In Vitro Screening of Chicken-Derived Lactobacillus Strains that Effectively Inhibit Salmonella Colonization and Adhesion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Isolation, Culture Media, and Used Cell Lines
2.2. Inhibitory Effect of Lactobacillus Strains on Salmonella
2.3. Antibiotics Resistance of Lactobacillus Strains
2.4. Lactobacillus Bile Salt Tolerance Test
2.5. Adhesion of Different Bacteria to Caco-2 Cells
2.6. Inhibition of Salmonella Adhesion to Caco-2 Cells by Lactobacillus
2.7. Effect of Lactobacillus Adhesion to Caco-2 Cells on Their Physiological Metabolism
2.8. Adhesion of Lactobacillus and Salmonella Isolates to Caco-2 Cells and Apoptosis Test
2.9. Purification and Sequencing of PCR Products
2.10. Statistical Analysis
3. Results
3.1. Inhibition of Salmonella by Lactobacillus
3.2. Antibiotic Resistance of Lactobacillus Strains
3.3. Lactobacillus Bile Salt Tolerance Test
3.4. Bacterial Adhesion to Caco-2 Cells
3.5. Inhibition of Salmonella Adhesion to Caco-2 Cells by Lactobacillus
3.6. Lactobacilli Adherence Effect on the Physiological Metabolism of Caco-2 Cells
3.7. Lactobacillus and Salmonella Isolate Adhesion to Caco-2 Cells and Apoptosis Test Results
3.8. Molecular Identification of Lactobacillus Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nagappa, K.; Tamuly, S.; Saxena, M.; Singh, S. Isolation of salmonella typhimurium from poultry eggs and meat of tarai region of uttaranchal. Indian J. Biotechnol. 2007, 6, 407–409. [Google Scholar]
- Jalali, M.; Abedi, D.; Pourbakhsh, S.A.; Ghoukasin, K. Prevalence of Salmonella spp. in raw and cooked foods in Isfahan-Iran. J. Food Saf. 2008, 28, 442–452. [Google Scholar] [CrossRef]
- Akiba, M.; Kusumoto, M.; Iwata, T. Rapid identification of Salmonella enterica serovars, typhimurium, choleraesuis, infantis, hadar, enteritidis, dublin and gallinarum, by multiplex PCR. J. Microbiol. Methods 2011, 85, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G.; Pixley, C.; Wolfenden, R.E.; Layton, S.L.; Hargis, B.M. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res. Int. 2012, 45, 628–633. [Google Scholar] [CrossRef]
- Chambers, J.R.; Gong, J. The intestinal microbiota and its modulation for Salmonella control in chickens. Food Res. Int. 2011, 44, 3159. [Google Scholar] [CrossRef]
- Revolledo, L.; Ferreira, A.J.P.; Mead, G.C. Prospects in salmonella control: Competitive exclusion, probiotics, and enhancement of avian intestinal immunity. J. Appl. Poult. Res. 2006, 15, 341–351. [Google Scholar] [CrossRef]
- Sadler, W.W.; Brownell, J.R.; Fanelli, M.J. Influence of age and inoculum level on shed pattern of Salmonella typhimurium in chickens. Avian Dis. 1969, 13, 793–803. [Google Scholar] [CrossRef]
