Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities
Abstract
:1. Introduction
2. Chemical Composition
2.1. Proximate Composition
2.1.1. Polysaccharides
Compounds | Content/Composition | References |
---|---|---|
Elements and ascorbic acid | [20] | |
Potassium | 1.11% | |
Phosphorus | 0.23% | |
Nitrogen | 1.02% | |
Ascorbic acid | 142.55 mg/100 g | |
Carbohydrates/phenols/sulfates | [18] | |
Fucose | 1.44% | |
Rhamnose | 3.88% | |
Arabinose | 22.6% | |
Galactose | 29.41% | |
Glucose | 33.79% | |
Mannose | 0.59% | |
Xylose | 7.71% | |
Phenol | 15.28% | |
Sulfate | 18.58% | |
Carbohydrate | 48.13% | |
Sulfate polysaccharide | 66.71% | |
Protein | ||
Association of Official Analytical Chemists (AOAC) method | 22.98 ± 0.036% [dry weight (DW) basis] | [21] |
AOAC method | 9.73% | [22] |
Lowry’s method | 16.8 mg/100 g | [23] |
Ninhydrin method | 8.0 mg/100 g |
2.1.2. Proteins
2.1.3. Minerals and Vitamins
2.2. Phytochemical Profile
2.2.1. Essential Oil Profile
2.2.2. Phenolic Compounds
3. Biological Activities of Guava Leaf Extracts
3.1. Anticancer/Antitumor Activity
3.2. Antidiabetic Activity
3.3. Antioxidant Activity
3.4. Antidiarrhea Activity
3.5. Antimicrobial Activity
3.6. Hepatoprotective Properties
3.7. Antiobesity and Lipid-Lowering Activity
4. GLs as a Functional Food Ingredient
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Maheshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R.K.; et al. Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants 2021, 10, 299. [Google Scholar] [CrossRef]
- Sharma, A.; del Carmen Flores-Vallejo, R.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef]
- Amat-ur-Rasool, H.; Symes, F.; Tooth, D.; Schaffert, L.N.; Elmorsy, E.; Ahmed, M.; Hasnain, S.; Carter, W.G. Potential nutraceutical properties of leaves from several commonly cultivated plants. Biomolecules 2020, 10, 1556. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Porcu, A.; Agliassa, C.; Caradonna, F.; Bertea, C.M. Chemical profile and biological activity of cherimoya (Annona cherimola Mill.) and atemoya (Annona atemoya) leaves. Molecules 2020, 25, 2612. [Google Scholar] [CrossRef]
- Mateos-Maces, L.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Aquino-Bolaños, E.N.; Alba-Jiménez, J.E.; Villagómez-González, B.B. Edible leafy plants from Mexico as sources of antioxidant compounds, and their nutritional, nutraceutical and antimicrobial potential: A review. Antioxidants 2020, 9, 541. [Google Scholar] [CrossRef]
- Laily, N.; Kusumaningtyas, R.W.; Sukarti, I.; Rini, M.R.D.K. The potency of guava Psidium guajava (L.) leaves as a functional immunostimulatory ingredient. Procedia Chem. 2015, 14, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Yen, G.C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 2007, 101, 686–694. [Google Scholar] [CrossRef]
- Ashraf, A.; Sarfraz, R.A.; Rashid, M.A.; Mahmood, A.; Shahid, M.; Noor, N. Chemical composition, antioxidant, antitumor, anticancer and cytotoxic effects of Psidium guajava leaf extracts. Pharm. Biol. 2016, 54, 1971–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Lu, J.; Qin, Y.; Jiang, W.; Wang, Y. Antitumor effect of guava leaves on lung cancer: A network pharmacology study. Arab. J. Chem. 2020, 13, 7773–7797. [Google Scholar] [CrossRef]
- Dewi, P.S.; Sutjiatmo, A.B.; Nurdiansyah, A. Antidiarrheal activity of water extracts of guava leaves (Psidium guajava L.) and water extracts of green tea leaves (Camellia sinensis L.) combination in Swiss Webster mice. Acta Pharm. Indones. 2013, 38, 67–70. [Google Scholar]
- Mazumdar, S.; Akter, R.; Talukder, D. Antidiabetic and antidiarrhoeal effects on ethanolic extract of Psidium guajava (L.) Bat. leaves in Wister rats. Asian Pac. J. Trop. Biomed. 2015, 5, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Farag, R.S.; Abdel-Latif, M.S.; Abd El Baky, H.H.; Tawfeek, L.S. Phytochemical screening and antioxidant activity of some medicinal plants’ crude juices. Biotechnol. Rep. 2020, 28, e00536. [Google Scholar] [CrossRef]
