Preliminary Investigation on the Physicochemical and Functional Properties of Commercial Salmorejo Found in Spanish Supermarkets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Reagents and Chemicals
2.3. pH and Water Activity Measurements
2.4. Determination of Moisture, Ashes, Sodium Chloride Content and Titratable Acidity
2.5. Vitamin C Content
2.6. Evaluation of Color
2.7. Methanol and Acetone Extracts
2.8. DPPH• Radical Scavenging Capacity
2.9. Total Phenolic Content
2.10. Determination of Lycopene and β-Carotene Content
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Color Measurements
3.3. DPPH• Radical Scavenging Capacity
3.4. Total Phenolic Content
3.5. Lycopene and β-Carotene Content
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Health Estimates 2016: Estimated Deaths by Age, Sex and Cause (Top 20). Available online: http://www.who.int/healthinfo/global_burden_disease/en/ (accessed on 1 February 2020).
- Delgado-Lista, J.; Pérez-Martínez, P.; García-Rios, A.; Pérez-Caballero, A.I.; Pérez-Jiménez, F.; López-Miranda, J. Mediterranean Diet and Cardiovascular Risk: Beyond Traditional Risk Factors. Crit. Rev. Food Sci. Nutr. 2016, 56, 788–801. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse Association between Habitual Polyphenol Intake and Incidence of Cardiovascular Events in the PREDIMED Study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; López-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; et al. Polyphenol Intake and Mortality Risk: A Re-Analysis of the PREDIMED Trial. BMC Med. 2014, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Medina-Remón, A.; Tresserra-Rimbau, A.; Pons, A.; Tur, J.A.; Martorell, M.; Ros, E.; Buil-Cosiales, P.; Sacanella, E.; Covas, M.I.; Corella, D.; et al. Effects of Total Dietary Polyphenols on Plasma Nitric Oxide and Blood Pressure in a High Cardiovascular Risk Cohort. The PREDIMED Randomized Trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 60–67. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno Rojas, R.; Moreno Ortega, A.; Medina Canalejo, L.M.; Vioque Amor, M.; Cámara Martos, F. Bases para la estandarización y valoración nutricional del salmorejo cordobés: Estudio sobre el salmorejo en los establecimientos de restauración de Córdoba. Nutr. Hosp. 2016, 33, 111–117. [Google Scholar] [CrossRef]
- O’Kennedy, N.; Raederstorff, D.; Duttaroy, A.K. Fruitflow®: The First European Food Safety Authority-Approved Natural Cardio-Protective Functional Ingredient. Eur. J. Nutr. 2017, 56, 461–482. [Google Scholar] [CrossRef] [Green Version]
- Sahana, K. Lycopene as an Antioxidant and Its Medicinal Uses. Res. J. Pharm. Technol. 2015, 8, 1043. [Google Scholar] [CrossRef]
- Dhawan, V.; Jain, S. Garlic Supplementation Prevents Oxidative DNA Damage in Essential Hypertension. Mol. Cell. Biochem. 2005, 275, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Shouk, R.; Abdou, A.; Shetty, K.; Sarkar, D.; Eid, A.H. Mechanisms Underlying the Antihypertensive Effects of Garlic Bioactives. Nutr. Res. 2014, 34, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra Virgin Olive Oil: More than a Healthy Fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripoli, E.; Giammanco, M.; Tabacchi, G.; Majo, D.D.; Giammanco, S.; Guardia, M.L. The Phenolic Compounds of Olive Oil: Structure, Biological Activity and Beneficial Effects on Human Health. Nutr. Res. Rev. 2005, 18, 98–112. [Google Scholar] [CrossRef]
- Abenavoli, L.; Milanović, M.; Milić, N.; Luzza, F.; Giuffrè, A.M. Olive Oil Antioxidants and Non-Alcoholic Fatty Liver Disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 739–749. [Google Scholar] [CrossRef] [PubMed]