- Gast, R.K.; Holt, P.S. Persistence of Salmonella enteritidis from one day of age until maturity in experimentally infected layer chickens. Poult. Sci. 1998, 77, 1759–1762. [Google Scholar] [CrossRef]
- Yang, B.; Qu, D.; Zhang, X.; Shen, J.; Cui, S.; Shi, Y.; Xia, M.; Shenga, M.; Zhi, S.; Mengad, J. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China. Int. J. Food Microbiol. 2010, 141, 63–72. [Google Scholar] [CrossRef]
- Yin, M.; Yang, B.; Wu, Y.; Wang, L.; Wu, H.; Zhang, T.; Tuohetaribayi, G. Prevalence and characterization of Salmonella enterica serovar in retail meats in market place in Uighur, Xinjiang, China. Food Control 2016, 64, 165–172. [Google Scholar] [CrossRef]
- Chou, S.L.; Weimer, B. Isolation and characterization of acid- and bile-tolerant isolates from strains of lactobacillus aci-dophilus. J. Dairy Sci. 1999, 82, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. Update of national inspection standard for lactic acid bacteria. Mod. Food 2018, 4, 47–49. [Google Scholar]
- Yin, Q.; Zheng, Q. Isolation and identification of the dominant lactobacillus in gut and faeces of pigs using carbohydrate fermentation and 16S rDNA analysis (microbial physiology and biotechnology). J. Biosci. Bioeng. 2005, 99, 68–71. [Google Scholar] [CrossRef]
- Hai, D.; Yin, X.; Lu, Z.; Lv, F.; Zhao, H.; Bie, X. Occurrence, drug resistance, and virulence genes of Salmonella isolated from chicken and eggs. Food Control 2020, 113, 107109. [Google Scholar] [CrossRef]
- Aween, M.M.; Hassan, Z.; Muhialdin, B.J.; Noor, H.M.; Eljamel, Y.A. Evaluation on antibacterial activity of lactobacillus acidophilus strains isolated from honey. Am. J. Appl. Sci. 2012, 9, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Fothergill, A.W. Antifungal susceptibility testing: Clinical Laboratory and Standards Institute (CLSI) methods. In Interactions of Yeasts, Moulds, and Antifungal Agents; Humana Press: Totowa, NJ, USA, 2012. [Google Scholar]
- Lei, R.; Wu, H.; Yongxing, H. Screening of lactic acid bacteria with high antibacterial activity from Campylobacter. Chin. Anim. Husb. Vet. 2013, 40, 129–134. [Google Scholar]
- Stuart, M.R.; Chou, L.S.; Weimer, B.C. Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 1999, 65, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, A.; Laubitz, D.; Antushevich, H.; Zabielski, R.; Grzesiuk, E. Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells. J. Biomed. Biotechnol. 