Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends
Abstract
:1. Introduction
2. Preparation Methods for the Analysis of VOCs
2.1. HS Extraction
2.2. Solid-Phase Microextraction (SPME)
3. Preparation Methods for the Analysis of SVOCs or Thermally Stable Compounds
3.1. SPE
3.2. MSPD
3.3. QuEChERS
3.4. SBSE
3.5. Single-Drop Microextraction (SDME)
3.6. SPME Arrow
3.7. Other Methods
4. Separate, Clean-up, and Derivation Steps
4.1. Gel Permeation Chromatography (GPC)
4.2. Freezing-Lipid Method
4.3. Derivatization
5. Matrix Effect
6. Emerging Risks
6.1. BFRs
6.2. PFOS
6.3. ERs
6.4. Mycotoxins
6.5. Process Contaminants
6.6. Contaminants with Unknown Biological Activity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, C.; Xu, Q.; Qiu, X.; Jin, Y.; Ji, J.; Lin, Y.; Le, S.; Wang, G.; Lu, D. Comprehensive strategy for analysis of pesticide multi-residues in food by GC–MS/MS and UPLC–Q–Orbitrap. Food Chem. 2020, 320, 126576–126584. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Huang, Y.-Y.; Shen, X.-F.; Yang, C.; Pang, Y.-H. In situ growth of covalent organic framework on titanium fiber for headspace solid-phase microextraction of 11 phthalate esters in vegetables. Food Chem. 2020, 318, 126507–126515. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Sun, M.; Zhang, B.; Fan, C. Use of a headspace solid-phase microextraction-based methodology followed by gas chromatography–tandem mass spectrometry for pesticide multiresidue determination in teas. Chromatographia 2018, 81, 809–821. [Google Scholar] [CrossRef]
- Guiffard, I.; Geny, T.; Veyrand, B.; Marchand, P.; Pellouin-Grouhel, A.; Bizec, B.L.; Bichon, E. Quantification of light polycyclic aromatic hydrocarbons in seafood samples using on–line dynamic headspace extraction, thermodesorption, gas chromatography tandem mass spectrometry, based on an isotope dilution approach. J. Chromatogr. A 2020, 1619, 460906–460914. [Google Scholar] [CrossRef]
- Moyano, L.; Serratosa, M.P.; Marquez, A.; Zea, L. Optimization and validation of a DHS–TD–GC–MS method to wineomics studies. Talanta 2019, 192, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Sales, C.; Portoles, T.; Johnsen, L.G.; Danielsen, M.; Beltran, J. Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC–MS and multivariate statistical–based approach. Food Chem. 2019, 271, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Trabalón, L.; Nadal, M.; Borrull, F.; Pocurull, E. Determination of benzothiazoles in seafood species by subcritical water extraction followed by solid–phase microextraction–gas chromatography–tandem mass spectrometry: Estimating the dietary intake. Anal. Bioanal. Chem. 2017, 409, 5513–5522. [Google Scholar] [CrossRef]
- Hernandes, K.C.; Souza-Silva, É.A.; Assumpção, C.F.; Zini, C.A.; Welke, J.E. Validation of an analytical method using HS–SPME–GC/MS–SIM to assess the exposure risk to carbonyl compounds and furan derivatives through beer consumption. Food Addit. Contam. A 2019, 36, 61–68. [Google Scholar] [CrossRef]
- Ma, T.-T.; Shen, X.-F.; Yang, C.; Qian, H.-L.; Pang, Y.-H.; Yan, X.-P. Covalent immobilization of covalent organic framework on stainless steel wire for solid–phase microextraction GC–MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples. Talanta 2019, 201, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-X.; Qian, H.-L.; Zhao, X.; Yang, C.; Yan, X.-P. In situ room–temperature fabrication of a covalent organic framework and its bonded fiber for solid–phase microextraction of polychlorinated biphenyls in aquatic products. J. Mater. Chem. A 2019, 7, 13249–13256. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, P.; Zhou, S.; Wang, X.; Du, X. Controlled growth of a porous hydroxyapatite nanoparticle coating on a titanium fiber for rapid and efficient solid–phase microextraction of polar chlorophenols, triclosan and bisphenol A from environmental water. Anal. Methods 2018, 10, 3237–3248. [Google Scholar] [CrossRef]
- Castro, Ó.; Trabalón, L.; Schilling, B.; Borrull, F.; Pocurull, E. Solid phase microextraction arrow for the determination of synthetic musk fragrances in fish samples. J. Chromatogr. A 2019, 1591, 55–61. [Google Scholar] [CrossRef]
- Žnideršič, L.; Mlakar, A.; Prosen, H. Development of a SPME–GC–MS/MS method for the determination of some contaminants from food contact material in beverages. Food Chem. Toxicol. 2019, 134, 110829–110840. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Gu, M.; Wang, Y.; Xue, J.; Wu, X. Transfer of organochlorine pesticide residues during household and industrial processing of ginseng. J. Food Qual. 2020, 2020, 5946078–5946087. [Google Scholar] [CrossRef]
- García-Córcoles, M.T.; Cipa, M.; Rodríguez-Gómez, R.; Rivas, A.; Olea-Serrano, F.; Vílchez, J.L.; Zafra-Gómez, A. Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid–liquid extraction and clean–up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta 2018, 178, 441–448. [Google Scholar] [CrossRef]
- Christodoulou, L.D.; Kourouzidou, O.; Hadjigeorgiou, M.; Hadjiloizou, P.; Constantinou, M.; Constantinou, P.; Kika, K.; Klavarioti, M. Multi–residue analysis of pesticide residues in fruits and vegetables using gas and liquid chromatography with mass spectrometric detection. Accredit. Qual. Assur. 2018, 23, 145–175. [Google Scholar] [CrossRef]