- van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A Review on the Beneficial Aspects of Food Processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Andres-Lacueva, C.; Waterhouse, A.L.; Lamuela-Raventos, R.M. Effect of Tomato Industrial Processing on Phenolic Profile and Hydrophilic Antioxidant Capacity. LWT Food Sci. Technol. 2012, 47, 154–160. [Google Scholar] [CrossRef]
- AOAC International (Ed.) Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000; ISBN 0-935584-67-6. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Colour Difference Delta E—A Survey. Mach. Graph. Vis. 2011, 20, 383–412. [Google Scholar]
- Skrede, G.; Larsen, V.; Aaby, K.; Jørgensen, A.; Birkeland, S.-E. Antioxidative Properties of Commercial Fruit Preparations and Stability of Bilberry and Black Currant Extracts in Milk Products. J. Food Sci. 2006, 69, S351–S356. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of Green, White and Black Tea Addition on the Antioxidant Activity of Probiotic Yogurt during Refrigerated Storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Darsan, S.P.; Reshma, J.K.; Mathew, A. Estimation of Lycopene Content in Different Tomato Varieties and Its Commercial Products. Asian J. Environ. Sci. 2013, 8, 122–124. [Google Scholar]
- Delgado-Andrade, C.; Morales, F.J.; Seiquer, I.; Pilar Navarro, M. Maillard Reaction Products Profile and Intake from Spanish Typical Dishes. Food Res. Int. 2010, 43, 1304–1311. [Google Scholar] [CrossRef]
- Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Effect of Thermal Treatment and Storage on the Stability of Organic Acids and the Functional Value of Grapefruit Juice. Food Chem. 2010, 118, 291–299. [Google Scholar] [CrossRef]
- Méndez, C.M.V.; Rodríguez-Rodríguez, E.M.; Romero, C.D.; Mata, M.C.S.; González, M.C.M.; Isasa, M.E.T. Vitamin C and Organic Acid Contents in Spanish “Gazpacho” Soup Related to the Vegetables Used for Its Elaboration Process. CyTA J. Food 2011, 9, 71–76. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; De Ancos, B.; Cano, M.P. Impact of High-Pressure and Traditional Thermal Processing of Tomato Purée on Carotenoids, Vitamin C and Antioxidant Activity. J. Sci. Food Agric. 2006, 86, 171–179. [Google Scholar] [CrossRef]
- Pinilla, M.; Plaza, L.; Sónchez-Moreno, C.; De Ancos, B.; Cano, M.P. Hydrophilic and Lipophilic Antioxidant Capacities of Commercial Mediterranean Vegetable Soups (Gazpachos). J. Food Sci. 2006, 70, S60–S65. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M.P. Nutritional Characterisation of Commercial Traditional Pasteurised Tomato Juices: Carotenoids, Vitamin C and Radical-Scavenging Capacity. Food Chem. 2006, 98, 749–756. [Google Scholar] [CrossRef]
- Anthon, G.; Strange, M.; Barrett, D. Changes in PH, Acids, Sugars and Other Quality Parameters during Extended Vine Holding of Ripe Processing Tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef]
- Chantrapornchai, W.; Clydesdale, F.; McClements, D.J. Influence of Droplet Characteristics on the Optical Properties of Colored Oil-in-Water Emulsions. Colloids Surf. Physicochem. Eng. Asp. 1999, 155, 373–382. [Google Scholar] [CrossRef]
- Shi, J.; Le Maguer, M. Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Crit. Rev. Biotechnol. 2000, 20, 293–334. [Google Scholar] [CrossRef]
- Mirondo, R.; Barringer, S. Improvement of Flavor and Viscosity in Hot and Cold Break Tomato Juice and Sauce by Peel Removal. J. Food Sci. 2015, 80, S171–S179. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Seiquer, I.; Navarro, M.P.; Morales, F.J. Maillard Reaction Indicators in Diets Usually Consumed by Adolescent Population. Mol. Nutr. Food Res. 2007, 51, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Bey, M.; Hayette, L.; Zina, M. Antioxidant Activity of Eight Tomato Lycopersicon esculentum L.) Varieties Grown in Algeria. J. Food Technol. Res. 2014, 1, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Mogol, B.A.; Yildirim, A.; Gökmen, V. Inhibition of Enzymatic Browning in Actual Food Systems by the Maillard Reaction Products. J. Sci. Food Agric. 2010, 90, 2556–2562. [Google Scholar] [CrossRef] [PubMed]
