech 2017, 7, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, P.; Ghosh, U. Bioconversion of Agro-Waste to Value-Added Product Through Solid-State Fermentation by a Potent Fungal Strain Aspergillus flavus PUF5. In Utilization and Management of Bioresources; Ghosh, S.K., Ed.; Springer: Singapore, 2018; pp. 291–299. [Google Scholar]
- Murugesan, K.; Nam, I.-H.; Kim, Y.-M.; Chang, Y.-S. Decolorization of Reactive Dyes by a Thermostable Laccase Produced by Ganoderma Lucidum in Solid State Culture. Enzyme Microb. Technol. 2007, 40, 1662–1672. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, V.; Khan, M.; Balda, S.; Gupta, N.; Capalash, N.; Sharma, P. Flavonoid-Rich Agro-Industrial Residues for Enhanced Bacterial Laccase Production by Submerged and Solid-State Fermentation. 3 Biotech 2017, 7, 200. [Google Scholar] [CrossRef]
- Pandey, S.; Srivastava, M.; Shahid, M.; Kumar, V.; Singh, A.; Trivedi, S.; Srivastava, Y.K. Trichoderma Species Cellulases Produced by Solid State Fermentation. J. Data Min. Genom. Proteom. 2015, 6, 170. [Google Scholar] [CrossRef]
- Marques, G.L.; dos Santos Reis, N.; Silva, T.P.; Ferreira, M.L.O.; Aguiar-Oliveira, E.; de Oliveira, J.R.; Franco, M. Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium Roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue. Waste Biomass Valorization 2018, 9, 2061–2069. [Google Scholar] [CrossRef]
- Saqib, A.A.N.; Hassan, M.; Khan, N.F.; Baig, S. Thermostability of Crude Endoglucanase from Aspergillus Fumigatus Grown under Solid State Fermentation (SSF) and Submerged Fermentation (SmF). Process Biochem. 2010, 45, 641–646. [Google Scholar] [CrossRef]
- Mahmood, R.T.; Asad, M.J.; Mehboob, N.; Mushtaq, M.; Gulfraz, M.; Asgher, M.; Minhas, N.M.; Hadri, S.H. Production, Purification, and Characterization of Exoglucanase by Aspergillus Fumigatus. Appl. Biochem. Biotechnol. 2013, 170, 895–908. [Google Scholar] [CrossRef]
- Singla, D.; Taggar, M.S. Production of Cellulases by Solid State Fermentation of Different Agricultural Residues Using Humicola Insolens MTCC 1433. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1409–1418. [Google Scholar] [CrossRef]
- Garcia, N.F.L.; da Silva Santos, F.R.; Gonçalves, F.A.; da Paz, M.F.; Fonseca, G.G.; Leite, R.S.R. Production of β-Glucosidase on Solid-State Fermentation by Lichtheimia Ramosa in Agroindustrial Residues: Characterization and Catalytic Properties of the Enzymatic Extract. Electron. J. Biotechnol. 2015, 18, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Leite, R.S.R.; Alves-Prado, H.F.; Cabral, H.; Pagnocca, F.C.; Gomes, E.; Da-Silva, R. Production and Characteristics Comparison of Crude β-Glucosidases Produced by Microorganisms Thermoascus Aurantiacus e Aureobasidium Pullulans in Agricultural Wastes. Enzyme Microb. Technol. 2008, 43, 391–395. [Google Scholar] [CrossRef]
- Pandya, J.J.; Gupte, A. Production of Xylanase under Solid-State Fermentation by Aspergillus Tubingensis JP-1 and Its Application. Bioprocess Biosyst. Eng. 2012, 35, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.S.; Sharma, J.; Battan, B. Pretreatment Processing of Fabrics by Alkalothermophilic Xylanase from Bacillus Stearothermophilus SDX. Enzyme Microb. Technol. 2008, 43, 262–269. [Google Scholar] [CrossRef]
- Park, Y.; Kang, S.; Lee, J.; Hong, S.; Kim, S. Xylanase Production in Solid State Fermentation by Aspergillus Niger Mutant Using Statistical Experimental Designs. Appl. Microbiol. Biotechnol. 2002, 58, 761–766. [Google Scholar] [CrossRef]