- Shabbir, H.; Kausar, T.; Noreen, S.; Hussain, A.; Huang, Q.; Gani, A.; Su, S.; Nawaz, A. In vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves. Animals 2020, 10, 1714. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, B.; Wei, W.; Tian, X.; Wu, Z. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules 2019, 24, 1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Peng, B.; Liu, Y.; Wu, Y.; Wu, Z. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process. Biochem. 2018, 73, 228–234. [Google Scholar] [CrossRef]
- Yu, S.; Feng, Z.; Wu, X.; Kong, F. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology. Pharmacogn. Mag. 2015, 11, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Kim, E.A.; Kim, Y.S.; Yu, S.K.; Choi, C.; Lee, J.S.; Kim, Y.T.; Nah, J.W.; Jeon, Y.J. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses. Int. J. Biol. Macromol. 2016, 91, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kong, F.; Ni, H.; Mo, Z.; Wan, J.-B.; Hua, D.; Yan, C. Structural characterization, α-glucosidase inhibitory and DPPH scavenging activities of polysaccharides from guava. Carbohydr. Polym. 2016, 144, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Kundu, S.; Bauri, F.K.; Talang, H.; Majumder, D. Effect of bio-fertilizers on physico-chemical qualities and leaf mineral composition of guava grown in alluvial zone of West Bengal. J. Crop Weed 2014, 10, 268–271. [Google Scholar]
- Jassal, K.; Kaushal, S. Phytochemical and antioxidant screening of guava (Psidium guajava) leaf essential oil. Agric. Res. J. 2019, 56, 528. [Google Scholar] [CrossRef]
- Rahman, Z.; Siddiqui, M.N.; Khatun, M.A.; Kamruzzaman, M. Effect of guava (Psidium guajava) leaf meal on production performances and antimicrobial sensitivity in commercial broiler. J. Nat. Prod. 2013, 6, 177–187. [Google Scholar]
- Thomas, L.A.T.; Anitha, T.; Lasyaja, A.B.; Suganya, M.; Gayathri, P.; Chithra, S. Biochemical and mineral analysis of the undervalued leaves—Psidium guajava L. Int. J. Adv. Sci. Res. 2017, 2, 16–21. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Protein Function. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Lonnie, M.; Hooker, E.; Brunstrom, J.; Corfe, B.; Green, M.; Watson, A.; Williams, E.; Stevenson, E.; Penson, S.; Johnstone, A. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Adrian, J.A.L.; Arancon, N.Q.; Mathews, B.W.; Carpenter, J.R. Mineral composition and soil-plant relationships for common guava (Psidium guajava L.) and yellow strawberry guava (Psidium cattleianum var. Lucidum) tree parts and fruits. Commun. Soil Sci. Plant Anal. 2015, 46, 1960–1979. [Google Scholar] [CrossRef]
- Lee, W.C.; Mahmud, R.; Pillai, S.; Perumal, S.; Ismail, S. Antioxidant activities of essential oil of Psidium guajava L. leaves. APCBEE Procedia 2012, 2, 86–91. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Smith, R.M.; Oliveros-Belardo, L. The composition of leaf essential oils of Psidium guajava L. from Manila, Philippines. Asian J. Pharm. 1977, 3, 5–9. [Google Scholar]
- Khadhri, A.; El Mokni, R.; Almeida, C.; Nogueira, J.M.F.; Araújo, M.E.M. Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Ind. Crop. Prod. 2014, 52, 29–31. [Google Scholar] [CrossRef]
- Soliman, F.M.; Fathy, M.M.; Salama, M.M.; Saber, F.R. Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves. Bull. Fac. Pharm. Cairo Univ. 2016, 54, 219–225. [Google Scholar] [CrossRef] [Green Version]