- Lakhmanov, D.; Varakina, Y.; Aksenov, A.; Sorokina, T.; Sobolev, N.; Kotsur, D.; Plakhina, E.; Chashchin, V.; Thomassen, Y. Persistent organic pollutants (POPs) in fish consumed by the indigenous peoples from Nenets Autonomous Okrug. Environments 2020, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Issa, M.M.; Taha, S.M.; El- Marsafy, A.M.; Khalil, M.M.H.; Ismail, E.H. Acetonitrile–ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC–MS/MS and GC–MS/MS. J. Chromatogr. B 2020, 1145, 122106–122112. [Google Scholar] [CrossRef]
- Panseri, S.; Chiesa, L.; Ghisleni, G.; Marano, G.; Boracchi, P.; Ranghieri, V.; Malandra, R.M.; Roccabianca, P.; Tecilla, M. Persistent organic pollutants in fish: Biomonitoring and cocktail effect with implications for food safety. Food Addit. Contam. A 2019, 36, 601–611. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, B.; Xie, K.; Liu, Y.; Zhang, Y.; Wang, Y.; Liu, C.; Guo, Y.; Bu, X.; Zhang, G.; et al. Development of an ASE–GC–MS/MS method for detecting dinitolmide and its metabolite 3–ANOT in eggs. J. Mass. Spectrom. 2018, 53, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Chau, N.D.G.; Hop, N.V.; Long, H.T.; Duyen, N.T.M.; Raber, G. Multi–residue analytical method for trace detection of new–generation pesticides in vegetables using gas chromatography–tandem mass spectrometry. J. Environ. Sci. Heal. B 2020, 55, 417–428. [Google Scholar] [CrossRef]
- Sturm, J.; Wienhold, P.; Frenzel, T.; Speer, K. Ultra turrax® tube drive for the extraction of pesticides from egg and milk samples. Anal. Bioanal. Chem. 2018, 410, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Guo, W.; Wei, J.; Shi, J.; Zhang, J.; Ge, H.; Tao, H.; Liu, X.; Hu, Q.; Cai, Z. Determination of newly synthesized dihydroxylated polybrominated diphenyl ethers in sea fish by gas chromatography–tandem mass spectrometry. Chemosphere 2020, 240, 124878. [Google Scholar] [CrossRef] [PubMed]
- Julia, M.; Luis, S.J.; Luis, M.J.; Irene, A.; Esteban, A. Determination of bisphenol A, its chlorinated derivatives and structural analogues in vegetables by focussed ultrasound solid–liquid extraction and GC–MS/MS. Environ. Chem. 2019, 17, 266–277. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Kim, J.-H. A simultaneous multiresidue analysis for 203 pesticides in soybean using florisil solid–phase extraction and gas chromatography–tandem mass spectrometry. Appl. Biol. Chem. 2018, 61, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Luo, X.; Han, J.; Chen, Y.; Zhang, K.; Hu, D. Residual determination of pyrethrins in Lyciumbarbarum (goji) by GC–MS/MS and a dietary risk assessment of Chinese goji consumption. Food Addit. Contam. A 2020, 37, 478–487. [Google Scholar] [CrossRef]
- Li, W.-K.; Zhang, H.-X.; Shi, Y.-P. Simultaneous determination of bifenox, dichlobenil and diclofop methyl by hollow carbon nanospheres enhanced magnetic carboxylic multi–walled carbon nanotubes. Anal. Chim. Acta 2018, 1011, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, D.; Li, J.; Gao, J.; Zhang, C.; Wang, P.; Zhou, Z. Matrix solid–phase dispersion combined with GC–MS/MS for the determination of organochlorine pesticides and polychlorinated biphenyls in marketed seafood. Chromatographia 2017, 80, 813–824. [Google Scholar] [CrossRef]
- Rahbar, N.; Behrouz, E.; Ramezani, Z. One–step synthesis of zirconia and magnetite nanocomposite immobilized chitosan for micro–solid–phase extraction of organophosphorous pesticides from juice and water samples prior to gas chromatography/mass spectroscopy. Food Anal. Method 2017, 10, 2229–2240. [Google Scholar] [CrossRef]
- Xu, X.; Duhoranimana, E.; Zhang, X. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta 2017, 163, 31–38. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Liu, H.; Liu, G.; Xu, X.; Li, L.; Lv, J.; Gao, H.; Xu, D. Magnetic solid—Phase extraction of pyrethroid insecticides from tea infusions using ionic liquid–modified magnetic zeolitic imidazolate framework—8 as an adsorbent. RSC Adv. 2019, 9, 39272–39281. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Liu, X.; Kong, F.; Tang, L.; Wang, Q.; Li, W.; Xu, W.; Wen, S.; Chen, L.; Li, Y. Multi–residue determination of 325 pesticides in chicken eggs with EMR–Lipid clean–up by UHPLC–MS/MS and GC–MS/MS. Chromatographia 2020, 83, 593–599. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y. Semi–automated high–throughput method for residual analysis of 302 pesticides and environmental contaminants in catfish by fast low–pressure GC–MS/MS and UHPLC–MS/MS. Food Chem. 2020, 319, 126592–126600. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Xie, X.; Diao, Z.; Xie, K.; Zhang, G.; Zhang, T.; Dai, G. Quantitative analysis of spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction coupled with gas chromatography tandem mass spectrometry. Foods 2020, 9, 651. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, B.; Xie, K.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, Y.; Bu, X.; Liu, C.; Zhang, G.; et al. Determination of dinitolmide and its metabolite 3–ANOT in chicken tissues via ASE–SPE–GC–MS/MS. J. Food Compos. Anal. 2018, 71, 94–103. [Google Scholar] [CrossRef]
