Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Sample Preparation and Cooking Protocol
2.4. Sensory Analysis
2.5. Volatile Analysis
2.6. Extraction of Non-Volatile Metabolites
2.7. Identification of Metabolites Using Liquid Chromatography—Mass Spectrometry LC-MS
2.8. Identification of Metabolites Using Compound Discoverer Software
2.9. Statistical Analysis
3. Results
3.1. General Description of Main Sensory Attributes of Products
3.2. Volatile Analysis
3.3. Non-Volatile Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Reay, D.S.; Higgins, P. Potential of Meat Substitutes for Climate Change Mitigation and Improved Human Health in High-Income Markets. Front. Sustain. Food Syst. 2018, 2, 16. [Google Scholar] [CrossRef]
- Faucitano, L.; Martelli, G.; Nannoni, E.; Widowski, T. Chapter 21–Fundamentals of Animal Welfare in Meat Animals and Consumer Attitudes to Animal Welfare A2–Purslow. In New Aspects of Meat Quality; Peter, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 537–568. [Google Scholar] [CrossRef]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and Flavor Chemistry Characteristics of Australian Beef: Influence of Intramuscular Fat, Feed, and Breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef] [PubMed]
- Schlichtherle-Cerny, H.; Grosch, W. Evaluation of taste compounds of stewed beef juice. Z. Fur Lebensm. Unters. Und Forsch. A-Food Res. Technol. 1998, 207, 369–376. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Quantification of character-impact odor compounds of roasted beef. Z. Fur Lebensm. Unters. Und Forsch. 1993, 196, 417–422. [Google Scholar] [CrossRef]
- Aliani, M.; Farmer, L.J. Precursors of Chicken Flavor. II. Identification of Key Flavor Precursors Using Sensory Methods. J. Agric. Food Chem. 2005, 53, 6455–6462. [Google Scholar] [CrossRef]
- Aliani, M.; Farmer, L.J. Precursors of Chicken Flavor. I. Determination of Some Flavor Precursors in Chicken Muscle. J. Agric. Food Chem. 2005, 53, 6067–6072. [Google Scholar] [CrossRef] [PubMed]
- Farmer, L.J.; Hagan, T.D.J.; Paraskevas, O. Role of Selected Precursors in Meat Flavor Formation. In Quality Attributes of Muscle Foods; Xiong, Y.L., Chi-Tang, H., Shahidi, F., Eds.; Springer: Boston, MA, USA, 1999; pp. 159–172. [Google Scholar] [CrossRef]
- Farmer, L.J.; Mottram, D.S.; Whitfield, F.B. Volatile compounds produced in Maillard reactions involving cysteine, ribose and phospholipid. J. Sci. Food Agric. 1989, 49, 347–368. [Google Scholar] [CrossRef]
- Rodbotten, M.; Kubberod, E.; Lea, P.; Ueland, O. A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci. 2004, 68, 137–144. [Google Scholar] [CrossRef]
- Pereira, P.C.; Vicente, F. Chapter 18–Meat Nutritive Value and Human Health A2–Purslow. In New Aspects of Meat Quality; Peter, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 465–477. [Google Scholar] [CrossRef]
- Frank, D.; Oytam, Y.; Hughes, J. Chapter 27–Sensory Perceptions and New Consumer Attitudes to Meat A2–Purslow. In New Aspects of Meat Quality; Peter, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 667–698. [Google Scholar] [CrossRef]
- Zamora, R.; Navarro, J.L.; Aguilar, I.; Hidalgo, F.J. Lipid-derived aldehyde degradation under thermal conditions. Food Chem. 2015, 174, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Hartley, I.E.; Liem, D.G.; Keast, R. Umami as an ‘Alimentary’ Taste. A New Perspective on Taste Classification. Nutrients 2019, 11, 182. [Google Scholar] [CrossRef]
- Kurihara, K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. Biomed. Res. Int. 2015, 189402. [Google Scholar] [CrossRef]
- Kuroda, M.; Miyamura, N. Mechanism of the perception of “kokumi” substances and the sensory characteristics of the “kokumi” peptide, γ-Glu-Val-Gly. Flavour 2015, 4, 11. [Google Scholar] [CrossRef]
- Dunkel, A.; Köster, J.; Hofmann, T. Molecular and Sensory Characterization of γ-Glutamyl Peptides as Key Contributors to the Kokumi Taste of Edible Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 6712–6719. [Google Scholar] [CrossRef]