- El-Ahmady, S.H.; Ashour, M.L.; Wink, M. Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. J. Essent. Oil Res. 2013, 25, 475–481. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J. Funct. Foods 2016, 22, 376–388. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Ishii, R.; Kobiyama, K.; Kitanaka, S. New benzophenone and quercetin galloyl glycosides from Psidium guajava L. J. Nat. Med. 2010, 64, 252–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, J.C.; Chou, G.X.; Wang, Z.T. One new diphenylmethane glycoside from the leaves of Psidium guajava L. Nat. Prod. Res. 2012, 26, 1971–1975. [Google Scholar] [CrossRef]
- Shao, M.; Wang, Y.; Liu, Z.; Zhang, D.M.; Cao, H.H.; Jiang, R.W.; Fan, C.L.; Zhang, X.Q.; Chen, H.R.; Yao, X.S.; et al. Psiguadials A and B, two novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Org. Lett. 2010, 12, 5040–5043. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Wang, Y.; Huang, X.J.; Fan, C.L.; Zhang, Q.W.; Zhang, X.Q.; Ye, W.C. Four new triterpenoids from the leaves of Psidium guajava. J. Asian Nat. Prod. Res. 2012, 14, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef]
- Wang, H.; Du, Y.J.; Song, H.C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010, 123, 6–13. [Google Scholar] [CrossRef]
- Liu, C.W.; Wang, Y.C.; Lu, H.C.; Chiang, W.D. Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from Psidium guajava leaves. Process. Biochem. 2014, 49, 1601–1605. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Bei, Q.; Shi, K.; Wu, Z. Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities. J. Sep. Sci. 2017, 40, 3817–3829. [Google Scholar] [CrossRef]
- Wang, L.; Bei, Q.; Wu, Y.; Liao, W.; Wu, Z. Characterization of soluble and insoluble-bound polyphenols from Psidium guajava L. leaves co-fermented with Monascus anka and Bacillus sp. and their bio-activities. J. Funct. Foods 2017, 32, 149–159. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Pasini, F.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Caboni, M.F. Psidium guajava L. leaves as source of proanthocyanidins: Optimization of the extraction method by RSM and study of the degree of polymerization by NP-HPLC-FLD-ESI-MS. J. Pharm. Biomed. Anal. 2017, 133, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dorenkott, M.R.; Griffin, L.E.; Goodrich, K.M.; Thompson-Witrick, K.A.; Fundaro, G.; Ye, L.; Stevens, J.R.; Ali, M.; O’Keefe, S.F.; Hulver, M.W.; et al. Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. J. Agric. Food Chem. 2014, 62, 2216–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyokuni, S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch. Biochem. Biophys. 2016, 595, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Talukdar, P.; Talapatra, D.S.N. Presence of phytochemicals in fruits and leaves of guava (Psidium guajava Linn.) for cancer prevention: A mini review. J. Drug Deliv. Ther. 2019, 9, 726–729. [Google Scholar] [CrossRef]
- Correa, M.G.; Couto, J.S.; Teodoro, A.J. Anticancer properties of Psidium guajava—A mini-review. Asian Pac. J. Cancer Prev. 2016, 17, 4199–4204. [Google Scholar]
- Lok, B.; Sandai, D.; Baharetha, H.; Nazari, V.; Asif, M.; Tan, C.; Majid, A. Anticancer effect of Psidium guajava (guava) leaf extracts against colorectal cancer through inhibition of angiogenesis. Asian Pac. J. Trop. Biomed. 2020, 10, 293. [Google Scholar] [CrossRef]
- Bazioli, J.M.; Costa, J.H.; Shiozawa, L.; Ruiz, A.L.T.G.; Foglio, M.A.; de Carvalho, J.E. Anti-estrogenic activity of guajadial fraction, from guava leaves (Psidium guajava L.). Molecules 2020, 25, 1525. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Luo, N.; Wu, X.; Xu, Z.; Wang, X.; Pan, X. The modulatory role of low concentrations of bisphenol A on tamoxifen-induced proliferation and apoptosis in breast cancer cells. Environ. Sci. Pollut. Res. 2019, 26, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ouyang, W.; Pan, C.; Gao, Z.; Han, Y.; Song, M.; Feng, K.; Xiao, H.; Cao, Y. Identification of a new benzophenone from: Psidium guajava L. leaves and its antineoplastic effects on human colon cancer cells. Food Funct. 2019, 10, 4189–4198. [Google Scholar] [CrossRef]