- Umsza-Guez, M.A.; Díaz, A.B.; Ory, I.D.; Blandino, A.; Gomes, E.; Caro, I. Xylanase Production by Aspergillus Awamori under Solid State Fermentation Conditions on Tomato Pomace. Braz. J. Microbiol. 2011, 42, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, M.; Doyle, S.; Murphy, R. Optimization of Xylanase Production by Thermomyces Lanuginosus in Solid State Fermentation. Biosci. Biotechnol. Biochem. 2009, 73, 2640–2644. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Yin, J.; Chen, G.-Q. Production of Polyhydroxyalkanoates. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 655–692. ISBN 978-0-444-63662-1. [Google Scholar]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, Xylanase Families and Extremophilic Xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Helkar, P.B.; Sahoo, A.; Patil, N. Review: Food Industry By-Products Used as a Functional Food Ingredients. Int. J. Waste Resour. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 33–50. ISBN 978-0-12-814774-0. [Google Scholar]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple Pomace as Food Fortification Ingredient: A Systematic Review and Meta-Analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Martínez-Ávila, G.C.; Aguilera-Carbó, A.F.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal Enhancement of the Antioxidant Properties of Grape Waste. Ann. Microbiol. 2012, 62, 923–930. [Google Scholar] [CrossRef]
- Aguilar, C.N.; Aguilera-Carbo, A.; Robledo, A.; Ventura, J.; Belmares, R.; Martinez, D.; Rodríguez-Herrera, R.; Contreras, J. Production of Antioxidant Nutraceuticals by Solid-State Cultures of Pomegranate (Punica granatum) Peel and Creosote Bush (Larrea tridentata) Leaves. Food Technol. Biotechnol. 2008, 46, 218–222. [Google Scholar]
- Kumari, D.; Singh, R. Pretreatment of Lignocellulosic Wastes for Biofuel Production: A Critical Review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Mahesh, M.S.; Mohini, M. Biological Treatment of Crop Residues for Ruminant Feeding: A Review. Afr. J. Biotechnol. 2013, 12. [Google Scholar] [CrossRef]
- Jobling, M. Can Waste Re-Cycling Increase the Sustainability of Animal Feeds? Fiskerikandidaten 2019, 16–21. [Google Scholar]
- Godoy, M.G.; Amorim, G.M.; Barreto, M.S.; Freire, D.M.G. Chapter 122—Agricultural Residues as Animal Feed: Protein Enrichment and Detoxification Using Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 235–256. ISBN 978-0-444-63990-5. [Google Scholar]
- EUR-Lex2—L:2004:165:TOC2—EN2—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2004:165:TOC (accessed on 14 April 2021).
Agricultural Residues | Lignin, %db | Cellulose, %db | Hemicellulose, %db | Ash, %db | Reference |
---|---|---|---|---|---|
Barley husk | 22.0 | 39.0 | 12.0 | 7.0 | [22,23] |
Barley straw | 9.6–13.8 | 33.8–46.8 | 21.9–30.0 | 4.4 | [5,24,25] |
Corn cob | 6.1 | 33.7 | 31.9 | 8.5 | [5,24] |
Corn stalks | 7.0–7.3 | 35.0–39.0 | 16.8–42.0 | 24.9 | [5,25] |
Oat straw | 4.1–23.6 | 31.7–39.4 | 23.3–28.2 | 3.2 | [5,24,26] |
Rice straw | 8.3–9.9 | 19.6–36.2 | 19.0–50.4 | 14.7 | [5,25,27] |
Rye straw | 19.0–30.8 | 37.4–37.6 | 30.5 | 5.7 | [5,26,28] |
Soybean stalks | 19.8 | 34.5 | 24.8 | ND | [29] |
Spelt straw | 14.8 | 38.3 | 24.3 | 5.7 | [30] |
Sunflower seed hulls | 29.4 | 29.4 | 29.4 | 2.1 | [29,26] |
Sunflower stalks | 13.4–17.5 | 38.5–42.1 | 29.7–33.5 | 8.6–9.2 | [5,27] |
Wheat straw | 8.9–22.1 | 32.9–49.8 | 23.7–25.0 | 3.6–4.7 | [5,24,25,31,32] |
Food Industry Residues | Lignin, %db | Cellulose, %db | Hemicellulose, %db | Protein, %db | Ash, %db | Reference |
---|---|---|---|---|---|---|
Apple pomace | 14.8–22.4 | 47.5 | 27.8 | 6.0–7.0 | 1.1–5.1 | [37,38] |
Brewers spent grain | 4–27.8 | 13.14–16.8 | 28.4–39.0 | 23.4–27.4 | 3–5 | [39,40] |
Flax oil cake | 6.0 | 8.2 | 4.6 | 32.8 | 5.3 | [41] |
Grape pomace | 11.6–41.3 | 9.2–14.5 | 4.0–10.3 | 7.0–23.5 | 4.7–9.5 | [42,43] |
Hemp oil cake | 16.7 | 22.5 | 14.2 | 24.8 | 7.5 | [41] |
Hull-less pumpkin oil cake | 0.7 | 4.4 | 6.7 | 38.3 | 7.8 | [41] |
Olive mill waste | 13.3–15.8 | 24.8–33.8 | 13–16.3 | 6.7–7.2 | 2.5–8.9 | [44,45] |
Rice bran | 24.8 | 34.0 | 28.2 | 5.8–8.3 | ND | [46] |