- Frank, D.; Joo, S.-T.; Warner, R. Consumer Acceptability of Intramuscular Fat. Korean J. Food Sci. Anim. Resour. 2016, 36, 699–708. [Google Scholar] [CrossRef]
- Frank, D.; Kaczmarska, K.; Paterson, J.; Piyasiri, U.; Warner, R. Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef. Meat Sci. 2017, 133, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Oostindjer, M.; Alexander, J.; Amdam, G.V.; Andersen, G.; Bryan, N.S.; Chen, D.; Corpet, D.E.; De Smet, S.; Dragsted, L.O.; Haug, A.; et al. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014, 97, 583–596. [Google Scholar] [CrossRef]
- Douglas, S.M.; Lasley, T.R.; Leidy, H.J. Consuming Beef vs. Soy Protein Has Little Effect on Appetite, Satiety, and Food Intake in Healthy Adults. J. Nutr. 2015, 145, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 243. [Google Scholar] [CrossRef] [PubMed]
- Delimaris, I. Adverse Effects Associated with Protein Intake above the Recommended Dietary Allowance for Adults. ISRN Nutr. 2013, 2013, 126929. [Google Scholar] [CrossRef] [PubMed]
- Polanowska, K.; Grygier, A.; Kuligowski, M.; Rudzinska, M.; Nowak, J. Effect of tempe fermentation by three different strains of Rhizopus oligosporus on nutritional characteristics of faba beans. LWT Food Sci Technol. 2020, 122, 109024. [Google Scholar] [CrossRef]
- Wolkers-Rooijackers, J.C.M.; Endika, M.F.; Smid, E.J. Enhancing vitamin B-12 in lupin tempeh by in situ fortification. LWT Food Sci. Technol. 2018, 96, 513–518. [Google Scholar] [CrossRef]
- Xiao, C.W. 22–Functional soy products. In Functional Foods, 2nd ed.; Saarela, M., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 534–556. [Google Scholar] [CrossRef]
- Charve, J.; Manganiello, S.; Glabasnia, A. Analysis of Umami Taste Compounds in a Fermented Corn Sauce by Means of Sensory-Guided Fractionation. J. Agric. Food Chem. 2018, 66, 1863–1871. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Sieniawski, K.; Starowicz, P. BIOPEP database of sensory peptides and amino acids. Food Res. Int. 2016, 85, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel umami ingredients: Umami peptides and their taste. J. Food Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Kiers, J.L. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, H.; Song, H.-L.J.F.A.M. Comparison of Four Extraction Methods, SPME, DHS, SAFE, Versus SDE, for the Analysis of Flavor Compounds in Natto. Food Anal. Methods 2018, 11, 343–354. [Google Scholar] [CrossRef]
- Yoshie-Stark, Y.; Wäsche, A. Characteristics of crude lipoxygenase from commercially de-oiled lupin flakes for different types of lupins (Lupinus albus, Lupinus angustifolius). Food Chem. 2004, 88, 287–292. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, X.; Liu, Y. Characterization and evaluation of umami taste: A review. TRAC Trends Anal. Chem. 2020, 127, 115876. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Li, L. A new style of fermented tofu by Lactobacillus casei combined with salt coagulant. 3 Biotech 2020, 10, 81. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT Food Sci. Technol. 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Zabaras, D.; Frank, D.; Arcot, J. Effect of Germination and Fermentation on Carbohydrate Composition of Australian Sweet Lupin and Soybean Seeds and Flours. J. Agric. Food Chem. 2017, 65, 10064–10073. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; Francois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kim, B.-R.; Han, Y.-B.; Park, C.-H. Changes of free amino acids during the Natto fermentation used by Bacillus subtilis S.N.U 816. J. Korean Chem. Soc. 1987, 30, 192–197. [Google Scholar]
- Mei Feng, X.; Ostenfeld Larsen, T.; Schnürer, J. Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation. Int. J. Food Microbiol. 2007, 113, 133–141. [Google Scholar] [CrossRef]