- Punia, S.; Kumar, M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci. Technol. 2021, 108, 58–70. [Google Scholar] [CrossRef]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Zhang, Q.; Zhang, P.P.; Sun, L.J.; Liang, J.C.; Morris-Natschke, S.L.; Chen, Y.; Lee, K.H. Evaluation of in vitro/in vivo anti-diabetic effects and identification of compounds from Physalis alkekengi. Fitoterapia 2018, 127, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ouyang, W.; Lan, Y.; Xiao, H.; Tang, L.; Liu, G.; Feng, K.; Zhang, L.; Song, M.; Cao, Y. Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. Food Biosci. 2020, 35, 100574. [Google Scholar] [CrossRef]
- Eidenberger, T.; Selg, M.; Krennhuber, K. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus. Fitoterapia 2013, 89, 74–79. [Google Scholar] [CrossRef]
- Fujimori, K.; Shibano, M. Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells. J. Agric. Food Chem. 2013, 61, 5139–5147. [Google Scholar] [CrossRef]
- Nair, S.S.; Kavrekar, V.; Mishra, A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013, 3, 128–132. [Google Scholar]
- Stefanis, L.; Burke, R.E.; Greene, L.A. Apoptosis in neurodegenerative disorders. Curr. Opin. Neurol. 1997, 10, 299–305. [Google Scholar] [CrossRef]
- Taha, T.F.; Elakkad, H.A.; Gendy, A.S.H.; Abdelkader, M.A.I.; Hussein, S.S.E. In vitro bio-medical studies on Psidium guajava leaves. Plant Arch. 2019, 19, 199–207. [Google Scholar]
- Tran, T.T.T.; Ton, N.M.N.; Nguyen, T.T.; Le, V.V.M.; Sajeev, D.; Schilling, M.W.; Dinh, T.T.N. Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage. Meat Sci. 2020, 165, 108106. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xie, J.; Huang, T.; Ma, Y.; Wu, Z. Characterization of silver nanoparticles biosynthesized using crude polysaccharides of Psidium guajava L. leaf and their bioactivities. Mater. Lett. 2017, 208, 126–129. [Google Scholar] [CrossRef]
- Kim, H.-S. Do not put too much value on conventional medicines. J. Ethnopharmacol. 2005, 100, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Palombo, E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: Modes of action and effects on intestinal function. Phyther. Res. 2006, 20, 717–724. [Google Scholar] [CrossRef]
- Mehra, A.; Sarkar, S.; Basu, D. Lomotil (diphenoxylate) dependence in India. Indian J. Psychol. Med. 2013, 35, 248–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojewole, J.A.O.; Awe, E.O.; Chiwororo, W.D.H. Antidiarrhoeal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rodents. J. Smooth Muscle Res. 2008, 44, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, F.; Ayaz, M.; Sadiq, A.; Ullah, F.; Hussain, I.; Shahid, M.; Yessimbekov, Z.; Adhikari-Devkota, A.; Devkota, H.P. Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl. Sci. 2020, 10, 4597. [Google Scholar] [CrossRef]
- Mickymaray, S. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics 2019, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Naseer, S.; Hussain, S.; Naeem, N.; Pervaiz, M.; Rahman, M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin. Phytosci. 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Goswami, S. Antifungal and antibacterial property of guava (Psidium guajava) leaf extract: Role of phytochemicals. Int. J. Health Sci. Res. 2019, 9, 39. [Google Scholar]
- Hirudkar, J.R.; Parmar, K.M.; Prasad, R.S.; Sinha, S.K.; Jogi, M.S.; Itankar, P.R.; Prasad, S.K. Quercetin a major biomarker of Psidium guajava L. inhibits SepA protease activity of Shigella flexneri in treatment of infectious diarrhoea. Microb. Pathog. 2020, 138, 103807. [Google Scholar] [CrossRef]
