Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Carcass Collection
2.2. Ageing Specification
2.3. Intramuscular Fat Analysis
2.4. Headspace-Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (HS-SPME GC-MS)
2.5. Gas Chromatography-Olfactometry-Mass Spectrometry (GC-O-MS)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Grilled Beef Volatile Profiles
3.2. Gas Chromatography-Olfactometry
3.3. Relationship between Flavour Liking and Volatiles of Aged Beef
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, M.N.; Canto, A.C.; Rentfrow, G.; Suman, S.P. Muscle-specific effect of aging on beef tenderness. LWT 2018, 100, 250–252. [Google Scholar] [CrossRef]
- Frank, D.; Zhang, Y.; Li, Y.; Luo, X.; Chen, X.; Kaur, M.; Mellor, G.; Stark, J.; Hughes, J. Shelf life extension of vacuum packaged chilled beef in the Chinese supply chain. A feasibility study. Meat Sci. 2019, 153, 135–143. [Google Scholar] [CrossRef]
- Ha, M.; McGilchrist, P.; Polkinghorne, R.; Huynh, L.; Galletly, J.; Kobayashi, K.; Nishimura, T.; Bonney, S.; Kelman, K.R.; Warner, R. Effects of different ageing methods on colour, yield, oxidation and sensory qualities of Australian beef loins consumed in Australia and Japan. Food Res. Int. 2019, 125, 108528. [Google Scholar] [CrossRef]
- Lepper-Blilie, A.N.; Berg, E.P.; Buchanan, D.S.; Berg, P.T. Effects of post-mortem aging time and type of aging on palatability of low marbled beef loins. Meat Sci. 2016, 112, 63–68. [Google Scholar] [CrossRef]
- Terjung, N.; Witte, F.; Heinz, V. The dry aged beef paradox: Why dry aging is sometimes not better than wet aging. Meat Sci. 2021, 172, 108355. [Google Scholar] [CrossRef]
- Iida, F.; Miyazaki, Y.; Tsuyuki, R.; Kato, K.; Egusa, A.; Ogoshi, H.; Nishimura, T. Changes in taste compounds, breaking properties, and sensory attributes during dry aging of beef from Japanese black cattle. Meat Sci. 2016, 112, 46–51. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and Flavor Chemistry Characteristics of Australian Beef: Influence of Intramuscular Fat, Feed, and Breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- King, M.-F.; Matthews, M.A.; Rule, D.C.; Field, R.A. Effect of Beef Packaging Method on Volatile Compounds Developed by Oven Roasting or Microwave Cooking. J. Agric. Food Chem. 1995, 43, 773–778. [Google Scholar] [CrossRef]
- Utama, D.T.; Kim, Y.J.; Jeong, H.S.; Kim, J.; Barido, F.H.; Lee, S.K. Comparison of meat quality, fatty acid composition and aroma volatiles of dry-aged beef from Hanwoo cows slaughtered at 60 or 80 months old. Asian-Australas. J. Anim. Sci. 2020, 33, 157–165. [Google Scholar] [CrossRef]