2008, 2008, 357964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adlerberth, I.; Ahrne, S.I.V.; Johansson, M.L.; Molin, G.; Hanson, L.A.; Wold, A.E. A mannose-specific adherence mechanism in Lactobacillus plantarum con-ferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 1996, 62, 2244–2251. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.H.; Yu, X.X.; Jin, X.; Wang, Y.T.; Zhao, D.J.; Zhang, P.; Sun, G.-M.; Zhang, Y.-H. Purification and characterization of alkaline phosphatase from lactic acid bacteria. RSC Adv. 2018, 9, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.; Grimmer, S.; Naterstad, K.; Axelsson, L. In vitro testing of commercial and potential probiotic lactic acid bacteria. Int. J. Food Microbiol. 2012, 153, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.F.; Boris, S.; Barbés, C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 2003, 94, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Yu, H.; Ai, L.; Wu, Z.; Guo, B.; Chen, W. Aggregation and adhesion properties of 22 Lactobacillus strains. J. Dairy Sci. 2013, 96, 4252–4257. [Google Scholar] [CrossRef] [Green Version]
- Sidira, M.; Kourkoutas, Y.; Kanellaki, M.; Charalampopoulos, D. In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res. Int. 2015, 76, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L. Assessment of potential probiotic strains: Evaluation of their establishment, persistence, and localisation in the mu-rine gastrointestinal tract. Microb. Ecol. Health Dis. 2009, 11, 149–157. [Google Scholar]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; Gómez de Cadiñanos, L.P. Adhesion abilities of dairy Lactobacillus plantarum, strains showing an aggre-gation phenotype. Food Res. Int. 2014, 57, 44–50. [Google Scholar] [CrossRef]
- Taverniti, V.; Stuknyte, M.; Minuzzo, M.; Taverniti, V.; Stuknyte, M.; Minuzzo, M.; Arioli, S.; De Noni, I.; Scabiosi, C.; Martinez Cordova, Z.; et al. MIMLh5 on innate immunity. Appl. Environ. Microbiol. 2013, 79, 1221–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strains Antibiotic | LAB | LAB | LAB | LAB | LAB | LAB | LAB | LAB | LAB | LAB | LAB | LAB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 7 | 12 | 14 | 16 | 22 | 24 | 26 | 31 | 34 | 35 | ||
GEN | S | S | S | S | R | S | R | R | S | S | S | S | |
KAN | S | S | S | R | S | S | S | S | S | S | R | S | |
AMX | S | S | S | R | S | R | S | S | S | S | S | S | |
CRO | R | R | S | S | R | S | R | S | R | S | S | S | |
SXT | S | S | R | S | S | R | S | S | S | S | R | S | |
CHL | R | S | S | S | R | S | S | S | S | R | S | S | |
TET | S | R | S | R | S | S | R | S | S | S | S | R | |
ERY | S | S | S | S | S | S | S | S | R | S | R | S | |
Total number | 2 | 2 | 1 | 3 | 3 | 2 | 3 | 1 | 2 | 1 | 3 | 1 | |