- Ghosh, P.; Mandal, A.; Chakraborty, P.; Rasul, M.G.; Chakraborty, M.; Saha, A. Triterpenoids from Psidium guajava with biocidal activity. Indian J. Pharm. Sci. 2010, 72, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Dhiman, A.; Nanda, A.; Ahmad, S.; Narasimhan, B. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. J. Pharm. Bioallied Sci. 2011, 3, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Almulaiky, Y.; Zeyadi, M.; Saleh, R.; Baothman, O.; Al-shawafi, W.; Al-Talhi, H. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatal. Agric. Biotechnol. 2018, 16, 90–97. [Google Scholar] [CrossRef]
- Bose, D.; Chatterjee, S. Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl. Nanosci. 2016, 6, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Comber, J.D.; Bamezai, A.K. In vitro derivation of interferon-γ producing, IL-4 and IL-7 responsive memory-like CD4+ T cells. Vaccine 2012, 30, 2140–2145. [Google Scholar] [CrossRef]
- Wang, Y.T.; Yang, C.H.; Huang, T.Y.; Tai, M.H.; Sie, R.H.; Shaw, J.F. Cytotoxic effects of chlorophyllides in ethanol crude extracts from plant leaves. Evid.-Based Complement. Altern. Med. 2019, 2019, 9494328. [Google Scholar] [CrossRef] [PubMed]
- Kemegne, G.A.; Bettache, N.; Nyegue, M.A.; Etoa, F.-X.; Menut, C. Cytotoxic activities of Psidium guajava and Mangifera indica plant extracts on human healthy skin fibroblasts and human hepatocellular carcinoma. Issues Biol. Sci. Pharm. Res. 2020, 8, 58–64. [Google Scholar] [CrossRef]
- Tella, T.; Masola, B.; Mukaratirwa, S. The effect of Psidium guajava aqueous leaf extract on liver glycogen enzymes, hormone sensitive lipase and serum lipid profile in diabetic rats. Biomed. Pharmacother. 2019, 109, 2441–2446. [Google Scholar] [CrossRef] [PubMed]
- Beidokhti, M.N.; Eid, H.M.; Villavicencio, M.L.S.; Jäger, A.K.; Lobbens, E.S.; Rasoanaivo, P.R.; McNair, L.M.; Haddad, P.S.; Staerk, D. Evaluation of the antidiabetic potential of Psidium guajava L. (Myrtaceae) using assays for α-glucosidase, α-amylase, muscle glucose uptake, liver glucose production, and triglyceride accumulation in adipocytes. J. Ethnopharmacol. 2020, 257, 112877. [Google Scholar] [CrossRef] [PubMed]
- Seddiek, A.S.; Hamad, G.M.; Zeitoun, A.A.; Zeitoun, M.A.M.; Ali, S. Antimicrobial and antioxidant activity of some plant extracts against different food spoilage and pathogenic microbes. Eur. J. Nutr. Food Saf. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Naili, M.; Errayes, A.; Alghazeer, R. Evaluation of antimicrobial and antioxidant activities of Psidium guajava L. growing in Libya. Int. J. Adv. Biol. Biomed. Res. 2020, 8, 419–428. [Google Scholar] [CrossRef]
- Yoshitomi, H.; Guo, X.; Liu, T.; Gao, M. Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRSP.Z-Leprfa/Izm rats. Nutr. Metab. 2012, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, R.; Van Wyk, B.-E.; Van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa. TAXON 1998, 47, 787. [Google Scholar] [CrossRef]
- Vinayagam, R.; Jayachandran, M.; Chung, S.S.M.; Xu, B. Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2018, 103, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Escrig, A.; Rincón, M.; Pulido, R.; Saura-Calixto, F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem. 2001, 49, 5489–5493. [Google Scholar] [CrossRef] [PubMed]
- Olaniyan, M.F. Cholesterol lowering effect of guava leaves (Psidium guajava) extract on egg yolk induced hypercholesterolaemic rabbits. J. Biol. Nat. 2017, 7, 24–28. [Google Scholar]