- Frank, D.; Hughes, J.; Piyasiri, U.; Zhang, Y.; Kaur, M.; Li, Y.; Mellor, G.; Stark, J. Volatile and non-volatile metabolite changes in 140-day stored vacuum packaged chilled beef and potential shelf life markers. Meat Sci. 2020, 161, 108016. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Kamada, G.; Imanari, M.; Shiba, N.; Yonai, M.; Muramoto, T. Effect of aging on volatile compounds in cooked beef. Meat Sci. 2015, 107, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.; Shorthose, W.R.; Ferguson, D.M.; Thompson, J.M. Methods used in the CRC program for the determination of carcass yield and beef quality. Aust. J. Exp. Agric. 2001, 41, 953–957. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.; Raeside, M.; Behrendt, R.; Krishnamurthy, R.; Piyasiri, U.; Rose, G.; Watkins, P.; Warner, R. An integrated sensory, consumer and olfactometry study evaluating the effects of rearing system and diet on flavour characteristics of Australian lamb. Anim. Prod. Sci. 2017, 57, 347–362. [Google Scholar] [CrossRef]
- Pinheiro, A.C.M.; Nunes, C.A.; Vietoris, V. SensoMaker: A tool for sensorial characterization of food products. Ciência E Agrotecnologia 2013, 37, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Resconi, V.C.; Escudero, A.; Beltrán, J.A.; Olleta, J.L.; Sañudo, C.; Campo, M.D.M. Color, Lipid Oxidation, Sensory Quality, and Aroma Compounds of Beef Steaks Displayed under Different Levels of Oxygen in a Modified Atmosphere Package. J. Food Sci. 2011, 77, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Stetzer, A.J.; Cadwallader, K.; Singh, T.K.; Mckeith, F.K.; Brewer, M.S. Effect of enhancement and ageing on flavor and volatile compounds in various beef muscles. Meat Sci. 2008, 79, 13–19. [Google Scholar] [CrossRef]
- Borch, E.; Agerhem, H. Chemical, microbial and sensory changes during the anaerobic cold storage of beef inoculated with a homofermentative Lactobacillus sp. or a Leuconostoc sp. Int. J. Food Microbiol. 1992, 15, 99–108. [Google Scholar] [CrossRef]
- Jones, R.J. Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. Int. J. Food Microbiol. 2004, 90, 273–282. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.J.; D’Souza, L.A.; Teranishi, R.; Buttery, R.G. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef]
- Dainty, R.H.; Edwards, R.A.; Hibbard, C.M. Spoilage of vacuum-packed beef by a clostridium sp. J. Sci. Food Agric. 1989, 49, 473–486. [Google Scholar] [CrossRef]
- El-Magoli, S.B.; Laroia, S.; Hansen, P. Flavor and texture characteristics of low fat ground beef patties formulated with whey protein concentrate. Meat Sci. 1996, 42, 179–193. [Google Scholar] [CrossRef]
- Machiels, D.; Istasse, L.; van Ruth, S.M. Gas chromatography-olfactometry analysis of beef meat originating from differently fed belgian blue, limousin and aberdeen angus bulls. Food Chem. 2004, 86, 377–383. [Google Scholar] [CrossRef]
- Senter, S.D.; Arnold, J.W.; Chew, V. Apc values and volatile compounds formed in commercially processed, raw chicken parts during storage at 4 and 13 °C and under simulated temperature abuse conditions. J. Sci. Food Agric. 2000, 80, 1559–1564. [Google Scholar] [CrossRef]
- Legako, J.; Dinh, T.; Miller, M.; Adhikari, K.; Brooks, J. Consumer palatability scores, sensory descriptive attributes, and volatile compounds of grilled beef steaks from three USDA Quality Grades. Meat Sci. 2016, 112, 77–85. [Google Scholar] [CrossRef]