LAB | LAB | LAB | LAB | LAB | LABV | LAB | LAB | LAB | LAB | LAB | LAB | ||
GEN | 44 | 53 | 54 | 56 | 60 | 64 | 65 | 69 | 70 | 72 | 73 | 76 | LG |
KAN | S | S | S | S | S | R | S | S | R | S | S | S | S |
AMX | S | S | S | S | S | S | S | S | S | S | S | S | S |
CRO | S | S | S | S | S | S | S | S | S | S | S | S | S |
SXT | S | S | S | S | S | S | S | S | S | S | R | S | S |
CHL | S | R | R | S | R | S | S | S | S | R | S | S | S |
TET | S | S | S | R | S | S | R | S | S | S | S | S | S |
ERY | R | S | S | S | S | S | S | R | S | S | S | S | S |
Total number | S | S | S | S | S | S | S | S | S | S | R | S | S |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 0 |
Single Bacteria Group | Competitive Treatment Group | Rejection Treatment Group | Replacement Treatment Group |
---|---|---|---|
SC79 (n = 3) | LAB44 + SC79 (n = 3) | LAB44—SC79 (n = 3) | SC79—LAB44 (n = 3) |
LAB35 (n = 3) | LAB53 + SC79 (n = 3) | LAB53—SC79 (n = 3) | SC79—LAB53 (n = 3) |
LAB44 (n = 3) | LAB35 + SC79 (n = 3) | LAB35—SC79 (n = 3) | SC79—LAB35 (n = 3) |
LAB53 (n = 3) | LAB69 + SC79 (n = 3) | LAB69—SC79 (n = 3) | SC79—LAB69 (n = 3) |
LAB69 (n = 3) | LAB76 + SC79 (n = 3) | LAB76—SC79 (n = 3) | SC79—LAB76 (n = 3) |
LAB76 (n = 3) | LG + SC79 (n = 3) | LG—SC79 (n = 3) | SC79—LG (n = 3) |
LG (n = 3) |
Treatment Group | Cell Culture Supernatant AKP (U/100 mL) | Cell Lysate AKP (U/gprot) | Treatment Group | Cell Culture Supernatant AKP (U/100 mL) | Cell Lysate AKP (U/gprot) |
---|---|---|---|---|---|
CT(PBS) | 1378.21 ± 1.36 | 79.95 ± 1.36 | LAB76-SC31 | 28.56 ± 1.36 | 178.25 ± 1.36 |
LAB24 | 321.97 ± 1.36 | 29.66 ± 1.36 | LG-SC31 | 29.37 ± 1.36 | 167.91 ± 1.36 |
LAB31 | 391.54 ± 1.36 | 18.44 ± 1.36 | LAB24-SC79 | 39.97 ± 1.36 | 152.09 ± 1.36 |
LAB35 | 401.62 ± 1.36 | 14.25 ± 1.36 | LAB31-SC79 | 33.56 ± 1.36 | 161.21 ± 1.36 |
LAB44 | 339.61 ± 1.36 | 47.67 ± 1.36 | LAB35-SC79 | 29.77 ± 1.36 | 179.74 ± 1.36 |
LAB53 | 413.39 ± 1.36 | 14.09 ± 1.36 | LAB44-SC79 | 40.92 ± 1.36 | 146.34 ± 1.36 |
LAB60 | 400.83 ± 1.36 | 12.93 ± 1.36 | LAB53-SC79 | 27.42 ± 1.36 | 173.99 ± 1.36 |
LAB65 | 319.57 ± 1.36 | 34.72 ± 1.36 | LAB60-SC79 | 33.88 ± 1.36 | 166.83 ± 1.36 |
LAB69 | 414.06 ± 1.36 | 13.55 ± 1.36 | LAB65-SC79 | 49.37 ± 1.36 | 130.65 ± 1.36 |
LAB70 | 399.51 ± 1.36 | 15.78 ± 1.36 | LAB69-SC79 | 21.89 ± 1.36 | 174.64 ± 1.36 |
LAB72 | 344.21 ± 1.36 | 30.19 ± 1.36 | LAB70-SC79 | 39.77 ± 1.36 | 159.82 ± 1.36 |
LAB76 | 423.01 ± 1.36 | 10.68 ± 1.36 | LAB72-SC79 | 40.03 ± 1.36 | 153.53 ± 1.36 |
LG | 405.3 ± 1.36 | 17.83 ± 1.36 | LAB76-SC79 | 23.56 ± 1.36 | 175.11 ± 1.36 |
SC31 | 92.04 ± 1.36 | 133.77 ± 1.36 | LG-SC79 | 28.64 ± 1.36 | 169.48 ± 1.36 |