- Allouche, Y.; Jiménez, A.; Gaforio, J.J.; Uceda, M.; Beltrán, G. How Heating Affects Extra Virgin Olive Oil Quality Indexes and Chemical Composition. J. Agric. Food Chem. 2007, 55, 9646–9654. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Martí, R.; Leiva-Brondo, M.; Lahoz, I.; Campillo, C.; Cebolla-Cornejo, J.; Roselló, S. Polyphenol and L-Ascorbic Acid Content in Tomato as Influenced by High Lycopene Genotypes and Organic Farming at Different Environments. Food Chem. 2018, 239, 148–156. [Google Scholar] [CrossRef]
- Luthria, D.L.; Mukhopadhyay, S.; Krizek, D.T. Content of Total Phenolics and Phenolic Acids in Tomato (Lycopersicon esculentum Mill.) Fruits as Influenced by Cultivar and Solar UV Radiation. J. Food Compos. Anal. 2006, 19, 771–777. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant Activity in Different Fractions of Tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic Compounds and Squalene in Olive Oils: The Concentration and Antioxidant Potential of Total Phenols, Simple Phenols, Secoiridoids, Lignansand Squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The Content and Antioxidant Activity of Phenolic Compounds in Cold-Pressed Plant Oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Rinaldi De Alvarenga, J.F.; Torrado, X.; Lamuela-Raventos, R.M. Home Cooking and Phenolics: Effect of Thermal Treatment and Addition of Extra Virgin Olive Oil on the Phenolic Profile of Tomato Sauces. J. Agric. Food Chem. 2014, 62, 3314–3320. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huélamo, M.; Tulipani, S.; Estruch, R.; Escribano, E.; Illán, M.; Corella, D.; Lamuela-Raventόs, R.M. The Tomato Sauce Making Process Affects the Bioaccessibility and Bioavailability of Tomato Phenolics: A Pharmacokinetic Study. Food Chem. 2015, 173, 864–872. [Google Scholar] [CrossRef]
- Pérez-Conesa, D.; García-Alonso, J.; García-Valverde, V.; Iniesta, M.D.; Jacob, K.; Sánchez-Siles, L.M.; Ros, G.; Periago, M.J. Changes in Bioactive Compounds and Antioxidant Activity during Homogenization and Thermal Processing of Tomato Puree. Innov. Food Sci. Emerg. Technol. 2009, 10, 179–188. [Google Scholar] [CrossRef]
- Gahler, S.; Otto, K.; Böhm, V. Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing Tomatoes to Different Products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Knockaert, G.; Pulissery, S.K.; Colle, I.; Van Buggenhout, S.; Hendrickx, M.; Loey, A.V. Lycopene Degradation, Isomerization and in Vitro Bioaccessibility in High Pressure Homogenized Tomato Puree Containing Oil: Effect of Additional Thermal and High Pressure Processing. Food Chem. 2012, 135, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Marković, K.; Krbavčić, I.; Krpan, M.; Bicanic, D.; Vahcić, N. The Lycopene Content in Pulp and Peel of Five Fresh Tomato Cultivars. Acta Aliment. 2010, 39, 90–98. [Google Scholar] [CrossRef]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in Tomatoes and Tomato Products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Chanforan, C.; Loonis, M.; Mora, N.; Caris-Veyrat, C.; Dufour, C. The Impact of Industrial Processing on Health-Beneficial Tomato Microconstituents. Food Chem. 2012, 134, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the Contents of Carotenoids, Phenolic Compounds and Vitamin C during Technical Processing and Lyophilisation of Red and Yellow Tomatoes. Food Chem. 2011, 124, 1603–1611. [Google Scholar] [CrossRef]
- Abdul-Hammed, M.; Folashade Bolarinwa, I.; Olanike Adebayo, L.; Lekan Akindele, S. Kinetics of the Degradation of Carotenoid Antioxidants in Tomato Paste. Adv. J. Food Sci. Technol. 2016, 11, 734–741. [Google Scholar] [CrossRef]