- Mullen, A.M.; Stoeva, S.; Laib, K.; Gruebler, G.; Voelter, W.; Troy, D. Preliminary analysis of amino acids at various locations along the M. longissimus dorsi in aged beef. Food Chem. 2000, 69, 461–465. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Zamora, R. Strecker-type Degradation Produced by the Lipid Oxidation Products 4,5-Epoxy-2-Alkenals. J. Agric. Food Chem. 2004, 52, 7126–7131. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. The Maillard reaction and lipid oxidation. Lipid Technol. 2011, 23, 59–62. [Google Scholar] [CrossRef]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuño, J.; Stark, J.; Warner, R. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef]
- Ross, C.F.; Smith, D.M. Use of Volatiles as Indicators of Lipid Oxidation in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Resconi, V.C.; Bueno, M.; Escudero, A.; Magalhaes, D.; Ferreira, V.; Campo, M.M. Ageing and retail display time in raw beef odour according to the degree of lipid oxidation. Food Chem. 2018, 242, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madruga, M.S.; Mottram, D.S. The effect of pH on the formation of maillard-derived aroma volatiles using a cooked meat system. J. Sci. Food Agric. 1995, 68, 305–310. [Google Scholar] [CrossRef]
- Ahnström, M.L.; Seyfert, M.; Hunt, M.C.; Johnson, D.E. Dry aging of beef in a bag highly permeable to water vapour. Meat Sci. 2006, 73, 674–679. [Google Scholar] [CrossRef]
- Li, X.; Babol, J.; Bredie, W.L.P.; Nielsen, B.; Tománková, J.; Lundström, K. A comparative study of beef quality after ageing longissimus muscle using a dry ageing bag, traditional dry ageing or vacuum package ageing. Meat Sci. 2014, 97, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Cerny, C.; Grosch, W. Quantification of character-impact odour compounds of roasted beef. Eur. Food Res. Technol. 1993, 196, 417–422. [Google Scholar] [CrossRef]
- Kilgannon, A.K.; Holman, B.W.; Frank, D.C.; Mawson, A.J.; Collins, D.; Hopkins, D. Temperature-time combination effects on aged beef volatile profiles and their relationship to sensory attributes. Meat Sci. 2020, 168, 108193. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Hayat, K.; Huang, M.; Liu, P.; Karangwa, E.; Gu, F.; Jia, C.; Xia, S.; Xiao, Z.; et al. Contribution of beef base to aroma characteristics of beeflike process flavour assessed by descriptive sensory analysis and gas chromatography olfactometry and partial least squares regression. J. Chromatogr. A 2010, 1217, 7788–7799. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhang, X.; Hayat, K.; Liu, P.; Jia, C.; Xia, S.; Xiao, Z.; Tian, H.; Niu, Y. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011, 124, 203–209. [Google Scholar] [CrossRef]
Volatile Compound | LRI | ID | Odour Descriptors | Lit | m/z | Dry Aged | Wet Aged | SED | p Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
35 | 56 | 35 | 56 | AM/AT | AM × AT | AM | AT | AM × AT | ||||||
Alcohols/diols | ||||||||||||||