- Sapozhnikova, Y. High–throughput analytical method for 265 pesticides and environmental contaminants in meats and poultry by fast low pressure gas chromatography and ultrahigh–performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2018, 1572, 203–211. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Di, S.; Xue, X.; Min, S. Determination of 14 lipophilic pesticide residues in raw propolis by selective sample preparation and gas chromatography–tandem mass spectrometry. Food Anal. Method 2020, 13, 1726–1735. [Google Scholar] [CrossRef]
- Ly, T.-K.; Ho, T.-D.; Behra, P.; Nhu-Trang, T.-T. Determination of 400 pesticide residues in green tea leaves by UPLC–MS/MS and GC–MS/MS combined with QuEChERS extraction and mixed–mode SPE clean–up method. Food Chem. 2020, 326, 126928–126936. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, M.K.; Kim, E.J. High–throughput simultaneous analysis of multiple pesticides in grain, fruit, and vegetables by GC–MS/MS. Food Addit. Contam. A 2020, 37, 963–972. [Google Scholar] [CrossRef]
- Wong, Y.-T.; Law, W.-K.; Lai, S.S.-L.; Wong, S.-P.; Lau, K.-C.; Ho, C. Ultra–trace determination of sodium fluoroacetate (1080) as monofluoroacetate in milk and milk powder by GC–MS/MS and LC–MS/MS. Anal. Methods 2018, 10, 3514–3524. [Google Scholar] [CrossRef]
- Pang, Y.-H.; Yue, Q.; Huang, Y.; Yang, C.; Shen, X.-F. Facile magnetization of covalent organic framework for solid–phase extraction of 15 phthalate esters in beverage samples. Talanta 2020, 206, 120194–120204. [Google Scholar] [CrossRef]
- Lu, C.; Tang, Z.; Gao, X.; Ma, X.; Liu, C. Computer–aided design of magnetic dummy molecularly imprinted polymers for solid–phase extraction of ten phthalates from food prior to their determination by GC–MS/MS. Microchim. Acta 2018, 185, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Wang, S.; Chen, L.; Niu, N. Metal organic framework–molecularly imprinted polymer as adsorbent in matrix solid phase dispersion for pyrethroids residue extraction from wheat. Food Anal. Method 2019, 12, 217–228. [Google Scholar] [CrossRef]
- Han, Y.; Song, L.; Liu, S.; Zou, N.; Li, Y.; Qin, Y.; Li, X.; Pan, C. Simultaneous determination of 124 pesticide residues in Chinese liquor and liquor–making raw materials (sorghum and rice hull) by rapid multi–plug filtration cleanup and gas chromatography–tandem mass spectrometry. Food Chem. 2018, 241, 258–267. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, X.; Luo, J.; Jin, S.; Chen, W.; Liu, Z.; Tian, C. Simultaneous determination of 131 pesticides in tea by on–line GPC–GC–MS/MS using graphitized multi–walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chem. 2019, 276, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, S.; Feng, H.; Yang, Y.; Xiao, B.; Chen, D. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid–phase extraction and cold–induced acetonitrile aqueous two–phase systems coupled with liquid chromatography–high resolution mass spectrometry. Food Chem. 2019, 275, 530–538. [Google Scholar] [CrossRef]
- Zacs, D.; Rozentale, I.; Reinholds, I.; Bartkevics, V. Multi–walled carbon nanotubes as effective sorbents for rapid analysis of polycyclic aromatic hydrocarbons in edible oils using dispersive solid–phase extraction (d–SPE) and gas chromatography—tandem mass spectrometry (GC–MS/MS). Food Anal. Method 2018, 11, 2508–2517. [Google Scholar] [CrossRef]
- Naik, R.H.; Pallavi, M.S.; Bheemanna, M.; PavanKumar, K.; Reddy, V.C.S.; Nidoni, R.U.; Paramasivam, M.; Yadav, S. Simultaneous determination of 79 pesticides in pigeonpea grains using GC–MS/MS and LC–MS/MS. Food Chem. 2021, 347, 128986–128997. [Google Scholar] [CrossRef]
- Gao, G.; Chen, H.; Dai, J.; Jin, L.; Chai, Y.; Zhu, L.; Liu, X.; Lu, C. Determination of polychlorinated biphenyls in tea using gas chromatography–tandem mass spectrometry combined with dispersive solid phase extraction. Food Chem. 2020, 316, 126290–126298. [Google Scholar] [CrossRef]
- Song, N.-E.; Lee, J.Y.; Mansur, A.R.; Jang, H.W.; Lim, M.-C.; Lee, Y.; Yoo, M.; Nam, T.G. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC–MS/MS and GC–MS/MS. Food Chem. 2019, 298, 125050–125060. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Li, W.; Zhang, R.; Jiao, H.; Zhao, J.; Sun, A.; Shi, X.; Chen, J. Development and application of the dispersive solid–phase extraction method based on molecular imprinted polymers for removal of matrix components of bivalve shellfish extracts in the GC–MS/MS analysis of amide/dinitroaniline/substituted urea herbicides. Chromatographia 2019, 82, 961–970. [Google Scholar] [CrossRef]
- Gaweł, M.; Kiljanek, T.; Niewiadowska, A.; Semeniuk, S.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Panseri, S.; Nobile, M.; Ceriani, F. ArioliDistribution of POPs, pesticides and antibiotic residues in organic honeys from different production areas. Food Addit. Contam. A 2018, 35, 1340–1355. [Google Scholar] [CrossRef]
- Jadhav, M.R.; Pudale, A.; Raut, P.; Utture, S.; Shabeer, T.P.A.; Banerjee, K. A unified approach for high–throughput quantitative analysis of the residues of multi–class veterinary drugs and pesticides in bovine milk using LC–MS/MS and GC–MS/MS. Food Chem. 2019, 272, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Duan, Y.; Ge, H.; Zhang, Y.; Wu, X. Multiresidue Analysis of 113 pesticides in different maturity levels of mangoes using an optimized QuEChERS method with GC–MS/MS and UHPLC–MS/MS. Food Anal. Methods 2018, 11, 2742–2757. [Google Scholar] [CrossRef]