- Schindler, S.; Krings, U.; Berger, R.G.; Orlien, V. Aroma development in high pressure treated beef and chicken meat compared to raw and heat treated. Meat Sci. 2010, 86, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wettasinghe, M.; Vasanthan, T.; Temelli, F.; Swallow, K. Volatile flavour composition of cooked by-product blends of chicken, beef and pork: A quantitative GC–MS investigation. Food Res. Int. 2001, 34, 149–158. [Google Scholar] [CrossRef]
- Frank, D.; Hughes, J.; Piyasiri, U.; Zhang, Y.; Kaur, M.; Li, Y.; Mellor, G.; Stark, J. Volatile and non-volatile metabolite changes in 140-day stored vacuum packaged chilled beef and potential shelf life markers. Meat Sci. 2020, 161, 108016. [Google Scholar] [CrossRef]
- Estévez, M.; Morcuende, D.; Ventanas, S.; Cava, R. Analysis of Volatiles in Meat from Iberian Pigs and Lean Pigs after Refrigeration and Cooking by Using SPME-GC-MS. J. Agric. Food Chem. 2003, 51, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Torres-Penaranda, A.V.; Reitmeier, C.A.; Wilson, L.A.; Fehr, W.R.; Narvel, J.M. Sensory Characteristics of Soymilk and Tofu Made from Lipoxygenase-Free and Normal Soybeans. J. Food Sci. 1998, 63, 1084–1087. [Google Scholar] [CrossRef]
- Yang, A.; Smyth, H.; Chaliha, M.; James, A. Sensory quality of soymilk and tofu from soybeans lacking lipoxygenases. Food Sci. Nutr. 2016, 4, 207–215. [Google Scholar] [CrossRef]
- Kustyawati, M.E.; Nawanish, O.; Nurdjanah, S. Profile of aroma compounds and acceptability of modified tempeh. Int. Food Res. J. 2017, 24, 734–740. [Google Scholar]
- Eriksson, C.E.; Lundgren, B.; Vallentin, K. Odor dectectability of aldehydes and alcohols orginating from lipid oxidation. Chem. Senses 1976, 2, 3–15. [Google Scholar] [CrossRef]
- Leejeerajumnean, A.; Duckham, S.C.; Owens, J.D.; Ames, J.M. Volatile compounds in Bacillus–fermented soybeans. J. Sci. Food Agric. 2001, 81, 525–529. [Google Scholar] [CrossRef]
- Besson, I.; Creuly, C.; Gros, J.B.; Larroche, C. Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans. Appl. Microbiol. Biotechnol. 1997, 47, 489–495. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Precursors of ethyldimethylpyrazine isomers and 2,3-diethyl-5-methylpyrazine formed in roasted beef. Z. Lebensm. Unters. Forsch. 1994, 198, 210–214. [Google Scholar] [CrossRef]
- Cerny, C.; Grosch, W. Evaluation of potent odorants in roasted beef by aroma extract dilution analysis. Z. Lebensm. Unters. Forsch. 1992, 194, 322–325. [Google Scholar] [CrossRef]
- Frank, D.; Raeside, M.; Behrendt, R.; Krishnamurthy, R.; Piyasiri, U.; Rose, G.; Watkins, P.; Warner, R. An integrated sensory, consumer and olfactometry study evaluating the effects of rearing system and diet on flavour characteristics of Australian lamb. Anim. Prod. Sci. 2017, 57, 347–362. [Google Scholar] [CrossRef]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuno, J.; Stark, J.; Warner, R. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, T.J.; Leela, N.K. 11–Volatiles from herbs and spices. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Sawston, UK, 2006; pp. 177–218. [Google Scholar] [CrossRef]
- Shahidi, F.; Pegg, R.B. Hexanal as an indicator of meat flavor deterioration. J. Food Lipids 1994, 1, 177–186. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian Australas J. Anim. Sci. 2013, 26, 732–742. [Google Scholar] [CrossRef]
- Arihara, K. Strategies for designing novel functional meat products. Meat Sci. 2006, 74, 219–229. [Google Scholar] [CrossRef]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, S113–S119. [Google Scholar] [CrossRef]
- Fuke, S. Taste-active components of seafoods with special reference to umami substances. In Seafoods: Chemistry, Processing Technology and Quality; Shahidi, F., Botta, J.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 115–139. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Da Costa, K.-A.; Franklin, P.D.; Alexander, E.A.; Lamont, J.T.; Sheard, N.F.; Beiser, A. Choline, an essential nutrient for humans. FASEB J. 1991, 5, 2093–2098. [Google Scholar] [CrossRef]