Ethanol | EI,R | 12 | 45 | 37 | 55 | 274 | 723 | 84.0 | 118.7 | <0.001 | 0.007 | 0.013 | ||
1-Pentanol | 945 | EI,R | 12 | 55 | 37.8 | 58.0 | 44.6 | 43.3 | 6.23 | 8.82 | 0.529 | 0.136 | 0.091 | |
1-hexanol | 1354 | EI,R | 12 | 56 | 69 | 105 | 59 | 19 | 31.3 | 44.3 | 0.133 | 0.956 | 0.228 | |
1-Heptanol | 1450 | EI,R | 12 | 70 | 21.2 | 43.4 | 20.5 | 12.5 | 10.98 | 15.53 | 0.156 | 0.525 | 0.177 | |
2-Ethylhexanol | 1496 | EI,R | 12 | 57 | 20.4 | 17.7 | 27.8 | 24.2 | 3.11 | 4.39 | 0.030 | 0.315 | 0.885 | |
1-Octanol | 1546 | EI,R | 12 | 56 | 9.3 | 17.2 | 10.4 | 8.0 | 2.87 | 4.06 | 0.162 | 0.352 | 0.080 | |
4-Butoxybutanol | 1701 | EI,R | 57 | 3.93 | 3.44 | 3.79 | 4.66 | 0.69 | 0.98 | 0.444 | 0.785 | 0.334 | ||
Benzylalcohol | 1900 | EI,R | 108 | 13.3 | 32.3 | 4.3 | 6.3 | 4.06 | 5.74 | <0.001 | 0.012 | 0.041 | ||
1-Ethylphenol | 2044 | EI,R | 107 | 0.85 | 0.66 | 0.92 | 2.56 | 0.94 | 1.33 | 0.299 | 0.448 | 0.337 | ||
2-Ethylphenol | 2194 | EI,R | 107 | 0.51 | 0.34 | 0.45 | 1.59 | 0.66 | 0.93 | 0.364 | 0.465 | 0.322 | ||
Ketones/diones | ||||||||||||||
Acetone | 816 | EI,R,O | Chemical, earthy | 43 | 29.6 | 59.7 | 28.5 | 48.8 | 8.09 | 11.45 | 0.144 | 0.015 | 0.230 | |
2-Butanone | 886 | EI,R | 12 | 72 | 83.1 | 76.4 | 76.3 | 59.7 | 6.95 | 9.83 | 0.095 | 0.100 | 0.478 | |
2-Pentanone | 975 | EI,R | 86 | 44.1 | 49.2 | 63.4 | 69.5 | 7.54 | 10.67 | 0.011 | 0.462 | 0.948 | ||
2-Heptanone | 1151 | EI,R | 8,15,30 | 58 | 6.76 | 4.98 | 3.31 | 9.67 | 1.38 | 1.96 | 0.654 | 0.104 | 0.005 | |
2-Octanone | 1238 | EI,R | 12 | 58 | 3.77 | 5.63 | 2.54 | 6.31 | 1.31 | 1.85 | 0.834 | 0.036 | 0.470 | |
3-Hydroxy-2-butanone | 1304 | EI,R,O | Sweet, fresh, fishy | 12,26 | 45 | 203 | 183 | 126 | 143 | 49.8 | 70.5 | 0.033 | 0.305 | 0.530 |
2-Methyl-3-octanone | 1322 | EI,R | 99 | 3.77 | 5.63 | 2.54 | 6.31 | 1.31 | 1.85 | 0.834 | 0.036 | 0.470 | ||
2-Nonanone | 1388 | EI,R | 8,15,30 | 58 | 2.71 | 6.18 | 3.31 | 3.83 | 0.79 | 1.12 | 0.275 | 0.015 | 0.067 | |
1,3-Butanediol | 1600 | EI,R | 45 | 1.5 | 1.6 | 3.4 | 6.9 | 2.02 | 2.86 | <0.001 | 0.095 | 0.101 | ||
Butyrolactone | 1637 | EI,R | 86 | 24.1 | 23.0 | 27.3 | 32.7 | 8.10 | 11.45 | 0.432 | 0.794 | 0.688 | ||
Pyrazines | ||||||||||||||
2-Methylpyrazine | 1285 | EI,R | 8,12,15,30 | 94 | 27.6 | 25.4 | 19.6 | 17.4 | 4.47 | 6.32 | 0.081 | 0.624 | 0.999 | |
2,5-Dimethylpyrazine | 1330 | EI,R,O | Baked, toast, meaty | 108 | 100.2 | 82.7 | 78.4 | 55.5 | 14.78 | 21.91 | 0.103 | 0.177 | 0.857 | |
2,6-Dimethylpyrazine | 1338 | EI,R | 8,12,15,30 | 108 | 51.4 | 28.7 | 38.6 | 16.5 | 7.85 | 11.10 | 0.117 | 0.006 | 0.972 | |
2,3-Dimethylpyrazine | 1346 | EI,R | 8,12,15,30 | 108 | 11.28 | 8.07 | 5.66 | 5.07 | 1.89 | 2.67 | 0.026 | 0.319 | 0.490 | |
2-Ethyl-5-methylpyrazine | 1384 | EI,R | Roasted, chocolate | 12 | 121 | 10.73 | 7.23 | 6.66 | 4.32 | 1.02 | 1.44 | 0.001 | 0.006 | 0.571 |
2-Ethyl-6-methylpyrazine | 1390 | EI,R,O | Roasted, earthy | 12 | 121 | 19.63 | 14.70 | 12.54 | 8.13 | 1.73 | 2.44 | <0.001 | 0.009 | 0.880 |
