Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Solubilization of Water-Soluble Curcuminoids by Stevia Extracts
2.3. Determination of Surface Morphology
2.4. Particle Size Measurement
2.5. Preparation of Aqueous Solutions of Curcuminoid–stevioside and Quantification
2.6. Experimental Design
2.7. Recombinant Influenza Virus Neuraminidase Inhibition Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Solubilization of MAE Water-Soluble Curcuminoids Using SGs
3.2. Microstructural Features of Water-Soluble Curcuminoids
3.3. Optimization of Conditions for Water-Soluble Curcuminoids
1.31x2x3 + 0.91x2x4 + 0.75x3 x4 − 0.61x12 + 0.35x22 + 0.37x32 − 1.55x4 2
3.4. Stability of the Conditions for Water-Soluble Curcuminoids Using Stevioside
3.5. Neuraminidase Inhibitory Activity
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.T.H.; Si, J.; Kang, C.; Chung, B.; Chung, D.; Kim, D. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem. 2017, 214, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Guevara-Flores, A.; Martínez-González, J.d.J.; Herrera-Juárez, Á.M.; Rendón, J.L.; González-Andrade, M.; Durán, P.V.T.; Enríquez-Habib, R.G.; del Arenal Mena, I.P. Effect of curcuminoids and curcumin derivate products on thioredoxin-glutathione reductase from Taenia crassiceps cysticerci. Evidence suggesting a curcumin oxidation product as a suitable inhibitor. PLoS ONE 2019, 14, e0220098. [Google Scholar]
- Lin, X.; Ji, S.; Qiao, X.; Hu, H.; Chen, N.; Dong, Y.; Huang, Y.; Guo, D.; Tu, P.; Ye, M. Density Functional Theory Calculations in Stereochemical Determination of Terpecurcumins J–W, Cytotoxic Terpene-Conjugated Curcuminoids from Curcuma longa L. J. Org. Chem. 2013, 78, 11835–11848. [Google Scholar] [CrossRef]
- Chuacharoen, T.; Prasongsuk, S.; Sabliov, C.M. Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions under Conditions Relevant to Commercial Utilization. Molecules 2019, 24, 2744. [Google Scholar] [CrossRef] [Green Version]
- Roozbehi, S.; Dadashzadeh, S.; Sajedi, R.H. An enzyme-mediated controlled release system for curcumin based on cyclodextrin/cyclodextrin degrading enzyme. Enzym. Microb. Technol. 2021, 144, 109727. [Google Scholar] [CrossRef]
- Gunathilake, T.M.S.U.; Ching, Y.C.; Chuah, C.H.; Illias, H.A.; Ching, K.Y.; Singh, R.; Nai-Shang, L. Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int. J. Biol. Macromol. 2018, 118, 1055–1064. [Google Scholar] [CrossRef]
- Seo, S.-W.; Han, H.-K.; Chun, M.-K.; Choi, H.-K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm. 2012, 424, 18–25. [Google Scholar] [CrossRef]
- Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem. 2020, 326, 126973. [Google Scholar] [CrossRef]
- Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; et al. Innovative Preparation of Curcumin for Improved Oral Bioavailability. Biol. Pharm. Bull. 2011, 34, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.H.; Jung, S.-J.; Kang, H.-K.; Kim, Y.-M.; Moon, Y.-H.; Kim, M.; Kim, D. Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide. Enzym. Microb. Technol. 2014, 64–65, 38–43. [Google Scholar] [CrossRef]