- Ichimura, S.; Nakamura, Y.; Yoshida, Y.; Hattori, A. Hypoxanthine enhances the cured meat taste. Anim. Sci. J. 2017, 88, 379–385. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chi, M.-C.; Lin, M.-G.; Chen, Y.-Y.; Lin, L.-L.; Wang, T.-F. Biocatalytic Synthesis of γ-glutamyl-L-leucine, a Kokumi-Imparting Dipeptide, by Bacillus licheniformis γ-Glutamyltranspeptidase. Food Biotechnol. 2018, 32, 130–147. [Google Scholar] [CrossRef]
- Beaumont, M. Flavouring composition prepared by fermentation with Bacillus spp. Int. J. Food Microbiol. 2002, 75, 189–196. [Google Scholar] [CrossRef]
- Utami, R.; Wijaya, C.H.; Lioe, H.N. Taste of Water-Soluble Extracts Obtained from Over-Fermented Tempe. Int. J. Food Prop. 2016, 19, 2063–2073. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheepmeat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef] [PubMed]
- Methven, L. 4–Natural food and beverage flavour enhancer. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 76–99. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed]
- Tamam, B.; Syah, D.; Suhartono, M.T.; Kusuma, W.A.; Tachibana, S.; Lioe, H.N. Proteomic study of bioactive peptides from tempe. J. Biosci. Bioeng. 2019, 128, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Žugčić, T.; Abdelkebir, R.; Barba, F.J.; Rezek-Jambrak, A.; Gálvez, F.; Zamuz, S.; Granato, D.; Lorenzo, J.M. Effects of pulses and microalgal proteins on quality traits of beef patties. J. Food Sci. Technol. 2018, 55, 4544–4553. [Google Scholar] [CrossRef] [PubMed]
Product | Main Protein Source | Protein [g/100 g] | Fat [g/100 g] | Carbohydrate [g/100 g] | Sodium [mg/100 g] | Iron [µg/100 g] | Zinc [µg/100 g] | Vit B12 [µg/100 g] | |
---|---|---|---|---|---|---|---|---|---|
Meat substitutes | |||||||||
MS1 | Beef Burger | black beans | 6.7 | 4.9 | 16.2 | 400 | n/a | n/a | n/a |
MS2 | Beef Burger | vegetables | 5.6 | 7.6 | 31.5 | 320 | n/a | n/a | n/a |
MS3 | Beef Burger | brown rice | 12.9 | 6.3 | 19.2 | 598 | n/a | n/a | n/a |
MS4 | Beef Burger | soy protein | 15.6 | 0.9 | 18.6 | 473 | n/a | n/a | n/a |
MS5 | Beef Burger | pea protein | 17.7 | 17.7 | 4.4 | 380 | n/a | n/a | n/a |
MS6 | Beef Mince | mycoprotein | 14.9 | 1.9 | 1.6 | 58 | n/a | n/a | n/a |
MS7 | Beef Mince | soy protein | 18 | 10 | 6.2 | 480 | n/a | n/a | n/a |
MS8 | Sausage | wheat, gluten and soy | 19 | 10.4 | 9 | 480 | 3.5 | 4.4 | 2 |
MS9 | Sausage | soy | 8.4 | 7.4 | 13.1 | 630 | n/a | n/a | n/a |
MS10 | Pork roast | wheat, gluten and soy | 16.9 | 5 | 13.3 | 590 | 1.7 | 1.5 | 1.7 |
Plant-based high-protein foods | |||||||||
T1 | Tempeh | soy | 20.2 | 5.9 | 0.5 | 3.1 | 2.4 | n/a | n/a |
T2 | Tempeh | chickpea | 12.8 | 1.9 | 19 | 3.2 | 2.5 | 1.4 | 0.04 |
T3 | Tempeh | fava beans | 14.7 | 0.6 | 15 | 40 | 2.1 | 1.2 | 0.04 |
T4 | Tempeh | split pea | 14.2 | 1.2 | 21 | 3.2 | 2.7 | 1.5 | 0.04 |
TO1 | Tofu | soy | 15.2 | 7.1 | 1.7 | <6 | 5 | n/a | n/a |
TO2 | Tofu | soy | 5.4 | 1.2 | 2.1 | <1.0 | n/a | n/a | n/a |
N1 | Natto | soy | 16.4 | 10 | 12 | 2 | n/a | n/a | n/a |
N2 | Natto | soy | 15.2 | 8 | 12.9 | 454 | n/a | n/a | n/a |
N3 | Natto | soy | 13.2 | 7.8 | 15.1 | 562 | n/a | n/a | n/a |
N4 | Natto | soy | 14.8 | 18 | 26.3 | 152 | n/a | n/a | n/a |
N5 | Natto | soy | 16.5 | 11.1 | 12.5 | 2.5 | n/a | n/a | n/a |
Meat | |||||||||
BM1 | Beef mince 1 | beef | 19.9 | 17 | 0 | 71 | n/a | n/a | n/a |
BM2 | Beef mince 2 | ||||||||
BS | Beef steak | 19 | 19 | 0 | 58 | ||||
CT1 | Chicken thigh 1 | chicken | 27 | 14 | 0 | 82 | n/a | n/a | n/a |
CT2 | Chicken thigh 2 | ||||||||
CB | Chicken breast 1 | ||||||||
PL | Pork loin | pork | 27 | 14 | 0 | 62 | n/a | n/a | n/a |
PS | Pork sirloin | ||||||||
PC | Pork cutlet |
Product | Type | Brand | Main Ingredient | Aroma | Flavor/Taste | Texture | Appearance | Mouthfeel |
---|---|---|---|---|---|---|---|---|
MS1 | burger | cooked | black beans | beany, slight smoky, grainy, fresh vegetables, not much aroma | spicy, pleasant, not like beef, salty, beany, lentils, sweet, grainy, beetroot | firm, chewy, hard particles, stay intact upon cutting, soft, crumbly particles, grainy particles, firm on plate, falls in pieces in mouth | red/purple and black particles, nice browning, visible grains, dark, pink, layered pieces (beans pieces) | not fatty, dry, not juicy |