Trimethyl pyrazine | 1410 | EI,R,O | Roasted, earthy | 8,12,15,30 | 122 | 66.2 | 57.6 | 35.7 | 43.0 | 11.11 | 15.71 | 0.048 | 0.955 | 0.477 |
3-Ethyl-2,5- dimethylpyrazine | 1442 | EI,R,O | Roasted, chocolate | 8,12,15,30 | 135 | 23.9 | 13.2 | 11.4 | 9.9 | 3.06 | 4.33 | 0.013 | 0.051 | 0.143 |
2-Ethyl-3,5-dimethylpyrazine | 1469 | EI,R,O | Roasted, chocolate | 8,12,15,30 | 135 | 61.5 | 39.0 | 46.1 | 31.9 | 8.45 | 11.94 | 0.010 | 0.015 | 0.404 |
3,5-Diethyl-2- methylpyrazine | 1490 | EI,R,O | Roasted, meaty | 149 | 5.95 | 3.50 | 3.04 | 2.30 | 0.80 | 1.13 | 0.013 | 0.051 | 0.291 | |
2,3-Diethyl-5- methylpyrazine | 1499 | EI,R | 149 | 3.01 | 0.98 | 0.57 | 0.72 | 0.52 | 0.73 | 0.012 | 0.075 | 0.040 | ||
3,5-Dimethyl-2-isobutylpyrazine | 1549 | EI,R | 122 | 2.69 | 2.81 | 1.94 | 1.56 | 0.54 | 0.76 | 0.068 | 0.808 | 0.642 | ||
Dimethyl isopentylpyrazine | 1655 | EI,R | 8,12,15,30 | 122 | 19.3 | 23.1 | 20.7 | 15.3 | 3.83 | 5.42 | 0.404 | 0.833 | 0.233 | |
Aldehydes | ||||||||||||||
2-Methylpropanal | 804 | EI,R,O | Chemical, earthy | 8,15,30 | 72 | 34.9 | 41.6 | 41.9 | 26.4 | 5.15 | 7.28 | 0.427 | 0.393 | 0.035 |
2-Methylbutanal | 915 | EI,R,O | Brothy, meaty | 26 | 57 | 328 | 344 | 332 | 264 | 45.2 | 64.0 | 0.402 | 0.571 | 0.355 |
3-Methylbutanal | 919 | EI,R,O | Brothy, meaty | 8, 15,30 | 58 | 113.8 | 119.3 | 142.4 | 111.9 | 15.69 | 22.19 | 0.502 | 0.427 | 0.257 |
Hexanal | 1078 | EI,R,O | Grassy, green | 8,15,26,30 | 56 | 111 | 231 | 138 | 163 | 49.4 | 69.8 | 0.677 | 0.149 | 0.335 |
Heptanal | 1194 | EI,R,O | Fatty, baked | 8,15,26,30 | 70 | 20.3 | 78.2 | 34.7 | 41.2 | 12.66 | 17.90 | 0.375 | 0.014 | 0.047 |
Octanal | 1328 | EI,R,O | Sweet, fresh fish | 8,15,26,30 | 84 | 8.0 | 18.9 | 14.2 | 9.4 | 2.50 | 3.53 | 0.517 | 0.222 | 0.003 |
Nonanal | 1380 | EI,R,O | Plastic, solvent, garlic | 8,15,26,30 | 57 | 58.5 | 94.1 | 92.1 | 59.5 | 9.98 | 14.12 | 0.958 | 0.879 | 0.001 |
Furfural | 1439 | EI,R | 8 | 96 | 1.9 | 2.1 | 1.8 | 6.1 | 2.15 | 3.04 | 0.376 | 0.311 | 0.343 | |
Decanal | 1500 | EI,R | 8,12,15,30 | 57 | 0.19 | 0.70 | 0.31 | 0.61 | 0.19 | 0.27 | 0.943 | 0.036 | 0.567 | |
Benzaldehyde | 1508 | EI,R | 8,12,15,30 | 105 | 57.1 | 52.9 | 71.2 | 81.3 | 8.33 | 11.78 | 0.014 | 0.725 | 0.397 | |
2,5-Dimethylbenzaldehyde | 1705 | EI,R | 134 | 177 | 70 | 210 | 169 | 27.2 | 38.5 | 0.019 | 0.009 | 0.224 | ||
4-Ethylbenzaldehyde | 1732 | EI,R | 134 | 2.41 | 2.85 | 1.96 | 5.35 | 1.46 | 2.07 | 0.486 | 0.196 | 0.319 | ||
Long chain aldehyde | 1736 | EI,R | 57 | 38 | 21 | 56 | 73 | 7.6 | 10.8 | 0.001 | 0.924 | 0.052 | ||
Sulphur compounds | ||||||||||||||
Dimethyl disulphide | 1084 | EI,R | 8,12,15,30 | 94 | 21.2 | 4.1 | 8.7 | 8.4 | 4.54 | 6.42 | 0.374 | 0.059 | 0.069 | |
Dimethyl trisulphide | 1266 | EI,R,O | Plastic, solvent, garlic | 8,30 | 79 | 23.1 | 0.1 | 0.9 | 0 | 10.48 | 20.97 | 0.291 | 0.260 | 0.296 |
Methional | 1447 | EI,R,O | Roasted, chocolate | 8,15,30 | 76 | 1.93 | 2.16 | 3.66 | 2.55 | 0.63 | 0.89 | 0.099 | 0.484 | 0.289 |
Methionol | 1717 | EI,R | 106 | 0.83 | 0.53 | 1.17 | 0.82 | 0.28 | 0.40 | 0.263 | 0.260 | 0.934 | ||