- Lachter, D.R.; Nudi, A.H.; Porto, G.F.; Ribeiro, R.A.L.; Wagener, A.L.R.; Masone, C.G. Multiresidue method for triazines and pyrethroids determination by solid–phase extraction and gas chromatography–tandem mass spectrometry. J. Environ. Sci. Heal. B 2020, 55, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Kumari, D.; John, S. Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere 2019, 224, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Hakme, E.; Lozano, A.; Uclés, S.; Fernández-Alba, A.R. Further improvements in pesticide residue analysis in food by applying gas chromatography triple quadrupole mass spectrometry (GC–QqQ–MS/MS) technologies. Anal. Bioanal. Chem. 2018, 410, 5491–5506. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-Y.; Mou, R.-X.; Cao, Z.-Y.; Cao, Z.-Z.; Chen, M.-X. Analysis of pyrethroid pesticides in Chinese vegetables and fruits by GC–MS/MS. Chem. Pap. 2018, 72, 1953–1962. [Google Scholar] [CrossRef]
- Wei, Q.; Wu, M.; Xiao, F.; Wang, D. Development of a fast method for the determination of pesticide multiresidues in tomatoes using QuEChERS and GC–MS/MS. Eur. Food Res. Technol. 2020, 246, 1563–1572. [Google Scholar] [CrossRef]
- Saito-Shida, S.; Kashiwabara, N.; Shiono, K.; Nemoto, S.; Akiyama, H. Development of an analytical method for determination of total ethofumesate residues in foods by gas chromatography–tandem mass spectrometry. Food Chem. 2020, 313, 126132–126140. [Google Scholar] [CrossRef]
- Murcia-Morales, M.; Cutillas, V.; Fernández-Alba, A.R. Supercritical fluid chromatography and gas chromatography coupled to tandem mass spectrometry for the analysis of pyrethroids in vegetable matrices: A comparative study. J. Agr. Food Chem. 2019, 67, 12626–12632. [Google Scholar] [CrossRef]
- Reichert, B.; Nunes, M.G.P.; Pizzutti, I.R.; Costabeber, I.H.; Fontana, M.Z.; Jänich, B.D.; Panciera, M.P.; Arbusti, D.; Cardoso, C.D.; Chim, J.F. Pesticide residues determination in common bean using an optimized QuEChERS approach followed by solvent exchange and GC–MS/MS analysis. J. Sci. Food Agric. 2020, 100, 2425–2434. [Google Scholar] [CrossRef]
- Ramadan, M.F.A.; Abdel-Hamid, M.M.A.; Altorgoman, M.M.F.; AlGaramah, H.A.; Alawi, M.A.; Shati, A.A.; Shweeta, H.A.; Awwad, N.S. Evaluation of pesticide residues in vegetables from the Asir region, Saudi Arabia. Molecules 2020, 25, 205. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Zhong, Z.; Han, Y.; Zheng, Q.; Qin, Y.; Wu, Q.; He, X.; Pan, C. Dissipation of sixteen pesticide residues from various applications of commercial formulations on strawberry and their risk assessment under greenhouse conditions. Ecotox. Environ. Safe. 2020, 188, 109842–109852. [Google Scholar] [CrossRef]
- Varela-Martínez, D.A.; González-Curbelo, M.Á.; González-Sálamo, J.; Hernández-Borges, J. Determination of pesticides in dried minor tropical fruits from Colombia using the Quick, Easy, Cheap, Effective, Rugged, and Safe method–gas chromatography tandem mass spectrometry. J. Sep. Sci 2020, 43, 929–935. [Google Scholar] [CrossRef]
- Mao, X.; Yan, A.; Wan, Y.; Luo, D.; Yang, H. Dispersive solid–phase extraction using microporous sorbent UiO–66 coupled to gas chromatography–tandem mass spectrometry: A QuEChERS–type method for the determination of organophosphorus pesticide residues in edible vegetable oils without matrix interference. J. Agric. Food Chem. 2019, 67, 1760–1770. [Google Scholar] [CrossRef]
- Biswas, S.; Mondal, R.; Mukherjee, A.; Sarkar, M.; Kole, R.K. Simultaneous determination and risk assessment of fipronil and its metabolites in sugarcane, using GC–ECD and confirmation by GC–MS/MS. Food Chem. 2019, 272, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Jiang, L.; Jiang, H.; Wang, L.; Peng, Y.; Wang, C.; Shi, X.; Gu, J.; Wang, Y.; Zhu, J.; et al. Assessment of heavy metals, fungicide quintozene and its hazardous impurity residues in medical Panax notoginseng (Burk) F.H.Chen root. Biomed. Chromatogr. 2019, 33, e4378–e4386. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, P.; Zhou, C.; Tong, L.; Li, D.; Yu, Z.; Zhao, Y. Analysis of pesticide residues in commercially available chenpi using a modified QuEChERS method and GC–MS/MS determination. J. Pharm. Anal. 2020, 10, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Tong, L.; Li, D.; Yu, Z.; Zhao, Y. A Multiresidue method for simultaneous determination of 116 pesticides in notoginseng radix et rhizoma using modified QuEChERS coupled with gas chromatography tandem mass spectrometry and census 180 batches of sample from Yunnan Province. Chromatographia 2018, 81, 545–556. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Modification of multiresidue QuEChERS protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC–MS/MS. Food Anal. Methods 2018, 11, 709–724. [Google Scholar] [CrossRef]
- Fu, Y.; Dou, X.; Zhang, L.; Qin, J.; Yang, M.; Luo, J. A comprehensive analysis of 201 pesticides for different herbal species–ready application using gas chromatography–tandem mass spectrometry coupled with QuEChERs. J. Chromatogr. B 2019, 1125, 121730–121742. [Google Scholar] [CrossRef]