MS2 | burger | cooked | vegetables | oregano, strong rosemary, herbs, not meat-like, spicy, beany, strong, curry, mustard | salty, sweet, herbs, like stuffing, not unpleasant, starchy, MSG, sweet, taste like mix of vegetables | soft, chewy, cohesive, sticky, stay intact upon cutting, soft, oily, residue in mouth, tooth packing | yellow/orange/brown/grainy, visible green and carrot pieces, veg chunks like in veg burgers | soft, oily |
MS3 | burger | cooked | brown rice | not meat-like, brown rice smell, guaiacol, cooked grains, spicy, smoky, beany, rosemary, cooked vegetables, very grainy, spices (pepper), seeds | salty, rice flavor, very strong grainy taste, acidic, cereal, aftertaste not beefy, very salty, not great flavor, starchy, herbal, peppery, rye | medium firm, chewy, stay intact upon cutting, soft, grainy particles | visible rice grains, grainy, brown color, dark, flaky | crumbly |
MS4 | burger | cooked | soy protein | herbal, mild beefy, spicy, overpowering, mushroom | bland, spicy, starchy, beany aftertaste, parsley, spicy paprika—not really that nice, herbal, spices, a bit salty, grainy, very spicy | compact, cohesive, chewy, soft, sticky, dense, soft, not too dry, no particles—processed, first bite is nice then too much processing needed | red color, looks dry, thick and round edges, nice browning, red beef color, like burger, thick dense raw meat appearance | not fatty, not juicy, sucks saliva |
MS5 | burger | cooked | pea protein | meaty, slight-strong smoky, tomato, onion, beefy, not pleasant, strong off, acidic, artificial, smells like meat | slightly salty, umami, meaty, mushroom, spicy, off, strong aftertaste, smoky, cat food, grainy, aftertaste | soft, meat-like texture, looks good, looks like meat, texture like a burger, tender | homogenous but can see particles, good browning, good brown color, meaty appearance | juicy, oily, not dry |
MS6 | mince | cooked | mycoprotein | strong acidic, grainy, acetic acid, mild mushroom, starchy, cardboard, strong grainy, wet paper | not nice taste, very bland, strong acidic, weird taste, not meaty, cardboard, cereals, some bitterness, not salty, acidic | powdery, sticky, firm bite, moist, resistant to chew, chewy, crumbly, soft, very small particles | looks like mince, good brown color, meat color | dry, crumbly, not too dry |
MS7 | mince | cooked | soy protein | vomit, cooked grain smell, not meat like, off, oily, starchy, revolting aroma, cardboard | salty, spicy, off, vomit, chemical/artificial, very bread-like aftertaste | good texture, springy pieces, holds tongue well, chewy, pasty, bouncy | looks like mince, brown | soft |
MS8 | sausage | cooked | wheat, gluten and soy | herbs, guaiacol, cloves, a bit grainy, starchy, spices, overpowering, peppery | salty, sweet, starchy, spicy, bland, spicy aftertaste | firm first bite, then teeth sinking, soft inside, grainy, dissolving, chewy particles before swallow, soft, rubbery, very compact, missing crispiness on the outside | like sausage, highly processed, pasty, meaty appearance, sticky, looks like a plastic sausage | oily but not juicy, dry, pasty, mouthcoating, not fatty |
MS9 | sausage | cooked | soy | strong aniseed, herbs, fennel, oily, spices, very aromatic | strong flavor, artificial clove flavor (disgusting), very herby taste, overpowering, herbs, spices, starchy, too herby, acidic, too strong, salty, fennel flavor | oily and firm, homogenous first bite, first bite is like biting into a real sausage, juicy and soft | looks like sausage, chargrilled outside, color contrast inside, looks meaty, good burning on surface | soft, moist not juicy mouthcoating, juicy |