- Bahrani, A.H.M.; Zaheri, H.; Soltani, N.; Kharazmi, F.; Keshavarz, M.; Kamalinajad, M. Effect of the administration of Psidium guava leaves on blood glucose, lipid profiles and sensitivity of the vascular mesenteric bed to Phenylephrine in streptozotocin-induced diabetic rats. J. Diabetes Mellit. 2012, 2, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K.V.S.S. Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. J. Food Sci. Technol. 2019, 56, 995–1007. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K.V.S.S. Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. Int. J. Biol. Macromol. 2019, 135, 1070–1081. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K.V.S.S. Black carrot (Daucus carota ssp.) and black soybean (Glycine max (L.) Merr.) anthocyanin extract: A remedy to enhance stability and functionality of fruit juices by copigmentation. Waste Biomass Valoriz. 2020, 11, 99–108. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Amarowicz, R.; Kaur, C. Evaluation of cellulolytic enzyme-assisted microwave extraction of Punica granatum peel phenolics and antioxidant activity. Plant Foods Hum. Nutr. 2020, 75, 614–620. [Google Scholar] [CrossRef]
- Nishad, J.; Dutta, A.; Saha, S.; Rudra, S.G.; Varghese, E.; Sharma, R.R.; Tomar, M.; Kumar, M.; Kaur, C. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chem. 2021, 334, 127561. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Patil, S.; Saxena, S.; Patil, P.G.; Mageshwaran, V.; Punia, S.; Varghese, E.; Mahapatra, A.; Ashtaputre, N.; et al. Extraction of ultra-low gossypol protein from cottonseed: Characterization based on antioxidant activity, structural morphology and functional group analysis. LWT 2021, 140, 110692. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Tomar, M.; Punia, S.; Singh, S.; Patil, S.; Singh, S.; Ilakiya, T.; Kaur, C.; Kennedy, J.F. Jackfruit seed slimy sheath, a novel source of pectin: Studies on antioxidant activity, functional group, and structural morphology. Carbohydr. Polym. Technol. Appl. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Tiwari, S.; Punia, S.; Tak, Y.; Amarowicz, R.; Bhoite, A.G.; Singh, S.; Joshi, S.; Panesar, P.S.; et al. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem. 2021, 353, 129431. [Google Scholar] [CrossRef] [PubMed]
- Punia, S.; Sandhu, K.S.; Grasso, S.; Purewal, S.S.; Kaur, M.; Siroha, A.K.; Kumar, K.; Kumar, V.; Kumar, M. Aspergillus oryzae fermented rice bran: A byproduct with enhanced bioactive compounds and antioxidant potential. Foods 2020, 10, 70. [Google Scholar] [CrossRef]
- Shaheena, S.; Chintagunta, A.D.; Dirisala, V.R.; Kumar, N.S.S. Extraction of bioactive compounds from Psidium guajava and their application in dentistry. AMB Express 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Rodríguez-Nogales, A.; Algieri, F.; Romero, M.; Verardo, V.; Segura-Carretero, A.; Duarte, J.; Galvez, J. The hypoglycemic effects of guava leaf (Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res. Int. 2017, 96, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.S.; Sarbon, N.M.; Rana, S.S.; Chintagunta, A.D.; Prathibha, S.; Ingilala, S.K.; Kumar, S.P.J.; Anvesh, B.S.; Dirisala, V.R. Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express 2021, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.; Suzuki, K.; Iwadate-Iwata, E.; Kato, I.; Uchida, K.; Onoue, M. Evaluation of food-drug interaction of guava leaf tea. Phyther. Res. 2013, 27, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Nishimura, Y.; Kurata, N.; Iwase, M.; Yasuhara, H. Effects of continuous ingestion of herbal teas on intestinal CYP3A in the rat. J. Pharmacol. Sci. 2007, 103, 214–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, A.F.A.; Da Silva, A.S.; Galli, G.M.; Paglia, E.B.; Dacoreggio, M.V.; Kempka, A.P.; Souza, C.F.; Baldissera, M.D.; da Rosa, G.; Boiago, M.M.; et al. Addition of yellow strawberry guava leaf extract in the diet of laying hens had antimicrobial and antioxidant effect capable of improving egg quality. Biocatal. Agric. Biotechnol. 2020, 29, 101788. [Google Scholar] [CrossRef]
Compounds | Content/Composition | References |
---|---|---|