- Shabeer, T.P.A.; Girame, R.; Utture, S.; Oulkar, D.; Banerjee, K.; Ajay, D.; Arimboor, R.; Menon, K.R.K. Optimization of multi–residue method for targeted screening and quantitation of 243 pesticide residues in cardamom (Elettaria cardamomum) by gas chromatography tandem mass spectrometry (GC–MS/MS) analysis. Chemosphere 2018, 193, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.A.; Afify, A.S.; Hasaan, I.E.; Amr, M. Studying the effect of household–type treatment and processing on the residues of ethion and profenofos pesticides and on the contents of capsaicinoids in green chili pepper using GC–MS/MS and HPLC. Food Anal. Methods 2018, 11, 382–393. [Google Scholar] [CrossRef]
- Ahlawat, S.; Gulia, S.; Malik, K.; Rani, S.; Chauhan, R. Persistence and decontamination studies of chlorantraniliprole in Capsicum annum using GC–MS/MS. J. Food Sci. Tech. 2019, 56, 2925–2931. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Han, Y.; Yang, J.; Qin, Y.; Zeng, W.; Xu, S.; Pan, C. Rapid single–step cleanup method for analyzing 47 pesticide residues in pepper, chili peppers and its sauce product by high performance liquid and gas chromatography–tandem mass spectrometry. Food Chem. 2019, 279, 237–245. [Google Scholar] [CrossRef]
- Tian, F.; Qiao, C.; Luo, J.; Xie, H. Method development and validation of ten pyrethroid insecticides in edible mushrooms by modified QuEChERS and gas chromatography–tandem mass spectrometry. Sci. Rep. 2020, 10, 7042–7052. [Google Scholar] [CrossRef]
- Bella, G.D.; Potortì, A.G.; Tekaya, A.B.; Beltifa, A.; Mansour, H.B.; Sajia, E.; Bartolomeo, G.; Naccari, C.; Dugo, G.; Turco, V.L. Organic contamination of Italian and Tunisian culinary herbs and spices. J. Environ. Sci. Heal. B 2019, 54, 345–356. [Google Scholar] [CrossRef]
- Beneta, A.; Pavlović, D.M.; Periša, I.; Petrović, M. Multiresidue GC–MS/MS pesticide analysis for evaluation of tea and herbal infusion safety. Int. J. Environ. An. Chem. 2018, 98, 987–1004. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Wang, C.; Yang, J.; Han, G. Stable isotope labeling–assisted GC/MS/MS method for determination of methyleugenol in food samples. J. Sci. Food Agric. 2018, 98, 3485–3491. [Google Scholar] [CrossRef]
- Chen, H.; Ling, Y.; Zhang, F.; Liu, T.; Wang, J.-F.; Wu, H.-Q.; Hong, Y.-H.; Cheng, Y. Simultaneous detection of eight prohibited flavor compounds in foodstuffs using gas chromatography–tandem mass spectrometry. J. Food Prot. 2019, 82, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.D.G.; Galera, M.M.; Uclés, S.; Lozano, A.; Fernández-Alba, A.R. Ultrasound–assisted extraction based on QuEChERS of pesticide residues in honeybees and determination by LC–MS/MS and GC–MS/MS. Anal. Bioanal. Chem. 2018, 410, 5195–5210. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Pan, C.; Yang, J.; Zeng, S.; Han, Y. Dual–layer column filtration cleanup and gas chromatography–tandem mass spectrometry detection for the analysis of 39 pesticide residues in porcine meat. J. Sep. Sci. 2020, 43, 1306–1315. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y.; Nuñez, A. Analysis and occurrence of organophosphate esters in meats and fish consumed in the United States. J. Agric. Food Chem. 2019, 67, 12652–12662. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Zhang, M.; Zhu, L.; Chen, H.; Liu, X.; Lu, C. Facile synthesis of amine–functional reduced graphene oxides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi–pesticide residues analysis of tea. J. Chromatogr. A 2018, 1531, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Hao, W.; ‘Skip’ Kingston, H.M.; Dillard, A.; Stuff, J.; Pamuku, M. Quantification of persistent organic pollutants in dietary supplements using stir bar sorptive extraction coupled with GC–MS/MS and isotope dilution mass spectrometry. Food Addit. Contam. A 2020, 37, 1202–1215. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shan, J.; Kong, Z.; Fan, C.; Zhang, Z.; Fan, B. Determining multi–pesticide residues in teas by dispersive solid–phase extraction combined with speed–regulated directly suspended droplet microextraction followed by gas chromatography–tandem mass spectrometry. J. Sep. Sci. 2020, 43, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Barreira, L.M.F.; Duporté, G.; Rönkkö, T.; Parshintsev, J.; Hartonen, K.; Hyrsky, L.; Heikkinen, E.; Jussila, M.; Kulmala, M.; Riekkola, M.-L. Field measurements of biogenic volatile organic compounds in the atmosphere using solid–phase microextraction Arrow. Atmos. Meas Tech. 2018, 11, 881–893. [Google Scholar] [CrossRef] [Green Version]
- Khademi, S.M.S.; Salemi, A.; Jochmann, M.; Joksimoski, S.; Telgheder, U. Development and comparison of direct immersion solid phase micro extraction Arrow–GC–MS for the determination of selected pesticides in water. Microchem. J. 2021, 164, 106006. [Google Scholar] [CrossRef]
- Abdallah, O.I. Simultaneous determination of nine dinitroaniline herbicides in environmental samples using a validated vortex–assisted dispersive liquid–liquid microextraction procedure coupled with GC–MS/MS. Chem. Pap. 2020, 74, 2311–2326. [Google Scholar] [CrossRef]
- Meng, L.; Chen, S.; Zhu, B.; Zhang, J.; Mei, Y.; Cao, J.; Zheng, K. Application of dispersive liquid–liquid microextraction and GC–MS/MS for the determination of GHB in beverages and hair. J. Chromatogr. B 2020, 1144, 122058–122065. [Google Scholar] [CrossRef]
- Tan, J.; Lu, X.; Fu, L.; Yang, G.; Chen, J. Quantification of Cl–PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC–MS. Ecotox. Environ. Safe. 2019, 186, 109775–109784. [Google Scholar] [CrossRef] [PubMed]