MS10 | roast (pork) | cooked | wheat, gluten and soy | meaty, herbs, pleasant fried smell, starchy, oily, grainy, acidic, artificial | salty, sweet, taste starchy, acidic, very sweet, not natural, not like meat, very acidic, extremely sweet | a bit firm on the first bite then soft, chewy, good meaty texture, pork texture, meaty texture, very fibrous, good meat like texture, no residue | light brown color, fibrous, not meat-like, pale, very pale | soft, rubbery, quite gummy, a bit moist |
T1 | tempeh | cooked | chickpea | fermented, very strong cider notes, grilled, baked, acidic, slightly beany | sour, umami, very acidic | crumbly paste, fine particles, soft | golden light | starchy, small particles |
T2 | tempeh | cooked | fava beans | grilled meat, tortilla, slightly beany, flour, yeasty, fermented | acidic, nutty, umami, mild meaty, beany | dry powder, soft | golden light | slightly crumbly, starchy, small particles |
T3 | tempeh | cooked | organic split pea and brown rice | slight grilled, meaty, fermented | sauerkraut, slightly bitter, meat-like, umami | fine particles, soft | golden, light | small particles |
T4 | tempeh | cooked | soy | cereal like, mild baked notes, mild grilled, mild fermented, mild aroma | slightly acidic, nutty, starchy, beany | crumbly, soft | light golden | paste, small particles, slightly chewy, dry |
TO1 | tofu | cooked | soy | beany, baked notes, mild fried fat | bitter, beany, soy taste, bland, eggy | firm, springy | golden, fried | springy, firm |
TO2 | tofu silken | cooked | soy | beany, cooked bread, mild aroma, slightly nutty | soy like, bland, mild beany, green, slightly nutty | soft | pale brown, golden, fried | soft, silky, moist |
N1 | natto | raw | soy | fruity, caramel, banana, green, cheesy, esters | bitter, beany, salty | soft, slimy, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N2 | natto | raw | soy | ammonia, caramel, coffee | bitter, beany, vomit, acidic, coffee | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N3 | natto | raw | soy | savory, caramel, coffee, BBQ sauce | beany, coffee, bitter, mouth irritating, plain, | soft, slimy, sticky | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N4 | natto | raw | soy | chocolate, caramel, acidic, mild off | chocolate, coffee, beany, very bitter | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N5 | natto | raw | soy | strong caramel, coffee, cheesy, fermented | very bitter, beany, cassoulet taste (meaty dish) | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N1 | natto | cooked | soy | coffee, caramel | coffee, bitter, sweet, nutty | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N2 | natto | cooked | soy | savory, coffee, oily | sweet, chocolate, slightly bitter, chocolate, savory | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N3 | natto | cooked | soy | meaty, mushroom, smoked ham, tempeh smell | savory, moderate bitter, bacon, mild coffee, meaty, nutty | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N4 | natto | cooked | soy | meaty, caramel, fermented | savory, soy sauce, moderate bitter | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
N5 | natto | cooked | soy | coffee | strong coffee taste, sweet, bitter | slimy, sticky, beany | brown, stringy, soy seeds | gooey, slightly slimy, soft |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarska, K.; Taylor, M.; Piyasiri, U.; Frank, D. Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia. Foods 2021, 10, 801. https://doi.org/10.3390/foods10040801
Kaczmarska K, Taylor M, Piyasiri U, Frank D. Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia. Foods. 2021; 10(4):801. https://doi.org/10.3390/foods10040801
Chicago/Turabian StyleKaczmarska, Kornelia, Matthew Taylor, Udayasika Piyasiri, and Damian Frank. 2021. "Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia" Foods 10, no. 4: 801. https://doi.org/10.3390/foods10040801
APA StyleKaczmarska, K., Taylor, M., Piyasiri, U., & Frank, D. (2021). Flavor and Metabolite Profiles of Meat, Meat Substitutes, and Traditional Plant-Based High-Protein Food Products Available in Australia. Foods, 10(4), 801. https://doi.org/10.3390/foods10040801