Essential oil components | [31] | |
α-Pinene | 1.53% | |
Benzaldehyde | 0.83% | |
p-cymene | 0.52% | |
Limonene | 54.7% | |
1,8-Cineole | 32.14% | |
β-cis-Ocimene | 0.28% | |
γ-Terpinene | 0.38% | |
α-Terpineol | 1.79% | |
β-Caryophyllene | 2.91% | |
α-Humulene | 0.77% | |
Total identified constituents | 95.85% | |
Caryophyllene, copaene, nerolidol, caryophyllene oxide, humulene, limonene, eucalyptol, beta-bisabolene, cadin-4-en-10-ol, trans-cadina-1,4-diene, sesquiterpenes, eugenol, isoeugenol, cevadine, emetine (extracted from guava leaves, Ludhiana, India using hydro-distillation by Clevenger-type apparatus) | - | [21] |
Origin of Guava Leaves | Extract/Fraction | Bioactive Compounds | References |
---|---|---|---|
Leaves from Guangzhou (China) | Ethyl acetate-soluble fraction, n-butanol-soluble fraction, 75% ethanol extract, residual fraction, dichloromethane-soluble fraction | Quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin | [40] |
Leaves from Jing-cin Farm (Tianzhong Township, Changhua County, Taiwan) | Aqueous extract | Gallic acid, catechin, epicatechin, quercetin, chlorogenic acid, epigallocatechin gallate, caffeic acid | [41] |
Leaves from Motril (Spain) | Acetone, water, and acetic acid extract | Proanthocyanidins (PAs) | [33] |
Leaves from Jiangmen (China) | Methanol extract | Gallic acid, chlorogenic acid, epicatechin, mono-3-hydroxyethyl-quercetin-glucuronide, rutin, isoquercitrin, quercetin-3-O-α-L-arabinofuranoside, quercetin-3-O-β-D-xylopyranoside, avicularin, quercitrin, kaempferol-3-arabofuranoside, quercetin, kaempferol | [42] |
Origin of Leaves | Type of Extracts | Bioactive Compounds | Type of Cell Lines, Type of Study | Results | References |
---|---|---|---|---|---|
Anticancer activity | |||||
Leaves from Chaudhry Wala, Punjab, (Pakistan) | Extracts obtained using methanol, chloroform, and hexane | Phenolics including flavonoids | Human carcinoma cell lines (SCC4, U266, and KBM5) | IC50 values of the leaf extracts ranged from 22.73 to 51.65 mg/mL (KBM5); 20.97 to 89.55 mg/mL (U266); 22.82 to 70.25 mg/mL (SCC4). Hexane extract demonstrated strong cytotoxic (IC50 value = 32.18 μg/mL) and antitumor (IC50 value = 65.02 μg/mL) properties. These extracts also inhibited TNF-α and instigated NF-κB activation in KBM5 cells | [9] |
- | Ethanolic extract | Chlorophyll | Glioblastoma cells (U-118 MG), colorectal adenocarcinoma cells (Caco-2), hepatocellular carcinoma cells (HepG2), breast cancer cells (MDA-MB-231 and MCF7) | IC50 values of the leaf extracts were >200 μg/mL for Caco-2, HepG2, MDA-MB-231, MCF7 and 133.55 for U-118 MG, demonstrating their potential | [79] |
Leaves from Yaoundé (Cameroon) | Ethanolic extract and essential oils | β-Sesquiphellandrene, α-humulene, nerolidol, 1,8-cineole, isodaucene, benzaldehyde, β-bisabolol, β-caryophyllene | Hepatocellular carcinoma cells (HepG2) and healthy human skin fibroblasts (CCD-45-SK) | The IC50 values for aqueous and ethanol extracts of guava leaves against CCD-45-SK were >0.1 mg/mL and 0.1 mg/mL for essential oils. The IC50 values for aqueous ethanol extracts and essential oils against HepG2 were 0.013, 0.0057, and 0.1, respectively | [80] |
Antidiabetic activity | |||||
Leaves from Bangladesh | Ethanolic extract | - | Wistar rats with alloxan-induced diabetes | Administration of guava leaf extract significantly reduced (p < 0.05) BGL at doses of 1.00 and 0.50 g/kg, as well as 0.75 g/kg in alloxan-induced diabetic Wistar rats (p < 0.001) | [12] |
Leaves from Guangdong (China) | Ultrasound-assisted ethanolic extract | Polysaccharides | In vitro | Inhibited α-glucosidase activity and reduced the breakdown of glucose and prevented flatulence by not attenuating α-amylase activity | [16] |