- Anese, M.; Falcone, P.; Fogliano, V.; Nicoli, M.C.; Massini, R. Effect of Equivalent Thermal Treatments on the Color and the Antioxidant Activity of Tomato Puree. J. Food Sci. 2002, 67, 3442–3446. [Google Scholar] [CrossRef]
Sample | Moisture Content (%) | Ashes (%) | Sodium Chloride (mg g−1) | Titratable Acidity (%) | Vitamin C (μg g−1) | aw | pH |
---|---|---|---|---|---|---|---|
Pasteurized | 85.80 ± 1.22 a | 1.09 ± 0.11 a | 7.52 ± 1.20 a | 0.44 ± 0.04 a | 79.01 ± 30.85 a | 0.990 ± 0.016 a | 3.91 ± 0.06 a |
Raw | 81.07 ± 6.01 b | 1.29 ± 0.24 b | 8.49 ± 2.51 a | 0.46 ± 0.13 a | 68.12 ± 48.05 a | 0.993 ± 0.003 a | 4.41 ± 0.36 b |
Homemade | 74.41 ± 0.06 b | 1.11 ± 0.23 ab | 8.95 ± 0.21 a | 0.36 ± 0.10 a | 74.57 ± 9.38 a | 0.989 ± 0.001 b | 4.23 ± 0.26 b |
p-value | 0.014 | 0.030 | 0.4907 | 0.4566 | 0.2468 | 0.010 | <0.001 |
Sample | L* | a* | b* | C | H |
---|---|---|---|---|---|
Pasteurized | 42.43 ± 2.70 a | 11.97 ± 2.48 a | 26.48 ± 4.02 a | 29.10 ± 4.31 a | 1.15± 0.07 a |
Raw | 44.65 ± 2.22 b | 17.73 ± 1.62 b | 26.08 ± 5.10 a | 31.76 ± 3.74 b | 0.96 ± 0.13 b |
Homemade | 46.12 ± 1.21 b | 17.07 ± 3.63 b | 26.77 ± 1.36 a | 31.85 ± 2.78 ab | 1.01 ± 0.09 b |
p-value | 0.0004 | <0.001 | 0.5602 | 0.0409 | <0.001 |
DPPH (mg Trolox g−1 DW) (% Inhibition) | DPPH (mg Trolox g−1 FW) (% Inhibition) | |||
---|---|---|---|---|
Sample | Methanol | Acetone | Methanol | Acetone |
Pasteurized | 0.88 ± 0.23 a | 1.01 ± 0.20 a | 0.13 ± 0.02 a | 0.15 ± 0.02 a |
(15.88 ± 4.20) | (18.31 ± 3.69) | (2.35 ± 0.38) | (2.75 ± 0.38) | |
Raw | 0.68 ± 0.31 ab | 0.82 ± 0.33 a | 0.11 ± 0.03 a | 0.14 ± 0.04 a |
(12.22 ± 5.57) | (14.86 ± 5.89) | (2.04 ± 0.59) | (2.54 ± 0.71) | |
Homemade | 0.46 ± 0.06 b | 0.78 ± 0.11 a | 0.12 ± 0.01 a | 0.20 ± 0.03 b |
(8.25 ± 1.04) | (14.19 ± 2.03) | (2.11 ± 0.26) | (3.63 ± 0.52) | |
p-value | 0.0377 | 0.1423 | 0.2976 | 0.0057 |
TPC (mg GAE g−1 DW) | TPC (mg GAE g−1 FW) | |||
---|---|---|---|---|
Sample | Methanol | Acetone | Methanol | Acetone |
Pasteurized | 1.83 ± 0.44 a | 1.59 ± 0.33 a | 0.27 ± 0.04 a | 0.24 ± 0.03 a |
Raw | 1.89 ± 0.60 a | 1.77 ± 0.43 a | 0.31 ± 0.06 b | 0.30 ± 0.05 b |
Homemade | 1.42 ± 0.16 a | 1.34 ± 0.06 a | 0.36 ± 0.04 b | 0.34 ± 0.02 b |
p-value | 0.5037 | 0.1309 | 0.0048 | 0.0026 |
Sample | Lycopene (mg kg−1 DW) | Lycopene (mg kg−1 FW) | β-Carotene (mg kg−1 DW) | β-Carotene (mg kg−1 FW) |
---|---|---|---|---|
Pasteurized | 47.82 ± 22.84 a | 6.67 ± 2.99 a | 22.06 ±5.17 a | 3.10 ± 0.61 a |
Raw | 165.80 ± 87.60 b | 28.07 ± 8.06 b | 26.84 ±6.79 a | 4.82 ± 1.03 b |
Homemade | 115.90 ± 69.39 ab | 29.64 ± 17.70 b | 22.98 ± 5.74 a | 5.88 ± 1.46 b |
p-value | 0.0002 | <0.001 | 0.1694 | 0.0013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vioque, M.; de la Cruz-Ares, S.; Gómez, R. Preliminary Investigation on the Physicochemical and Functional Properties of Commercial Salmorejo Found in Spanish Supermarkets. Foods 2021, 10, 1146. https://doi.org/10.3390/foods10051146
Vioque M, de la Cruz-Ares S, Gómez R. Preliminary Investigation on the Physicochemical and Functional Properties of Commercial Salmorejo Found in Spanish Supermarkets. Foods. 2021; 10(5):1146. https://doi.org/10.3390/foods10051146
Chicago/Turabian StyleVioque, Montserrat, Silvia de la Cruz-Ares, and Rafael Gómez. 2021. "Preliminary Investigation on the Physicochemical and Functional Properties of Commercial Salmorejo Found in Spanish Supermarkets" Foods 10, no. 5: 1146. https://doi.org/10.3390/foods10051146
APA StyleVioque, M., de la Cruz-Ares, S., & Gómez, R. (2021). Preliminary Investigation on the Physicochemical and Functional Properties of Commercial Salmorejo Found in Spanish Supermarkets. Foods, 10(5), 1146. https://doi.org/10.3390/foods10051146