- Rozentale, I.; Zacs, D.; Bartkiene, E.; Bartkevics, V. Polycyclic aromatic hydrocarbons in traditionally smoked meat products from the Baltic states. Food Addit. Contam. A 2018, 11, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Tavoloni, T.; Stramenga, A.; Stecconi, T.; Siracusa, M.; Bacchiocchi, S.; Piersanti, A. Single sample preparation for brominated flame retardants in fish and shellfish with dual detection: GC–MS/MS (PBDEs) and LC–MS/MS (HBCDs). Anal. Bioanal. Chem. 2020, 412, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Rozentale, I.; Zacs, D.; Perkons, I.; Bartkevics, V. A comparison of gas chromatography coupled to tandem quadrupole mass spectrometry and high–resolution sector mass spectrometry for sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in cereal products. Food Chem. 2017, 221, 1291–1297. [Google Scholar] [CrossRef]
- Zhao, L.; Szakas, T.; Churley, M.; Lucas, D. Multi–class multi–residue analysis of pesticides in edible oils by gas chromatography–tandem mass spectrometry using liquid–liquid extraction and enhanced matrix removal lipid cartridge cleanup. J. Chromatogr. A 2019, 1584, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wu, X.S.; Li, F.; Wang, W.; Ji, W.L.; Huo, Z.L.; Xu, Y. Simultaneous determination of 12 antibacterial drugs in cream disinfection products with EMR–Lipid cleanup using ultra–high–performance liquid chromatography tandem mass spectrometry. Anal. Methods 2019, 11, 4084–4092. [Google Scholar] [CrossRef]
- Ji, Y.; Cui, Z.; Li, X.; Wang, Z.; Zhang, J.; Li, A. Simultaneous determination of nine perfluoroalkyl carboxylic acids by a series of amide acetals derivatization and gas chromatography tandem mass spectrometry. J. Chromatogr. A 2020, 1622, 461132–461140. [Google Scholar] [CrossRef]
- Choi, S.J.; Jung, M.Y. Simple and fast sample preparation followed by gas chromatography–tandem mass spectrometry (GC–MS/MS) for the analysis of 2– and 4–methylimidazole in cola and dark beer. J. Food Sci. 2017, 82, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Abd El-Aty, A.M.; Shim, J.-H. Matrix enhancement effect: A blessing or a curse for gas chromatography? A review. Anal. Chim. Acta 2013, 801, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.P.; Midha, K.K.; Findlay, J.W.; Hill, H.M.; Hulse, J.D.; McGilveray, I.J.; McKay, G.; Miller, K.J.; Patnaik, R.N.; Powell, M.L.; et al. Bioanalytical method validation—A revisit with a decade of progress. Pharm. Res. 2000, 17, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Shendy, A.H.; Eltanany, B.M.; Al-Ghobashy, M.A.; Gadalla, S.A.; Mamdouh, W.; Lotfy, H.M. Coupling of GC–MS/MS to principal component analysis for assessment of matrix effect: Efficient determination of ultra–low levels of pesticide residues in some functional foods. Food Anal. Methods 2019, 12, 2870–2885. [Google Scholar] [CrossRef]
- Kittlaus, S.; Schimanke, J.; Kempe, G.; Speer, K. Assessment of sample cleanup and matrix effects in the pesticide residue analysis of foods using postcolumn infusion in liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 8399–8410. [Google Scholar] [CrossRef]
- Akutsu, K.; Yoshimitsu, M.; Kitagawa, Y.; Takatori, S.; Fukui, N.; Osakada, M.; Yamaguchi, S.; Kajimura, K.; Obana, H.; Watanabe, T. Evaluation of the matrix–like effect in multiresidue pesticide analysis by gas chromatography with tandem mass spectrometry. J. Sep. Sci. 2017, 40, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Albero, B.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J.L. Application of matrix solid–phase dispersion followed by GC–MS/MS to the analysis of emerging contaminants in vegetables. Food Chem. 2017, 217, 660–667. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Malandra, R.; Pessina, D.; Panseri, S.; Labella, G.F.; Arioli, F. Food safety traits of mussels and clams: Distribution of PCBs, PBDEs, OCPs, PAHs and PFASs in sample from different areas using HRMS–Orbitrap® and modified QuEChERS extraction followed by GC–MS/MS. Food Addit. Contam. A 2018, 35, 959–971. [Google Scholar] [CrossRef]
- Burket, S.R.; Sapozhnikova, Y.; Zheng, J.S.; Chung, S.S.; Brooks, B.W. At the intersection of urbanization, water, and food security: Determination of select contaminants of emerging concern in mussels and oysters from Hong Kong. J. Agric. Food Chem. 2018, 66, 5009–5017. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.C.; Luts, W.; Delerue-Matos, C.; Domingues, V.F. Improved QuEChERS for analysis of polybrominated diphenyl ethers and novel brominated flame retardants in capsicum cultivars using gas chromatography. J. Agric. Food Chem. 2020, 68, 3260–3266. [Google Scholar] [CrossRef]
- Solaesa, A.G.; Fernandes, J.O.; Sanz, M.T.; Benito-Román, Ó.; Cunha, S.C. Green determination of brominated flame retardants and organochloride pollutants in fish oils by vortex assisted liquid–liquid microextraction and gas chromatography–tandem mass spectrometry. Talanta 2019, 195, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Lin, S.-K.; Ceriani, F.; Panseri, S.; Arioli, F. Levels and distribution of PBDEs and PFASs in pork from different European countries. Food Addit. Contam. A 2018, 35, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Shao, H.; Zhou, T.; Xu, J.; Cao, X.; Mo, W. Analysis of organochlorine pesticides in tomatoes using a modified QuEChERS method based on n–doped graphitized carbon coupled with GC–MS/MS. Food Anal. Method 2020, 13, 823–832. [Google Scholar] [CrossRef]