Rye bran | 3.5–4.4 | 5.0–6.0 | ND | 14.4–18 | 2.8–6.2 | [22,47] |
Sugarcane bagasse | 18.9–26.1 | 36.9–45.7 | 25.60–29.58 | 2.18 | 2.84 | [48,49] |
Wheat bran | 3.0–5.0 | 9.0–12.0 | 38.9 | 9.6–18.7 | 0.04–8.1 | [50,51,52] |
Division | Microorganisms | Substrates | Products | Reference |
---|---|---|---|---|
Basidiomycota | Trametes versicolor | tomato pomace | laccase, xylanase, protease | [84] |
Trametes versicolor | brewer spent grain | laccase, polyphenols | [55] | |
Trametes versicolor | corn silage | laccase, manganese peroxidase, caffeic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid | [82] | |
Trametes versicolor | barley husk and egg shell | laccase | [85] | |
Trametes pubescens | banana skin | laccase | [75] | |
Trametes hirsuta | grape seeds | laccase | [59] | |
Phanerochaete chrysosporium | apple pomace | phenolic antioxidants | [86] | |
Pleurotus ostreatus | potato peel, wheat bran, tomato pomace, fresh pineapple residue, rice straw | ligninolytic enzymes, xylanase, protease, bioactive phenolic, antioxidant compound | [84,87,88,89] | |
Pleurotus ostreatus | apple bagasse, agave mezcalero bagasse | phenolic compounds, flavonoids, triterpenes | [90] | |
Bjerkandera adusta | wheat bran | carboxymethil cellulase, manganese peroxidase, laccase, xylanase | [87] | |
Ascomycota | Aspergillus niger | plum fruit by-products | higher lipid recovery, isoquercitrin | [76] |
Aspergillus niger | apricot pomace | neochlorogenic and chlorogenic acids, rutin, quercetine-3(6“acetyl-glucoside) | [83] | |
Aspergillus niger | granadilla seeds flour, moringa leaves | phenolic compounds | [91,92] | |
Aspergillus niger | sugar molasses | gluconic acid | [93] | |
Aspergillus niger Aspergillus ibericus | olive pomace, winery waste | bioactive compounds | [11] | |
Aspergillus niger Rhizopus oligosporus | chokeberry pomace | cinnamic acid, flavonols | [57] | |
Ceratocystis fimbriata | coffee husk | fruit flavor | [94] | |
Thermoascus aurantiacus | orange, sugarcane bagasse, wheat bran | pectinases | [95] | |
Thermomyces lanuginosus | hull-less pumpkin oil pomace | lipase | [96] | |
Zygomycota | Rhizophus oligosporus | plum fruit by-products | higher lipid recovery, isoquercitrin | [76] |
Rhizophus oligosporus | apricot pomace | neochlorogenic and chlorogenic acids, rutin, quercetine-3(6“acetyl-glucoside) | [83] | |
Actinomucor elegans Umbelopsis isabellina | grape pomace | γ-linolenic acid and carotenoids | [12] | |
Rhizopus delemar F2 | apple pomace | carbohydrase production | [97] | |
Mortierella alpina | oilseed cakes | increased nutritional value of oilseed cakes | [56] |
Microorganisms | Substrates | Products | Reference |
---|---|---|---|
Actinobacillus succinogenes | fruit and vegetable hydrolysate | succinic acid | [102] |
Bacillus halodurans FNP 135 | wheat bran | xylanase, laccase | [103] |
Bacillus nealsoni PN-11 | wheat bran | mannanase, protease | [104] |
Bacillus subtilis BBXS-2 | sugarcane bagasse, wheat straw, rice straw, rice husk | protease, amylase | [100] |
Bacillus subtilis DM-04 | potato peels, mustered oil cake, wheat bran, rice bran, banana leaves, tea leaves | alkaline protease | [105] |
Bacillus subtilis RCK | wheat bran | exo-polygalacturonase | [106] |
Bacillus thuringiensis | municipal solid waste mixed with wood chips | compost with enhanced biopesticide properties | [107] |
Brevibacterium casei MSA19 Serratia rubidaea SNAU02 Nocardiopsis lucentensis MSA04 | oil seed cake, wheat bran, tannery treated sludge, tannery pretreated sludge, treated molasses and pretreated molasses, groundnut oil cake, coconut oil cake, gingelly oil cake, castor oilcake, palm oil cake, sunflower oil cake and mahua oil cake | biosurfactants | [108,109,110] |
Clostridium phytofermentans | switchgrass | reducing sugars that are further metabolized to ethanol and acetate | [68] |