- De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A review on natural surfactants. RSC Adv. 2015, 5, 65757–65767. [Google Scholar] [CrossRef]
- Ameer, K.; Bae, S.-W.; Jo, Y.; Lee, H.-G.; Kwon, J.-H. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chem. 2017, 229, 198–207. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Kanchanathawornviboon, X.; Monton, C.; Urairong, H. Microwave-assisted extraction of curcuminoids from organic Curcuma longa L. in different oil types for cosmetic purpose: An optimization approach. JCST 2021, 11, 71–89. [Google Scholar]
- Ameer, K.; Chun, B.-S.; Kwon, J.-H. Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Ind. Crop. Prod. 2017, 109, 672–685. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, Q.; Xia, Y.; Zhang, Y.; Myint, K.Z.; Wu, J. Steviol glycosides, an edible sweet surfactant that can modulate the interfacial and emulsifying properties of soy protein isolate solution. J. Food Eng. 2021, 289, 110264. [Google Scholar] [CrossRef]
- Wolfrum, S.; Marcus, J.; Touraud, D.; Kunz, W. A renaissance of soaps?—How to make clear and stable solutions at neutral pH and room temperature. Adv. Colloid Interface Sci. 2016, 236, 28–42. [Google Scholar] [CrossRef]
- Uchiyama, H.; Nogami, S.; Katayama, K.; Hayashi, K.; Kadota, K.; Tozuka, Y. Jelly containing composite based on α-glucosyl stevia and polyvinylpyrrolidone: Improved dissolution property of curcumin. Eur. J. Pharm. Sci. 2018, 117, 48–54. [Google Scholar] [CrossRef]
- Ko, J.-A.; Kim, Y.-M.; Ryu, Y.B.; Jeong, H.J.; Park, T.-S.; Park, S.-J.; Wee, Y.-J.; Kim, J.-S.; Kim, D.; Lee, W.S. Mass Production of Rubusoside Using a Novel Stevioside-Specific β-Glucosidase from Aspergillus aculeatus. J. Agric. Food Chem. 2012, 60, 6210–6216. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Li, W.; Lu, T.; Xia, Y.-M. The effect of microwave irradiation on transglycosylation pathway of stevioside with starches or cyclodextrins catalyzed by a cyclodextrin glucanotransferase. J. Mol. Catal. B Enzym. 2015, 120, 151–157. [Google Scholar] [CrossRef]
- Ko, J.-A.; Ryu, Y.B.; Kwon, H.-J.; Jeong, H.J.; Park, S.-J.; Kim, C.Y.; Wee, Y.-J.; Kim, D.; Lee, W.S.; Kim, Y.-M. Characterization of a novel steviol-producing β-glucosidase from Penicillium decumbens and optimal production of the steviol. Appl. Microbiol. Biotechnol. 2013, 97, 8151–8161. [Google Scholar] [CrossRef]
- Ko, J.-A.; Nam, S.-H.; Park, J.-Y.; Wee, Y.; Kim, D.; Lee, W.S.; Ryu, Y.B.; Kim, Y.-M. Synthesis and characterization of glucosyl stevioside using Leuconostoc dextransucrase. Food Chem. 2016, 211, 577–582. [Google Scholar] [CrossRef]
- Lee, S.; Ko, J.; Kim, H.; Jo, M.; Kim, J.; Kim, M.; Cho, J.; Wee, Y.; Kim, Y. Enzymatic Synthesis of Glucosyl Rebaudioside A and its Characterization as a Sweetener. J. Food Sci. 2019, 84, 3186–3193. [Google Scholar] [CrossRef]