SC79 | 87.21 ± 1.36 | 156.22 ± 1.36 | LAB24-SE05 | 51.77 ± 1.36 | 138.79 ± 1.36 |
SE05 | 86.49 ± 1.36 | 163.06 ± 1.36 | LAB31-SE05 | 47.32 ± 1.36 | 156.05 ± 1.36 |
LAB24-SC31 | 47.42 ± 1.36 | 143.35 ± 1.36 | LAB35-SE05 | 18.88 ± 1.36 | 176.43 ± 1.36 |
LAB31-SC31 | 41.32 ± 1.36 | 150.65 ± 1.36 | LAB44-SE05 | 52.73 ± 1.36 | 139.03 ± 1.36 |
LAB35-SC31 | 39.88 ± 1.36 | 169.44 ± 1.36 | LAB53-SE05 | 37.11 ± 1.36 | 159.04 ± 1.36 |
LAB44-SC31 | 40.77 ± 1.36 | 146.59 ± 1.36 | LAB60-SE05 | 37.28 ± 1.36 | 164.03 ± 1.36 |
LAB53-SC31 | 37.97 ± 1.36 | 153.29 ± 1.36 | LAB65-SE05 | 55.42 ± 1.36 | 133.57 ± 1.36 |
LAB60-SC31 | 40.32 ± 1.36 | 156.35 ± 1.36 | LAB69-SE05 | 21.32 ± 1.36 | 170.65 ± 1.36 |
LAB65-SC31 | 59.77 ± 1.36 | 139.74 ± 1.36 | LAB70-SE05 | 29.48 ± 1.36 | 163.48 ± 1.36 |
LAB69-SC31 | 30.56 ± 1.36 | 171.21 ± 1.36 | LAB72-SE05 | 46.83 ± 1.36 | 159.52 ± 1.36 |
LAB70-SC31 | 35.88 ± 1.36 | 166.43 ± 1.36 | LAB76-SE05 | 20.36 ± 1.36 | 173.05 ± 1.36 |
LAB72-SC31 | 43.73 ± 1.36 | 149.53 ± 1.36 | LG-SE05 | 22.63 ± 1.36 | 168.57 ± 1.36 |
Treatment Group | Cell Culture Supernatant LDH (U/L) | Cell Lysate LDH (U/gprot) | Treatment Group | Cell Culture Supernatant LDH (U/L) | Cell Lysate LDH (U/gprot) |
---|---|---|---|---|---|
CT(PBS) | 0 ± 0.22 | 0 ± 0.22 | LAB24-SC79 | 577.32 ± 0.22 | 30.66 ± 0.22 |
LAB24 | 23.1 ± 0.22 | 18.76 ± 0.22 | LAB31-SC79 | 596.38 ± 0.22 | 32.54 ± 0.22 |
LAB31 | 24.58 ± 0.22 | 11.27 ± 0.22 | LAB35-SC79 | 561.88 ± 0.22 | 40.33 ± 0.22 |
LAB35 | 39.87 ± 0.22 | 30.5 ± 0.22 | LAB44-SC79 | 592.37 ± 0.22 | 21.46 ± 0.22 |
LAB44 | 46.25 ± 0.22 | 31.84 ± 0.22 | LAB53-SC79 | 560.34 ± 0.22 | 39.27 ± 0.22 |
LAB53 | 35.57 ± 0.22 | 27.09 ± 0.22 | LAB60-SC79 | 603.66 ± 0.22 | 21.88 ± 0.22 |
LAB60 | 40.09 ± 0.22 | 31.59 ± 0.22 | LAB65-SC79 | 705.39 ± 0.22 | 18.41 ± 0.22 |
LAB65 | 27.89 ± 0.22 | 17.51 ± 0.22 | LAB69-SC79 | 548.17 ± 0.22 | 43.67 ± 0.22 |
LAB69 | 42.55 ± 0.22 | 34.27 ± 0.22 | LAB70-SC79 | 613.05 ± 0.22 | 23.49 ± 0.22 |
LAB70 | 33.59 ± 0.22 | 29.66 ± 0.22 | LAB72-SC79 | 578.02 ± 0.22 | 28.44 ± 0.22 |
LAB72 | 31.67 ± 0.22 | 21.55 ± 0.22 | LAB76-SC79 | 559.55 ± 0.22 | 41.81 ± 0.22 |
LAB76 | 47.66 ± 0.22 | 38.78 ± 0.22 | LG-SC79 | 573.22 ± 0.22 | 36.19 ± 0.22 |
LG | 41.92 ± 0.22 | 33.76 ± 0.22 | LAB24-SE05 | 651.44 ± 0.22 | 19.31 ± 0.22 |
SC31 | 913.5 ± 0.22 | 0 ± 0.22 | LAB31-SE05 | 600.23 ± 0.22 | 23.37 ± 0.22 |
SC79 | 885.76 ± 0.22 | 0 ± 0.22 | LAB35-SE05 | 552.19 ± 0.22 | 40.55 ± 0.22 |
SE05 | 848.27 ± 0.22 | 0 ± 0.22 | LAB44-SE05 | 636.15 ± 0.22 | 20.94 ± 0.22 |
LAB24-SC31 | 611.22 ± 0.22 | 19.36 ± 0.22 | LAB53-SE05 | 549.92 ± 0.22 | 44.52 ± 0.22 |
LAB31-SC31 | 605 ± 0.22 | 20.41 ± 0.22 | LAB60-SE05 | 579.11 ± 0.22 | 24.68 ± 0.22 |
