Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sample
2.2. Chemical Characterization
2.2.1. Determination of Organic Acids
2.2.2. Determination of Tocopherols
2.2.3. Determination of Phenolic Compounds
- Non-anthocyanin phenolic compounds extraction and HPLC-DAD-MSn analysis
- Anthocyanin compounds extraction and HPLC-DAD-MSn analysis
2.3. Evaluation of Bioactive Properties of S. odorifera Epicarp Extract
2.3.1. Antioxidant Activity
2.3.2. Anti-Inflammatory Activity
2.3.3. Anti-Proliferative Activity and Hepatotoxicity
2.3.4. Antibacterial Activity
2.3.5. Antifungal Activity
3. Results and Discussion
3.1. Chemical Composition
3.1.1. Organic Acids
3.1.2. Determination of Tocopherols
3.1.3. Determination of Phenolic Compounds
- Non-anthocyanin phenolic compounds
- Anthocyanin compounds
3.2. Bioactive Proprieties
3.2.1. Antioxidant Activity
3.2.2. Cytotoxicity and Hepatoxicity of the S. odorifera Extract
3.2.3. Antibacterial Activity
3.2.4. Antifungal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The Use of Emergent Technologies to Extract Added Value Compounds from Grape By-Products. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- da Silva, L.M.R.; de Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; de Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of Bioactive Compounds in Pulps and By-Products of Tropical Fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, B.R.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Could Fruits Be a Reliable Source of Food Colorants? Pros and Cons of These Natural Additives. Crit. Rev. Food Sci. Nutr. 2020, 1–31. [Google Scholar] [CrossRef]
- Parada, F.; Duque, C.; Fujimoto, Y. Free and Bound Volatile Composition and Characterization of Some Glucoconjugates as Aroma Precursors in Melón de Olor Fruit Pulp (Sicana odorifera). J. Agric. Food Chem. 2000, 48, 6200–6204. [Google Scholar] [CrossRef]
- de Paula Filho, G.X.; Barreira, T.F.; Pinheiro, S.S.; de Morais Cardoso, L.; Duarte Martino, H.S.; Pinheiro-Sant’Ana, H.M. ‘Melão Croá’ (Sicana sphaerica Vell.) and ‘Maracujina’ (Sicana odorifera Naud.): Chemical Composition, Carotenoids, Vitamins and Minerals in Native Fruits from the Brazilian Atlantic Forest. Fruits 2015, 70, 341–349. [Google Scholar] [CrossRef]
- Kienteka, S.S.; Corrêa-Ferreira, M.L.; de Oliveira Petkowicz, C.L. Characterization of Cell Wall Polysaccharides from Sicana odorifera Fruit and Structural Analysis of a Galactan-Rich Fraction Pectins as Side Chains. Carbohydr. Polym. 2018, 197, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, K.; Dawid, C.; Hofmann, T.; Fujimoto, Y.; Osorio, C. Identification of Antioxidative Flavonols and Anthocyanins in Sicana odorifera Fruit Peel. J. Agric. Food Chem. 2011, 59, 975–983. [Google Scholar] [CrossRef]
- Madeira, N.R. Sicana odorifera: Croá. In Espécies Nativas da Flora Brasileira de valor Econômico Atual ou Potencial: Plantas para o Futuro: Região Centro-Oeste; Biodiversidade; MMA: Brasilia, Brazil, 2016. [Google Scholar]
- Eva, C.; Silvia, C.; Rocio, B.; Rocio, V.; Laura, M. Sicana Odorifera “Kurugua” from Paraguay, Composition and Antioxidant Potential of Interest for the Food Industry. Proceedings 2020, 53, 10. [Google Scholar] [CrossRef]
- Morton, J.F. Cassabanana. In Fruits of Warm Climates; Creative Resource System, Inc.: Miami, FL, USA, 1987; pp. 444–445. [Google Scholar]
- Nakano, S.; Fujimoto, Y.; Takaishi, Y.; Osorio, C.; Duque, C. Cucurbita-5,23-Diene-3β,25-Diol from Sicana odorifera. Fitoterapia 2004, 75, 609–611. [Google Scholar] [CrossRef]