- Lee, H.; Hong, S.; Kang, H.; Ju, J.; Park, B.; Ko, J.; Kim, Y. Effective rebaudioside a separation from stevia extracts by enzymatic bioconversion. J. Food Process. Preserv. 2021, 45, 15202. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Y.; Bao, Z.; Cui, P.; Wang, S.; Lin, S. Calcium binding to herring egg phosphopeptides: Binding characteristics, conformational structure and intermolecular forces. Food Chem. 2020, 310, 125867. [Google Scholar] [CrossRef]
- Li, M.; Ngadi, M.O.; Ma, Y. Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem. 2014, 165, 29–34. [Google Scholar] [CrossRef]
- Aditya, N.P.; Hamilton, I.E.; Noon, J.; Norton, I.T. Microwave-Assisted Nanonization of Poorly Water-Soluble Curcumin. ACS Sustain. Chem. Eng. 2019, 7, 9771–9781. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Yoon, S.Y.; Park, J.-Y.; Kim, Y.M.; Park, S.-J.; Rho, M.-C.; Kim, S.-J.; Lee, W.S. Influenza Virus Neuraminidase Inhibitory Activity of Phlorotannins from the Edible Brown Alga Ecklonia cava. J. Agric. Food Chem. 2011, 59, 6467–6473. [Google Scholar] [CrossRef]
- Zhang, F.; Koh, G.Y.; Jeansonne, D.P.; Hollingsworth, J.; Russo, P.S.; Vicente, G.; Stout, R.W.; Liu, Z. A Novel Solubility-Enhanced Curcumin Formulation Showing Stability and Maintenance of Anticancer Activity. J. Pharm. Sci. 2011, 100, 2778–2789. [Google Scholar] [CrossRef]
- Jaitak, V.; Kaul, V.K.; Bandna; Kumar, N.; Singh, B.; Savergave, L.S.; Jogdand, V.V.; Nene, S. Simple and efficient enzymatic transglycosylation of stevioside by β-cyclodextrin glucanotransferase from Bacillus firmus. Biotechnol. Lett. 2009, 31, 1415–1420. [Google Scholar] [CrossRef]
- Anwar, J.; Shafique, U.; Rehman, R.; Salman, M.; Dar, A.; Anzano, J.M.; Ashraf, U.; Ashraf, S. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arab. J. Chem. 2015, 8, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Gopal, J.; Muthu, M.; Chun, S.-C. One-step, ultrasonication-mobilized, solvent-free extraction/synthesis of nanocurcumin from turmeric. RSC Adv. 2015, 5, 48391–48398. [Google Scholar] [CrossRef]
- Wakte, P.S.; Sachin, B.S.; Patil, A.A.; Mohato, D.M.; Band, T.H.; Shinde, D.B. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Sep. Purif. Technol. 2011, 79, 50–55. [Google Scholar] [CrossRef]
- Kroyer, G. Stevioside and stevia-sweetener in food: Application, stability and interaction with food ingredients. J. Consum. Prot. Food Saf. 2010, 5, 225–229. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Cruz-Romero, M.; Collins, T.; Cummins, E.; Kerry, J.P.; Morris, M.A. Synthesis of monodisperse chitosan nanoparticles. Food Hydrocoll. 2018, 83, 355–364. [Google Scholar] [CrossRef]
- Wan, Z.-L.; Wang, J.-M.; Wang, L.-Y.; Yang, X.-Q.; Yuan, Y. Enhanced Physical and Oxidative Stabilities of Soy Protein-Based Emulsions by Incorporation of a Water-Soluble Stevioside-Resveratrol Complex. J. Agric. Food Chem. 2013, 61, 4433–4440. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666. [Google Scholar] [CrossRef] [PubMed]
- Lankveld, D.P.; Oomen, A.G.; Krystek, P.; Neigh, A.; de Jong, A.T.; Noorlander, C.; Van Eijkeren, J.; Geertsma, R.; De Jong, W. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350–8361. [Google Scholar] [CrossRef]