LAB35-SC31 | 598.17 ± 0.22 | 22.57 ± 0.22 | LAB65-SE05 | 644.24 ± 0.22 | 19.35 ± 0.22 |
LAB44-SC31 | 573.05 ± 0.22 | 27.49 ± 0.22 | LAB69-SE05 | 590.03 ± 0.22 | 29.44 ± 0.22 |
LAB53-SC31 | 571.55 ± 0.22 | 33.88 ± 0.22 | LAB70-SE05 | 588.64 ± 0.22 | 30.39 ± 0.22 |
LAB60-SC31 | 608.02 ± 0.22 | 21.46 ± 0.22 | LAB72-SE05 | 599.65 ± 0.22 | 27.56 ± 0.22 |
LAB65-SC31 | 631.42 ± 0.22 | 20.31 ± 0.22 | LAB76-SE05 | 553.09 ± 0.22 | 46.43 ± 0.22 |
LAB69-SC31 | 561.09 ± 0.22 | 32.65 ± 0.22 | LG-SE05 | 564.57 ± 0.22 | 41.82 ± 0.22 |
LAB70-SC31 | 599.14 ± 0.22 | 21.59 ± 0.22 | LAB76-SE05 | 553.09 ± 0.22 | 46.43 ± 0.22 |
LAB72-SC31 | 578.06 ± 0.22 | 20.58 ± 0.22 | LG-SE05 | 564.57 ± 0.22 | 41.82 ± 0.22 |
Strains | Gen Bank Homologous Sequence | The Highest Homologous Strain | Maximum Homology (%) |
---|---|---|---|
LAB4 | NR_113820.1 | Lactobacillus reuteri strain NBRC 15892 | 99.5% |
LAB31 | NR_112690.1 | Lactobacillus plantarum strain NBRC 15891 | 99.9% |
LAB35 | NR_028725. | Lactobacillus salinus strain HO 66 | 99.8% |
LAB44 | MF108394.1 | Lactobacillus plantarum strain cau6549 | 99.4% |
LAB53 | NR_112759.1 | Lactobacillus salinus strain JCM 1231 | 98% |
LAB60 | NR_112759.1 | Lactobacillus salinus strain JCM 1231 | 99% |
LAB64 | NR_112759.1 | Lactobacillus salinus strain JCM 1231 | 98% |
LAB65 | KP317684.1 | Lactobacillus salinus strain L13 | 99.5%. |
LAB69 | JQ046410.1 | Lactobacillus sp. wx213 | 98% |
LAB73 | MK311261.1 | Lactobacillus plantarum strain AR503 | 99.1% |
L76 | MK990071.1 | Enterococcus faecium strain IAH_28 | 98.20% |
LAB79 | MN389601.1 | Lactobacillus plantarum strain 42 | 98.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, D.; Lu, Z.; Huang, X.; Lv, F.; Bie, X. In Vitro Screening of Chicken-Derived Lactobacillus Strains that Effectively Inhibit Salmonella Colonization and Adhesion. Foods 2021, 10, 569. https://doi.org/10.3390/foods10030569
Hai D, Lu Z, Huang X, Lv F, Bie X. In Vitro Screening of Chicken-Derived Lactobacillus Strains that Effectively Inhibit Salmonella Colonization and Adhesion. Foods. 2021; 10(3):569. https://doi.org/10.3390/foods10030569
Chicago/Turabian StyleHai, Dan, Zhaoxin Lu, Xianqing Huang, Fengxia Lv, and Xiaomei Bie. 2021. "In Vitro Screening of Chicken-Derived Lactobacillus Strains that Effectively Inhibit Salmonella Colonization and Adhesion" Foods 10, no. 3: 569. https://doi.org/10.3390/foods10030569
APA StyleHai, D., Lu, Z., Huang, X., Lv, F., & Bie, X. (2021). In Vitro Screening of Chicken-Derived Lactobacillus Strains that Effectively Inhibit Salmonella Colonization and Adhesion. Foods, 10(3), 569. https://doi.org/10.3390/foods10030569