Cupriavidus necator | soy cake, babassu cake | biodegradable polymers (polyhydroxyalkanoates, PHAs) | [111,112] |
Enterococcus faecalis M2 | wheat bran | improved antioxidant properties and nutritional quality of wheat bran | [58] |
Lactobacillus amylophillus GV6 | wheat bran | L-(+)-lactic acid | [113] |
Lactobacillus casei Lactobacillus fermentum | broken dried chestnuts | improved nutritional composition | [114] |
Lactobacillus sp. ASR-S1 | tamarind seed powder, wheat bran, palm kernel cake, coffee husk | tannase | [115] |
Pseudomonas sp. BUP6 | deoiled cake of groundnut, gingelly, coconut, soybean and cotton seed | lipase | [116] |
Streptococcus thermophiles Lactobacillus bulgaricus | wheat bran | improved nutritional, physical and flavor properties of wheat bran | [77] |
Streptomyces sp. | cassava residues, rapeseed cake, mushroom residues, bean cake, wheat bran, rice bran, wheat straw | biolubricant oleogels, ε-poly-lysine (food preservative) | [117,118] |
Streptomyces sp. | soybean meal ground, wheat bran | L-asparaginase | [119] |
Streptomyces sp. MDG147 | wheat straw | biolubricant oleogels | [118] |
Microorganisms | Substrates | Products | Reference |
---|---|---|---|
Active dry yeast (commercial baker’s yeast with high sugar tolerance) | wheat bran | improve the nutritional, physical and flavor properties of wheat bran | [77] |
Kluyveromyces marxianus ATCC 10022 Pichia kudriavzevii | sugarcane bagasse | 2-phenylethanol, 2-phenethyl acetate | [120,121] |
Kluyveromyces marxianus | sugarcane bagasse, sugar beet molasses, cassava bagasse, giant palm bran | aroma compounds | [78,101] |
Kluyveromyces marxianus NRRLY-7571 | sugarcane bagasse, corn steep liquor, soybean meal, sugarcane molasses | inulinase | [122] |
Monascus purpureus | corn meal, peanut meal, coconut residue and soybean meal | red pigment | [123] |
Meyerozyma guilliermondii Candida glaebosa Cryptococcus victoriae Leucosporidium scotti | inert support of polyurethane and addition of nutrient medium | L-asparaginase, protease | [124] |
Pichia pastoris Kluyveromyces marxianus Kluyveromyces lactis Saccharomyces cerevisiae Candida sp. Aureobasidium pulluans Cryptococcus aureus Schwanniomyces castellii Endomicopsis burtonii | polyurethane foam, apple pomace, cassava bagasse, sugarcane bagasse, sunflower seeds, giant palm, corn grits, wheat bran, soy bran, soy peel, corn cob | proteins and secondary metabolites | [81] |
Saccharomyces cerevisiae | coffee pulp | chlorogenic acid | [125] |
Saccharomyces cerevisiae | corn cob residues | ethanol | [126] |
Saccharomyces cerevisiae PM-16 | grape pomace, fresh fruit and vegetable residues, corn cob residues | ethanol | [126,127,128] |
Saccharomyces cerevisiae Schwanniomyces occidentalis Scheffersomyces stipitis | fresh fruit and vegetable residues | ethanol | [127] |
Yarrowia lipolytica | luffa sponge, okara, dried loofah sponge, wheat bran, corncob, buckwheat husk, sugarcane bagasse | γ-decalactones, erythritol | [79,129] |
Zygosaccharomyces rouxii | oatmeal and wheat bran | glutaminase | [130] |
Enzymes | Microorganism | Substrate | Reference | |
---|---|---|---|---|
Lignolytic | laccase | Trametes versicolor | corn silage, brewers’ spent grain, barley husk | [82,85,144] |
Trametes pubescens | banana skin | [75] | ||
Pleurotus eryngii | peach waste | [145] | ||
Aspergillus flavus PUF5 | dried ridge gourd peel | [146] | ||
Ganoderma lucidum | wheat bran | [147] | ||
Lysinibacillus sp. | wheat bran | [148] | ||
manganese peroxidase lignin peroxidase | Inonotus obliquus | birch branch, beech branch, rice straw, wheat straw, wheat bran, sugarcane bagasse, cassava peel, peanut shell | [137] | |
Cellulolytic | cellulase endoglucanase exoglucanase | Trichoderma sp. | corn cob, wheat bran | [149] |
Penicillium roqueforti | rice husk | [150] | ||