- Šumić, Z.; Vakula, A.; Tepić, A.; Čakarević, J.; Vitas, J.; Pavlić, B. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem. 2016, 203, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.; Wang, L.; Walid, E.; Zhang, H. Ultrasonic-assisted extraction of polysaccharides from Hohenbuehelia serotina by response surface methodology. Int. J. Biol. Macromol. 2012, 51, 523–530. [Google Scholar] [CrossRef]
- Dao, T.T.; Nguyen, P.H.; Won, H.K.; Kim, E.H.; Park, J.; Won, B.Y.; Oh, W.K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem. 2012, 134, 21–28. [Google Scholar] [CrossRef]
- Lai, Y.; Yan, Y.; Liao, S.; Li, Y.; Ye, Y.; Liu, N.; Zhao, F.; Xu, P. 3D-quantitative structure—Activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch. Pharm. Res. 2020, 43, 489–502. [Google Scholar] [CrossRef] [PubMed]
Steviol Glycoside (10%-w/v) | Curcumin (mg/mL) | Demethoxycurcumin (mg/mL) | Bisdemethoxycurcumin (mg/mL) | Total Curcuminoids (mg/mL) | |||||
---|---|---|---|---|---|---|---|---|---|
NT | Microwave | NT | Microwave | NT | Microwave | NT | Microwave | Ratio Microwave /NT (fold) | |
S | - | - | - | - | - | - | - | - | - |
SME | - | - | - | - | - | - | - | - | - |
SteB | - | - | - | - | - | - | - | - | - |
SMG | 0.46 ± 0.1 | 2.52 ± 0.15 | 0.04 ± 0.01 | 0.88 ± 0.1 | 0.04 ± 0.01 | 0.52 ± 0.1 | 0.54 ± 0.1 | 3.92 ± 0.5 | 7.3 |
R | 1.31 ± 0.1 | 6.19 ± 0.15 | 0.08 ± 0.01 | 1.69 ± 0.15 | 0.23 ± 0.08 | 1.17 ± 0.2 | 1.62 ± 0.2 | 9.28 ± 0.4 | 5.7 |
ST | 1.02 ± 0.1 | 6.29 ± 0.2 | 0.05 ± 0.01 | 1.64 ± 0.2 | 0.05 ± 0.01 | 1.34 ± 0.15 | 1.22 ± 0.2 | 9.27 ± 0.3 | 7.6 |
STG | 0.51 ± 0.2 | 2.72 ± 0.3 | 0.05 ± 0.01 | 0.83 ± 0.1 | 0.04 ± 0.01 | 0.69 ± 0.2 | 0.61 ± 0.1 | 4.24 ± 0.6 | 7.0 |
Reb-A | 0.77 ± 0.2 | 3.67 ± 0.3 | 0.06 ± 0.01 | 0.8 ± 0.2 | 0.03 ± 0.01 | 0.28 ± 0.2 | 0.86 ± 0.2 | 4.75 ± 0.5 | 5.5 |
Steviol Glycoside (10%-w/v) | Soluble Curcuminoids (10 mg/mL) | ||
---|---|---|---|
1 Day | 1 Week | 1 Month | |
Steviol | - | - | - |
Steviol mono-glucoside | - | - | - |
Steviolbioside | - | - | - |
Steviol mono-glucosyl ester | 2.52 ± 0.05 | 2.39 ± 0.05 | 1.81 ± 0.1 |
Rubusoside | 6.19 ± 0.15 | 5.89 ± 0.1 | 3.81 ± 0.15 |
Stevioside | 6.29 ± 0.15 | 6.09 ± 0.15 | 5.32 ± 0.15 |
α-Glucosyl stevioside | 2.72 ± 0.05 | 2.69 ± 0.1 | 2.42 ± 0.1 |
Rebaudioside A | 3.67 ± 0.05 | 2.21 ± 0.1 | 1.31 ± 0.1 |
Exp. No. | Coded Value | Actual Value | Solubility (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | Microwave Power (W) | Stevioside Conc. (mg/mL) | Curcumin Conc. (mg/mL) | Incubation Time (min) | Experimental | Predicted | |
1 | −1 | −1 | 0 | 0 | 50 | 50 | 110 | 6 | 0.66 ± 0.01 | 1.38 |
2 | 1 | −1 | 0 | 0 | 200 | 50 | 110 | 6 | 2.32 ± 0.01 | 2.04 |
3 | −1 | 1 | 0 | 0 | 50 | 200 | 110 | 6 | 3.91 ± 0.1 | 4.45 |
4 | 1 | 1 | 0 | 0 | 200 | 200 | 110 | 6 | 13.11 ± 0.3 | 12.65 |
5 | 0 | 0 | −1 | −1 | 125 | 125 | 20 | 1 | 2.55 ± 0.1 | 1.88 |
6 | 0 | 0 | 1 | −1 | 125 | 125 | 200 | 1 | 2.19 ± 0.1 | 3.04 |
7 | 0 | 0 | −1 | 1 | 125 | 125 | 20 | 10 | 3.56 ± 0.1 | 2.97 |