- Fan, J.; Jin, Q.; He, H.; Ren, R.; Wang, S. Detection of 20 phthalate esters in different kinds of food packaging materials by GC–MS/MS with five internal standards. J. AOAC Int. 2019, 102, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Z.; Cong, J.; Wang, L.P.; Liu, Y.; Wang, X.C.; Xie, J. Determination of polychlorinated biphenyls in fish tissues from shanghai seafood markets using a modified QuEChERS method. Anal. Sci. 2017, 33, 973–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhang, Z.; Zhang, R.; Jiao, H.; Sun, A.; Shi, X.; Chen, J. Effective removal matrix interferences by a modified QuEChERS based on the molecularly imprinted polymers for determination of 84 polychlorinated biphenyls and organochlorine pesticides in shellfish samples. J. Hazard. Mater. 2020, 384, 121241–121251. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.F.; Escrivá, L.; Rodríguez-Carrasco, Y.; Moltó, J.C.; Berrada, H. Determination of trichothecenes in chicken liver using gas chromatography coupled with triple–quadrupole mass spectrometry. LWT 2018, 93, 237–242. [Google Scholar] [CrossRef]
- Szternfeld, P.; Marchi, J.; Malysheva, S.V.; Joly, L. Modular Method for the Determination of polycyclic aromatic hydrocarbons in spices and dried herbs by gas chromatography–tandem mass spectrometry. Food Anal. Method 2019, 12, 2383–2391. [Google Scholar] [CrossRef]
- Silva, M.C.D.; Oliveira, M.L.G.; Augusti, R.; Faria, A.F. Simultaneous extraction of pesticides and polycyclic aromatic hydrocarbons in brazilian cachaça using a modified QuEChERS method followed by gas chromatography coupled to tandem mass spectrometry quantification. J. Agric. Food Chem. 2019, 67, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.H.; Fromberg, A. Monochloropropanediol and glycidyl esters in infant formula and baby food products on the Danish market: Occurrence and preliminary risk assessment. Food Control. 2020, 110, 106980–106988. [Google Scholar] [CrossRef]
- Xian, Y.; Wu, Y.; Dong, H.; Liang, M.; Wang, B.; Wang, L.; Bai, W.; Zeng, X.; Qian, M.; Zhao, X. Ice–bath assisted sodium hydroxide purification coupled with GC–MS/MS analysis for simultaneous quantification of ethyl carbamate and 12 N–nitrosoamines in yellow rice wine and beer. Food Chem. 2019, 300, 125200–125209. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, L.; Luo, F.; Zhang, X.; Sun, H.; Yang, M.; Lou, Z.; Chen, Z. 9,10–Anthraquinone deposit in tea plantation might be one of the reasons for contamination in tea. Food Chem. 2018, 244, 254–259. [Google Scholar] [CrossRef]
Food Groups | Food Matrices | Analyte | Preparation Method | Limit of Detection | Limit of Quantitation | Recoveries | RSD | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Animal origin food | Beer | Acetaldehyde, acrolein, ethyl carbamate, formaldehyde | Headspace (HS)-Solid-phase microextraction (SPME) | 0.03−0.5 μg/L | 1.0−2.5 μg/L | 90−105% | 0.9−12.0% | [8] | |
Fish products | 6 polycyclic aromatic hydrocarbons (PAHs) | Dynamic HS (DHS) extraction | – | 0.01–0.60 ng/g/dw | 13−62% | – | [4] | ||
Grilled meat samples | 16 PAHs | SPME | 0.02−1.66 ng/L | 0.07–5.52 ng/L | 85.1–102.8% | 2.6–8.5% (intra-day), 4.5–9.4% (inter-day) | [9] | ||
Aquatic products | Polychlorinated biphenyls (PCBs) | SPME | 0.07–0.35 ng/L | − | 87.1–99.7% | 3.8–9.7% | [10] | ||
Fish samples | Synthetic musk fragrances | SPME Arrow | 0.5–2.5 ng/g | 2.5–5 ng/g | − | <23% | [12] | ||
Seafood species | Benzothiazoles | Subcritical water extraction | SPME | 1 and 10 ng/g (dw) for hake, 0.5 and 10 ng/g (dw) for salmon | 5–50 ng/g (dw) | 2–20% | <21% | [7] | |
Vegetables | Tomatoes, cucumbers and lettuce | 11 Phthalate esters | SPME | 0.001–0.430 μg/L | – | >95.2% | <10.8% | [2] | |
Beverages | Tea | 128 Pesticide multi-residue | HS-SPME | – | 1–5 μg/kg | 70–120% | <20% | [3] | |
Liquor, beer, wine, vinegar, tincture | Parabens, phenolic antioxidants, sulfonamide plasticizer, and flame retardant | SPME | 0.005–0.2 μg/L | 0.01–0.5 μg/L | 98–109% | 0.8–5.4% | [13] |
Food groups | Food Matrices | Analyte | Preparation Method | Limit of Detection | Limit of Quantitation | Recoveries | RSD | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Extraction | Clean-up | ||||||||
Animal origin food | Catfish | 219 Pesticides and metabolites (178 pesticides and 41 environmental contaminants) | QuEChERs | SPE | <50 ng/g for 90% analytes | 1–20 ng/g | 70−120% for 80% analytes | <20% for 80% analytes | [33] |
Fish, shrimp and shellfish | Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) | Matrix solid-phase dispersion (MSPD) | 0.011–0.046 ng/g | 0.037–0.153 ng/g | 70–120% | <20% | [28] | ||
Bivalve shellfish samples | Amide/Dinitroaniline/Substituted Urea Herbicides | QuEChERS | – | 0.3–8.88 μg/kg | 81–109% | <8% | [51] | ||
Egg (egg white, egg yolk, and whole egg) | Dinitolmide residue and its metabolite | ASE | 0.8–2.8 μg/kg | 3.0–10.0 μg/kg | >80% | 2.96–5.21% (intra-day) 3.94–6.34% (inter-day) | [20] | ||
Chicken eggs | 80 Pesticides | Acetonitrile with 5% formic acid | Bond elute enhanced matrix removal-lipid | 0.02−9.725 µg/kg | 0.066–30.261 µg/kg | 65.3–124% | 4.3−24% | [32] | |
Poultry egg (whole egg, albumen and yolk) | Spectinomycin and lincomycin | ASE | SPE | 2.3−4.3 μg/kg | 6.0−9.5 μg/kg | 80.0−95.7% | 1.0−3.4% | [34] | |