Aspergilus fumigatus | wheat straw | [151] | ||
Thermoascus aurantiacus | Jatropha deoiled seed cake | [138] | ||
Aspergillus fumigatus | wheat straw | [152] | ||
Trichoderma viride Ganoderma lucidum | corn stover | [143] | ||
cellobiase | Humicola insolens | paddy straw, soybean pod husk, sugarcane bagasse, groundnut shells, corn stalks and pigeonpea pod husk | [153] | |
β-glucosidase | Lichtheimia ramosa | wheat bran, soy bran, corn cob, corn straw, rice peel, sugar cane bagasse | [154] | |
Thermoascus aurantiacus Aureobasidium pullulans | wheat bran, soy bran, soy peel, corn cob, corn straw | [155] | ||
Trichoderma viride Ganoderma lucidum | corn stover | [143] | ||
Hemicellulolytic | xylanase | Aspergillus oryzae | wheat bran | [72] |
Aspergillus tubingensis | wheat straw, sorghum straw | [156] | ||
Bacillus stearothermophilus | wheat bran | [157] | ||
Aspergillus niger | rice straw | [158] | ||
Aspergillus awamori | tomato pomace | [159] | ||
Thermomyces lanuginosus | wheat bran | [160] | ||
Humicola insolens | paddy straw, soybean pod husk, sugarcane bagasse, groundnut shells, corn stalks and pigeonpea pod husk | [153] |
Products | Conditions | Remarks | Reference |
---|---|---|---|
Total polyphenolic compounds from apple pomace | Substrate: apple pomace, treated with inducers: copper sulphate (2 mM), veratryl alcohol (2 mM) and Tween-80 (0.1%); pH 4.5; autoclaved (121 °C, 30 min), moisture content 72% w/v. Microorganism: P. chrysosporium, inoculation with spore suspension (2.5 × 106 spores/g of solid). SSF: carried out in flasks, in controlled environment at 37 ± 1 °C for 14 days. Extraction (optimization):
After the extraction, sample mixture was centrifuged at 9268× g for 20 min to obtain the supernatant for further determination of total phenolic content (at 725 nm) and free radical scavenging activity (DPPH method at 517 nm). | The phenol content was higher in the fermented apple pomace, and the antioxidant activity correlated with the increase in polyphenol content, with both values depending on the type of solvent, extraction temperature, extraction time, and method used. | [86] |
Individual polyphenolic compound from grape pomace | Substrate: corn silage, particle size 1.0–2.0 cm; autoclaved (121 °C, 20 min). Microorganism: T. versicolor TV-6, cultivated on PDA medium for 7 days at 27 °C; five mycelial plugs (diameter 1 cm) suspended in 10 cm3 of sterile water (inoculum). SSF: performed in laboratory jars at 27 °C for 5, 9, 13, and 20 days. Extraction: milled dry substrate after SSF was extracted by 50% ethanol with solid/liquid ratio 1:40, in a shaking-water bath at 80 °C by (200 rpm) for 120 min. After the extraction, samples were centrifuged for 10 min at 10,000× g in order to obtain liquid extracts for further UHPLC analysis of phenolic acids. | After 20 days of corn silage treatment with T. versicolor, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached. | [82] |
Phenolic antioxidants from grape waste | Substrate: grape waste, dehydrated at 60 °C/24 h, pulverized (30-mesh), stored at 22 °C. Microorganism: different fungal strains: A. niger GH1, PSH, Aa-20, ESH; Penicillium pinophilum ESH2, ESH3; Penicillium purpurogenum GH2; inoculation with 2 × 107 fungal spores per gram of solid support. SSF: performed in tray reactor at 30 °C/60 h. Assay: total antioxidant activity of the extracts was tested by two different free radical (DPPH· and ABTS·+) inhibitions; free gallic acid content was estimated by HPLC. | The extracts of grape waste enhanced their free radical scavenging and preserved the capacity to avoid the lipid peroxidation after SSF. Gallic acid is not the only phenolic compound related to the free radical scavenging and antioxidant properties of the fermented samples. | [167] |