8 | 0 | 0 | 1 | 1 | 125 | 125 | 200 | 10 | 6.2 ± 0.2 | 7.13 |
9 | −1 | 0 | 0 | −1 | 50 | 125 | 110 | 1 | 1.67 ± 0.05 | 0.11 |
10 | 1 | 0 | 0 | −1 | 200 | 125 | 110 | 1 | 2.3 ± 0.1 | 3.75 |
11 | −1 | 0 | 0 | 1 | 50 | 125 | 110 | 10 | 2.66 ± 0.1 | 1.91 |
12 | 1 | 0 | 0 | 1 | 200 | 125 | 110 | 10 | 4.87 ± 0.15 | 7.13 |
13 | 0 | −1 | −1 | 0 | 125 | 50 | 20 | 6 | 0.98 ± 0.02 | 2.22 |
14 | 0 | 1 | −1 | 0 | 125 | 200 | 20 | 6 | 6.51 ± 0.2 | 6.44 |
15 | 0 | −1 | 1 | 0 | 125 | 50 | 200 | 6 | 1.48 ± 0.01 | 2.25 |
16 | 0 | 1 | 1 | 0 | 125 | 200 | 200 | 6 | 12.26 ± 0.25 | 11.72 |
17 | −1 | 0 | −1 | 0 | 50 | 125 | 20 | 6 | 2.64 ± 0.1 | 3.68 |
18 | 1 | 0 | −1 | 0 | 200 | 125 | 20 | 6 | 4.92 ± 0.1 | 3.96 |
19 | −1 | 0 | 1 | 0 | 50 | 125 | 200 | 6 | 2.19 ± 0.1 | 2.19 |
20 | 1 | 0 | 1 | 0 | 200 | 125 | 200 | 6 | 12.78 ± 0.2 | 10.77 |
21 | 0 | −1 | 0 | −1 | 125 | 50 | 110 | 1 | 0.72 ± 0.01 | 0 |
22 | 0 | 1 | 0 | −1 | 125 | 200 | 110 | 1 | 4.25 ± 0.1 | 4.95 |
23 | 0 | −1 | 0 | 1 | 125 | 50 | 110 | 10 | 2.37 ± 0.1 | 0.70 |
24 | 0 | 1 | 0 | 1 | 125 | 200 | 110 | 10 | 9.55 ± 0.2 | 9.37 |
25 | 0 | 0 | 0 | 0 | 125 | 125 | 110 | 6 | 4.86 ± 0.1 | 4.94 |
26 | 0 | 0 | 0 | 0 | 125 | 125 | 110 | 6 | 4.65 ± 0.1 | 4.94 |
27 | 0 | 0 | 0 | 0 | 125 | 125 | 110 | 6 | 5.32 ± 0.1 | 4.94 |
Source | DF | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 14 | 305.43 | 21.82 | 9.94 | 0.0002 |
x1 (Microwave power) | 1 | 58.83 | 58.83 | 26.79 | 0.0002 |
x2 (Stevoside conc.) | 1 | 140.49 | 140.49 | 63.98 | <0.0001 |
x3 (Curcuminoid conc.) | 1 | 21.17 | 21.17 | 9.64 | 0.0091 |
x4 (Incubation time) | 1 | 20.1 | 20.10 | 9.15 | 0.0106 |
x1x2 | 1 | 14.21 | 14.21 | 6.47 | 0.0257 |
x1x3 | 1 | 17.26 | 17.26 | 7.86 | 0.0159 |
x1x4 | 1 | 0.62 | 0.62 | 0.28 | 0.6037 |
x2x3 | 1 | 6.89 | 6.89 | 3.14 | 0.1019 |
x2x4 | 1 | 3.33 | 3.33 | 1.52 | 0.2417 |
x3x4 | 1 | 2.25 | 2.25 | 1.02 | 0.3314 |
x12 | 1 | 1 | 0.06 | 0.8053 | 0.0214 |
x22 | 1 | 1 | 0.30 | 0.5959 | 0.3654 |
x32 | 1 | 1 | 0.33 | 0.5778 | 0.3711 |
x42 | 1 | 1 | 5.87 | 0.0322 | 0.2707 |
Regression | 14 | 305.83 | 21.82 | 9.94 | 0.0002 |
Residual | 12 | 26.35 | 2.20 | ||
Lack of fit | 10 | 26.12 | 2.61 | 22.24 | 0.4183 |
Pure error | 2 | 0.23 | 0.12 | ||
Corrected total | 26 | 331.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.-A.; Ryu, Y.-B.; Lee, W.-S.; Ameer, K.; Kim, Y.-M. Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides. Foods 2021, 10, 2803. https://doi.org/10.3390/foods10112803
Ko J-A, Ryu Y-B, Lee W-S, Ameer K, Kim Y-M. Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides. Foods. 2021; 10(11):2803. https://doi.org/10.3390/foods10112803
Chicago/Turabian StyleKo, Jin-A, Young-Bae Ryu, Woo-Song Lee, Kashif Ameer, and Young-Min Kim. 2021. "Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides" Foods 10, no. 11: 2803. https://doi.org/10.3390/foods10112803
APA StyleKo, J.-A., Ryu, Y.-B., Lee, W.-S., Ameer, K., & Kim, Y.-M. (2021). Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides. Foods, 10(11), 2803. https://doi.org/10.3390/foods10112803