- Lima, J.F.; Silva, M.P.L.; Teles, S.; Silva, F.; Martins, G.N. Avaliação de Diferentes Substratos Na Qualidade Fisiológica de Sementes de Melão de Caroá [Sicana odorifera (Vell.) Naudim]. Rev. Bras. Plantas Med. 2010, 12, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Bessada, S.M.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic Profile and Antioxidant Activity of Coleostephus myconis (L.) Rchb.f.: An Underexploited and Highly Disseminated Species. Ind. Crop. Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, G.A.; Soares, A.A.; Correa, R.C.G.; Barros, L.; Haminiuk, C.W.I.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot Grape Pomace Hydroalcoholic Extract Improves the Oxidative and Inflammatory States of Rats with Adjuvant-Induced Arthritis. J. Funct. Foods 2017, 33, 408–418. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical Features and Bioactivities of Cornflower (Centaurea cyanus L.) Capitula: The Blue Flowers and the Unexplored Non-Edible Part. Ind. Crop. Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, R.C.G.; de Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive Formulations Prepared from Fruiting Bodies and Submerged Culture Mycelia of the Brazilian Edible Mushroom Pleurotus ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Soković, M.; van Griensven, L.J.L.D. Antimicrobial Activity of Essential Oils and Their Components against the Three Major Pathogens of the Cultivated Button Mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Colombo, M.L. An Update on Vitamin E, Tocopherol and Tocotrienol—Perspectives. Molecules 2010, 15, 2103–2113. [Google Scholar] [CrossRef] [Green Version]
- European Food Safery Authority. Scientific Opinion on the Re-Evaluation of Tocopherol-Rich Extract (E 306), α-Tocopherol (E 307), γ-Tocopherol (E 308) and δ-Tocopherol (E 309) as Food Additives. EFSA J. 2015, 13, 4247. [Google Scholar]
- Albuquerque, B.R.; Pereira, C.; Calhelha, R.C.; José Alves, M.; Abreu, R.M.V.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Jabuticaba Residues (Myrciaria jaboticaba (Vell.) Berg) Are Rich Sources of Valuable Compounds with Bioactive Properties. Food Chem. 2020, 309, 125735. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Ghada, B.; Pereira, E.; Pinela, J.; Prieto, M.A.; Pereira, C.; Calhelha, R.C.; Stojković, D.; Sokóvić, M.; Zaghdoudi, K.; Barros, L.; et al. Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules 2020, 25, 3203. [Google Scholar] [CrossRef]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Chemical Composition and Biological Activities of Juçara (Euterpe edulis Martius) Fruit by-Products, a Promising Underexploited Source of High-Added Value Compounds. J. Funct. Foods 2019, 55, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.F.P.; Pereira, E.; Melgar, B.; Stojković, D.; Sokovic, M.; Calhelha, R.C.; Pereira, C.; Abreu, R.M.V.; Ferreira, I.C.F.R.; Barros, L. Eggplant Fruit (Solanum melongena L.) and Bio-Residues as a Source of Nutrients, Bioactive Compounds, and Food Colorants, Using Innovative Food Technologies. Appl. Sci. 2021, 11, 151. [Google Scholar] [CrossRef]
- Hogan, S.; Chung, H.; Zhang, L.; Li, J.; Lee, Y.; Dai, Y.; Zhou, K. Antiproliferative and Antioxidant Properties of Anthocyanin-Rich Extract from Açai. Food Chem. 2010, 118, 208–214. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D.; Ruiz, D.; Saleda, J.; Martinez, M.; et al. Toxicity of Medicinal Plants Used in Traditional Medicine in Northern Peru. J. Ethnopharmacol. 2011, 137, 121–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Shahmohammadi, M.; Javadi, M.; Nassiri-Asl, M. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products. BHS 2016, 3, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.D.; Freires, I.A.; Ferreira, D.A.H.; Jovito, V.C.; Paulo, M.Q. Atividade antibacteriana in vitro de produtos naturais. Int. J. Dent. 2010, 9, 74–77. [Google Scholar]
- Bussmann, R.W.; Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; et al. Minimum Inhibitory Concentrations of Medicinal Plants Used in Northern Peru as Antibacterial Remedies. J. Ethnopharmacol. 2010, 132, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennberger, G.; Keinath, A.P. Susceptibility of Fourteen New Cucurbit Species to Gummy Stem Blight Caused by Stagonosporopsis Citrulli Under Field Conditions. Plant Dis. 2018, 102, 1365–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organic Acids | g/100 g |