Phenolic antioxidants from pomegranate peels | Substrate: pomegranate peels, cleaned, dried at 60 °C/48 h, pulverized, stored at room temperature in black bags. Microorganism: A. niger GH1; inoculation with 2 × 107 spores/g of plant material, or substrate impregnated with culture broth. SSF: carried out in flasks at 30 °C for 96 h. Assay: tannins were analyzed using a spectrophometric method; concentration of gallic and ellagic acids was determined by HPLC. | The ellagic acid was accumulated considerably in pomegranate peels after fungal fermentation, which demonstrated that the high level of hydrolysable tannins in pomegrante peel tannins are mainly ellagitannins. | [168] |
Phenolic antioxidants from chokeberry pomace | Substrate: chokeberry (cultivar “Nero”) pomace, dried < 40 °C, ground (0.5–1 mm), stored at 18 °C; moisturized (65%) with a nutrient solution (containing yeast extract and glucose), pH 5.5; autoclaved at 121 °C/30 min. Microorganism: A. niger ATCC-6275 and R. oligosporus ATCC-22959; inoculating cultures were produced by growing the strains on fresh PDA at 27 °C for 10 days, and spore inoculum was prepared by washing the agar surface with sterile distilled water. SSF: was carried out in in Erlenmeyer flasks at 30 °C for 12 days; substrate was inoculated with spore suspension 2 × 107 spores/g of solid. Extraction: in an ultrasonic bath for 30 min at 40 °C with solvent mixture (hydrochloric acid: methanol: water in the ratio 1: 80: 19). The mixtures were centrifuged (4000× g for 10 min); supernatants were filtered and evaporated under vacuum and then stored in methanol (4 °C) until analysis (total phenolics, flavonoids, and anthocyanins; individual phenolics; antioxidant activities). | The extractable phenolics increased more than 1.7-fold during both fermentation processes, and a similar trend was observed for total flavonoids. The free radical scavenging ability of phenolic extracts were significantly enhanced during the SSFs. The amounts of flavonols and cinnamic acids increased while the concentrations of glycosylated anthocyanins decreased substantially. | [57] |
Water-soluble phenolic antioxidants from cranberry pomace | Substrate: freshly pressed cranberry pomace, vacuum-dried and stored in a refrigerator. Microorganism: Lentinus edodes was maintained on PDA slants and Petri plates at 4 °C and sub-cultured. The fungus was resuscitated by transferring onto a PDA plate and cultured at room temperature 20 days before use. SSF: carried out in in Erlenmeyer flasks at 28 °C for 25 days (cranberry pomace + calcium carbonate + water + ammonium nitrate or fish protein hydrolysate was autoclaved at 121 °C for 20 min and the vegetative mycelia from one PDA plate were inoculated into flasks). Extraction: distilled water or 95% ethanol was added to fungus–pomace flask and the culture was homogenized for 1 min and then centrifuged at 15,000× g at 4 °C for 20 min and then filtered. | There was an increase in the extractable phenolic content. Both phenolics and antioxidant capacity correlated with the increase in the β-glucosidase activity, showing that the enzyme may play an important role in the release of phenolic aglycones from cranberry pomace and, therefore, increase the antioxidant capacity. | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Koceva Komlenić, D.; Bucić-Kojić, A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021, 10, 927. https://doi.org/10.3390/foods10050927
Šelo G, Planinić M, Tišma M, Tomas S, Koceva Komlenić D, Bucić-Kojić A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods. 2021; 10(5):927. https://doi.org/10.3390/foods10050927
Chicago/Turabian StyleŠelo, Gordana, Mirela Planinić, Marina Tišma, Srećko Tomas, Daliborka Koceva Komlenić, and Ana Bucić-Kojić. 2021. "A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation" Foods 10, no. 5: 927. https://doi.org/10.3390/foods10050927