2-Acetyl-2-thiazoline | 1756 | EI,R,O | Popcorn, roasted | 8,15,30 | 129 | 1.31 | 1.14 | 0.75 | 0.14 | 0.22 | 0.31 | 0.001 | 0.091 | 0.333 |
Benzothiazole | 1955 | EI,R | 135 | 43 | 32 | 38 | 91 | 32.0 | 45.2 | 0.411 | 0.512 | 0.319 | ||
Acids | ||||||||||||||
Acetic acid | 1461 | EI,R | 12 | 60 | 38 | 34 | 104 | 148 | 24 | 34 | <0.001 | 0.412 | 0.317 | |
Esters | ||||||||||||||
Methyl butanoate | 978 | EI,R,O | Fruity, floral | 8,15,30 | 74 | 76.8 | 58.5 | 78.5 | 64.6 | 7.43 | 10.50 | 0.603 | 0.035 | 0.769 |
Butyl formate | 996 | EI,R | 56 | 147.0 | 109.8 | 148.4 | 112.0 | 11.99 | 16.96 | 0.881 | 0.003 | 0.972 | ||
Methyl-2-methylbutanoate | 1008 | EI,R | 88 | 20.37 | 14.14 | 19.45 | 16.07 | 1.92 | 2.72 | 0.795 | 0.016 | 0.461 | ||
Ethyl nonanoate | 1520 | EI,R | 74 | 4.53 | 6.62 | 5.67 | 5.53 | 1.04 | 1.47 | 0.981 | 0.354 | 0.291 | ||
Methyl salicylate | 1747 | EI,R | 120 | 4.7 | 4.7 | 4.2 | 17.1 | 6.55 | 9.26 | 0.368 | 0.328 | 0.328 | ||
Others | ||||||||||||||
Pyridine | 1204 | EI,R | 79 | 31.7 | 31.3 | 24.6 | 18.0 | 2.81 | 3.98 | <0.001 | 0.214 | 0.270 | ||
2-Pentylfuran | 1250 | EI,R | 8,15,30 | 81 | 2.93 | 10.32 | 3.06 | 7.98 | 1.54 | 2.17 | 0.474 | <0.001 | 0.425 | |
Pyrrole | 1524 | EI,R | 67 | 5.04 | 3.68 | 3.97 | 5.18 | 0.74 | 1.05 | 0.965 | 0.727 | 0.0052 | ||
2-Acetyl-1-pyrroline | 1998 | EI,R,O | Popcorn, roated | 8,15,30 | 94 | 8.55 | 5.58 | 7.93 | 4.20 | 0.78 | 1.11 | 0.205 | <0.001 | 0.628 |
Variables | Regression Coefficient |
---|---|
Constant | 69.9888 |
2-Ethyl-6-methylpyrazine | 0.3508 |
2,5-Dimethylpyrazine | 0.3466 |
2-Ethyl-3,5-dimethylpyrazine | 0.344 |
2-Acetyl-1-pyrroline | 0.3343 |
3,5-Diethyl-2-methylpyrazine | 0.3189 |
3-Ethyl-2,5-Dimethylpyrazine | 0.317 |
2-Acetyl-2-thiazoline | 0.2976 |
2-Methylbutanal | 0.2880 |
2,3-Diethyl-5-methylpyrazine | 0.2820 |
Butylformate | 0.2718 |
Ethanol | −0.2631 |
Acetic acid | −0.2569 |
3-Hydroxy-2-butanone | 0.2556 |
1-Hexanol | 0.2547 |
Methylbutanoate | 0.2314 |
2-Methylpropanal | 0.1713 |
Acetone | −0.1299 |
Dimethyl trisulfide | 0.1238 |
Heptanal | −0.0908 |
Nonanal | 0.0764 |
Octanal | −0.045 |
Hexanal | 0.0442 |
s.d. | 4.61 |
Osten’s F-test | <0.001 |
RMSECV | 2.31 |
Correlation coefficient | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ha, M.; Frank, D.; McGilchrist, P.; Warner, R.D. Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking. Foods 2021, 10, 3113. https://doi.org/10.3390/foods10123113
Li Z, Ha M, Frank D, McGilchrist P, Warner RD. Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking. Foods. 2021; 10(12):3113. https://doi.org/10.3390/foods10123113
Chicago/Turabian StyleLi, Zhenzhao, Minh Ha, Damian Frank, Peter McGilchrist, and Robyn Dorothy Warner. 2021. "Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking" Foods 10, no. 12: 3113. https://doi.org/10.3390/foods10123113
APA StyleLi, Z., Ha, M., Frank, D., McGilchrist, P., & Warner, R. D. (2021). Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking. Foods, 10(12), 3113. https://doi.org/10.3390/foods10123113