Oxalic acid | 0.322 ± 0.003 |
Shikimic acid | tr |
Citric acid | 3.05 ± 0.08 |
Fumaric acid | tr |
Total | 3.38 ± 0.08 |
Tocopherols | mg/100 g |
α-tocopherol | 18.5 ± 0.7 |
γ-tocopherol | 2.4 ± 0.2 |
β-tocopherol | 164.9 ± 0.4 |
δ-tocopherol | 180 ± 2 |
Total | 366 ± 2 |
Results are presented as mean ± standard deviation. tr—traces. |
Peak | Rt | λmax | [M − H]−/[M]+ | MS2 | Tentative Identification | References | Quantification | |
---|---|---|---|---|---|---|---|---|
Extract | Epicarp | |||||||
(min.) | (nm) | (m/z) | (m/z) | (mg/g Extract) | (mg/g dw) | |||
Non-anthocyanins | ||||||||
1 | 16.5 | 354 | 609 | 301(100) | Quercetin-O-deoxyhexosyl-hexoside | DAD-MS | 37.7 ± 0.2 | 7.91 ± 0.04 |
2 | 19.75 | 348 | 593 | 285(100) | Kaempherol-O-deoxyhexosyl-hexoside | DAD-MS | 10.5 ± 0.3 | 2.20 ± 0.06 |
TPC-non anthocyanin | 48.2 ± 0.5 | 10.1 ± 0.1 | ||||||
Anthocyanins | ||||||||
3 | 15.07 | 514 | 595 | 449(32),287(100) | Cyanidin-O-deoxyhexosyl-hexoside | [8] | 100 ± 4 | 21.5 ± 0.9 |
4 | 18.54 | 504 | 579 | 433(21),271(100) | Pelargonidin-O-deoxyhexosyl-hexoside | DAD-MS | 11.5 ± 0.6 | 2.5 ± 0.1 |
TA | 111 ± 5 | 24 ± 1 | ||||||
Results are present as mean ± standard deviation TPC—total phenolic compounds; TA—total anthocyanins. |
Epicarp Extract | Control Trolox | |
---|---|---|
Antioxidant activity (EC50 = μg/mL) | ||
TBARS | 48.2 ± 0.5 | 5.8 ± 0.6 |
OxHLIA (ΔT60 min) | 27 ± 1 | 21.8 ± 0.2 |
Anti-inflammatory activity (EC50 = μg/mL) | Dexamethasone | |
RAW 264.7 | >400 | 16 ± 1 |
Anti-proliferative activity (GI50 = μg/mL) | Ellipticine | |
NCI-H460 | >400 | 1.0 ± 0.1 |
HepG2 | >400 | 1.1 ± 0.2 |
MCF-7 | >400 | 0.91 ± 0.04 |
HeLa | >400 | 1.91 ± 0.06 |
Hepatotoxicity (GI50 = μg/mL) | ||
PLP2 | >400 | 3.2 ± 0.7 |
Results are presented as mean ± standard deviation. |
Antibacterial Activity (mg/mL) | Epicarp Extract | E211 | E224 | |||
MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-positive bacteria | ||||||
Staphylococcus aureus | 1.1 | 2.2 | 4.0 | 4.0 | 1.0 | 1.0 |
Bacillus cereus | 1.1 | 2.2 | 0.5 | 0.5 | 2.0 | 4.0 |
Listeria monocytogenes | 1.1 | 2.2 | 1.0 | 2.0 | 0.5 | 1.0 |
Gram-negative bacteria | ||||||
Escherichia. coli | 1.1 | 2.2 | 1.0 | 2.0 | 1.0 | 1.0 |
Salmonella typhimurium | 1.1 | 2.2 | 1.0 | 2.0 | 0.5 | 1.0 |
Enterobacter cloacae | 1.1 | 2.2 | 2.0 | 4.0 | 0.5 | 0.5 |
Antifungal activity (mg/mL) | MIC | MFC | MIC | MFC | MIC | MFC |
Aspergillus fumigatus | 2.2 | 4.4 | 1.0 | 2.0 | 1.0 | 1.0 |
Aspergillus versicolor | 1.1 | 2.2 | 2.0 | 4.0 | 1.0 | 1.0 |
Aspergillus niger | 1.1 | 2.2 | 1.0 | 2.0 | 1.0 | 1.0 |
Penicillium funiculosum | 0.55 | 1.1 | 1.0 | 2.0 | 0.5 | 0.5 |
Penicillium verrucosum var. cyclopium | 0.55 | 1.1 | 2.0 | 4.0 | 1.0 | 1.0 |
Trichoderma viride | 0.28 | 0.55 | 1.0 | 2.0 | 0.5 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, B.R.; Dias, M.I.; Pereira, C.; Petrović, J.; Soković, M.; Calhelha, R.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Barros, L. Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods 2021, 10, 700. https://doi.org/10.3390/foods10040700
Albuquerque BR, Dias MI, Pereira C, Petrović J, Soković M, Calhelha RC, Oliveira MBPP, Ferreira ICFR, Barros L. Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods. 2021; 10(4):700. https://doi.org/10.3390/foods10040700
Chicago/Turabian StyleAlbuquerque, Bianca R., Maria Inês Dias, Carla Pereira, Jovana Petrović, Marina Soković, Ricardo C. Calhelha, M. Beatriz P. P. Oliveira, Isabel C. F. R. Ferreira, and Lillian Barros. 2021. "Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties" Foods 10, no. 4: 700. https://doi.org/10.3390/foods10040700
APA StyleAlbuquerque, B. R., Dias, M. I., Pereira, C., Petrović, J., Soković, M., Calhelha, R. C., Oliveira, M. B. P. P., Ferreira, I. C. F. R., & Barros, L. (2021). Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods, 10(4), 700. https://doi.org/10.3390/foods10040700