- | 65% ethanol and ethyl acetate extract | Flavonoids (guaijaverin and avicularin) | Kunming mice with high-fat diet and streptozotocin-induced diabetes | GLF (200 mg/kg/day) not able to prevent loss of body weight, which indicated the inability to remove the damage induced by streptozotocin Hypoglycemic effect, improved glucose tolerance. Decreased TC, TG, LDL-C. Improved the insulin resistance and function of beta cell islets. Reduced liver and kidney index. Reduced liver viscera index by reducing the accumulation of lipids in the liver | [57] |
Leaves from Natal Province, (Republic of South Africa) | Lyophilized water extract | - | Sprague Dawley male rats with streptozotocin-induced diabetes | Guava leaf extract (400 mg/kg/d) significantly decreased HSL activity in diabetic rat liver and adipose tissue, which was associated with increased levels of glycogen, decreased total cholesterol, serum triglycerides, LDL-C, and increased HDL-C. | [81] |
Leaves from Ambohitantely (Madagascar) | - | Rat hepatoma (H4IIE cells), adipocyte-like cells (3T3-L1), skeletal muscle cells (C2C12) | IC50 values of the leaf extract of 1.0 ± 0.3 inhibited α-glucosidase activity and significantly increased the accumulation of triglycerides in 3T3-L1 cells. Results demonstrated the application of guava leaf extract in the treatment of type 2 diabetes | [82] | |
Antioxidant activity | |||||
- | Water extract | Low molecular weight polysaccharides (3.64 kDa) | In vitro antioxidant assays | IC50 values of 46.49 μg/mL, 175.52 μg/mL, and 102.82 μg/mL for DPPH, OH, and ABTS were recorded, respectively, all higher than that of ascorbic acid or Trolox | [15] |
- | Water, methanol, and ethanol | Phenolics including flavonoids | In vitro DPPH assay | IC50 value was highest for ethanolic extract and the lowest for methanolic extract | [82] |
Antidiarrheal activity | |||||
- | Water extract | - | In vivo with rats and mice | PGE (50–400 mg/kg p.o.) produced dose-dependent and significant protection of rats and mice against castor oil-induced diarrhea, inhibited intestinal transit, and delayed gastric emptying | [68] |
- | Ethanolic extract | - | In vivo Wistar rats | Application of EEPGL at doses of 750 and 500 mg/kg showed antidiarrheal effect in castor oil-induced diarrheal model | [12] |
Antimicrobial activity | |||||
- | Methanolic extract, water extract, extract of flavonoids | Alkaloids, saponins, anthraquinones, tannins, terpenes, flavonoids, coumarins | Antimicrobial activity of leaf extract was studied against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella typhi | Methanolic extracts with minimum inhibitory concentration (MIC) of 5.5–11 mg/mL. Aqueous extract found to be least effective with MIC of 2–15 mg/mL. Flavonoid extract was the most effective against bacteria with MIC of 2.5–5 mg/mL | [83] |
- | Ethanolic extract | - | Synergistic effect of zinc oxide nanoparticles and guava leaf extract for enhanced antimicrobial activity against enterotoxigenic Escherichia coli | Rifampicin (5 μg) zone of inhibition—28 mm Nanoparticle (concentration 128 μg/mL) zone of inhibition—24 mm Nanoparticle (concentration 128 μg/mL) + leaf extract zone of inhibition—20 mm | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M.S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021, 10, 752. https://doi.org/10.3390/foods10040752
Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, Sasi M, Prajapati U, Hasan M, Singh S, et al. Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods. 2021; 10(4):752. https://doi.org/10.3390/foods10040752
Chicago/Turabian StyleKumar, Manoj, Maharishi Tomar, Ryszard Amarowicz, Vivek Saurabh, M. Sneha Nair, Chirag Maheshwari, Minnu Sasi, Uma Prajapati, Muzaffar Hasan, Surinder Singh, and et al. 2021. "Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities" Foods 10, no. 4: 752. https://doi.org/10.3390/foods10040752