Meat (chicken, pork, and beef) and fish (catfish and salmon) | Organophosphate esters (OPEs) | QuEChERS | Automated robotic clean-up | – | 0.5−1 ng/g | 70−120% | ≤20% | [86] | |
Chicken tissues | Dinitolmide and its metabolite | ASE | SPE | 0.8–2.5 μg/kg | 2.7–8.0 μg/kg | 81.96–94.31% | 1.72–5.37% | [35] | |
Meats and poultry | 200 pesticides and 65 environmental contaminants | QuEChERS | SPE | – | <5 ng/g (for 90% analytes) | 70–120% | ≤20% | [36] | |
Raw propolis | 14 Lipophilic pesticides | n-hexane | SPE | – | 0.002–0.020 μg/g | 61.0–106.8% | ≤ 16.9% | [37] | |
10 Beeswax samples | 160 Pesticides | Acetonitrile–ethyl acetate (1:3, v/v) | – | <20 μg/kg | 80−110% for most analytes | <8% for most analytes | [18] | ||
Honeybees | Pesticide residues | USE | QuEChERS | – | 5 μg/kg | 70–120% | <20% | [84] | |
122 Honey samples | 53 Pesticide residues | QuEChERS | 0.001–0.01 mg/kg | 70.0–120.0% | ≤20% | [52] | |||
Organic honeys | POPs, pesticides and antibiotic residues | QuEChERS | – | 7.15–9.80 ng/g | 82–120% | <20% | [53] | ||
Bovine milk | 78 Drugs and 238 pesticides | QuEChERS | − | 0.1–10 ng/g | 70–120% | <20% | [54] | ||
Hen eggs | 60 Pesticides | QuEChERS | 0.001–0.004 mg/kg | <10 µg/kg for 83% analytes | 70–120% | <20% | [50] | ||
Porcine meat | 39 Pesticide residues | QuEChERS | Rapid multiplug filtration clean-up (m–PFC) | – | 0.01 mg/kg except pyrimethanil | 74–118% except pyrimethanil | 1−16% | [85] | |
Grain, Vegetables and fruits | 207 Vegetable samples | 10 New–generation pesticides | MAE | 1.4–3.6 ng/g | – | 80–111% | <11% | [21] | |
249 Grain, beans, fruit and vegetables samples | 365 Pesticide residues | acetonitrile | SPE | 0.0001–0.0414 mg/kg | 0.0002–0.1367 mg/kg | 70–120% for 95% analytes | <20% | [39] | |
Mangoes | 113 Pesticides | QuEChERS | <4 μg/kg | <10.0 μg/kg | 70–120% | <20% | [55] | ||
Pigeonpea grains | 79 Pesticides | QuEChERS | 0.53–3.97 µg/kg | 1.60–10.05 µg/kg | 70–120% | <15% | [48] | ||
Apples; mangos; strawberries; cucumbers and tomatoes | 41 Triazines and pyrethroids residues | QuEChERS | 0.03 − 10.22 μg/kg | – | – | – | [56] | ||
Fruits (apple and grapes) and vegetables (apple, grapes, cauli–flower, cabbage, peas, potato) | Cypermethrin, chlorpyrifos, methyl parathion, ethion, captan, malathion, and triazophos | QuEChERS | 0.0011–0.012 μg/kg | 0.0012–0.035 mg/kg | 94–99% | 3.3–8.1% | [57] | ||
69 Fruits and vegetables samples | 203 Pesticides | QuEChERS | – | 2 μg/kg | 70–120% in tomato, apple, and orange for 97% compounds. low recoveries for orange | <20% except for biphenyl, butylate, chlozolinate, and pyrifenox; <20% (inter-day) for 97% analytes | [58] | ||
Chinese vegetables and fruits | Pyrethroid pesticides | QuEChERS | 0.3–4.9 μg/kg | ~10 μg/kg | 78.8–118.6% | <14.8% | [59] | ||
Tomato | 9 Dinitroaniline herbicides | Vortex-assisted dispersive liquid–liquid microextraction (VA-DLLME) | 0.3–3.3 µg/L | 2–10 µg/kg | 64.1–87.9% | ≤15.1% (inter-day) | [90] | ||
Tomatoes | 20 Pesticides | QuEChERS | 2.6–31.3 μg/kg | 6.9–93.8 μg/kg | 72.5–119.7% | 1.17–14.62% | [60] | ||
Garlic, onion, and sugar beet | Total ethofumesate residues | SPE | 0.0005 mg/kg | 0.01 mg/kg | 94−113% | 1.8−5.7% | [61] | ||
Vegetables | 14 Pyrethroids | QuEChERS | – | 2–10 μg/kg in tea, 2 μg/kg In tomato, pear, and zucchini | – | – | [62] | ||
16 Common bean samples | 142 Pesticide residues | QuEChERs | – | 20–100 µg/kg | 70−120% for 61.4% analytes | <20% for 61.4% analytes | [63] | ||
211 Vegetable samples | 12 Pesticide residues | QuEChERS | 0.0005–0.0023 mg/kg | 0.0009–0.0047 mg/kg | 74–120% at 0.01 mg/kg, 75–123% mg/kg | 2–9% at 0.01 mg/kg, 0.5–16 mg/kg | [64] | ||
Greenhouse strawberries | 16 Pesticide residues | QuEChERS | 0.1–0.8 µg/kg | 0.3–2.8 µg/kg | 80.7–117.2 µg/kg | 0.6–14.6% | [65] | ||
Dried fruits | 38 Multi-class pesticides | QuEChERS | – | 0.02–5 µg/kg | 70–120% | <20% for 92% samples | [66] | ||
Beverages | Tea | Pyrethroid insecticides | magnetic SPE | 0.0065–0.1017 µg/L | – | – | <9.7% (intra-day), <11.95% (inter-day) | [31] | |
Chinese liquor and liquor–making raw materials (sorghum and rice hull) | 124 Pesticide residues | d–SPE | 0.00003–0.015 mg/kg | 0.0001–0.05 mg/kg | 71–121% | <16.8% except cyprodinil, di-flufenican and prothioconazole | [44] | ||
Tea | 131 Pesticides | d-SPE | 0.5–5.0 µg/kg | 1.5–16.7 µg/kg | 78.2–113.9% | <15.8% | [45] | ||
Tea | 11 Pesticides | d-SPE | 0.10–2.10 µg/kg | 0.29–6.20 µg/kg | 73.4–106.4% | 1.9–6.6% (within-run precision), 12.1% (between-run precision) | [46] | ||
38 Tea samples | 45 Pesticide residues | d-SPE | Speed-regulated directly suspended droplet microextraction (SR-DSDME) | – | 0.1−47 µg/kg | 70–120% | <20% | [90] | |
Green tea | 203 Pesticide residues | QuEChERS | SPE | 0.33–16.67 μg/kg | 1–50 μg/kg | 70−120% for most analytes | <20% for most analytes | [38] | |
Oil | Soybean | 203 Pesticides | SPE | – | <0.01 mg/kg | 70–120% | <20% | [25] | |
Edible oils | Organophosphorus pesticide residues (OPPs) | QuEChERS | 0.16−1.56 ng/g | 0.61−5.00 ng/g | 81.1−113.5% | <8.2 (intra–day) <13.9% (inter–day) | [67] | ||
Edible oils | Pesticides | LLE | Enhanced matrix removal (EMR)-lipid cartridge | – | 1 ng/g | 70–120% | <20% | [22] | |
Sugar | Sugarcane | Fipronil and its metabolites | QuEChERS | 0.0015–0.002 µg/g | 0.005 µg/g | 80.7–98.5% | 1.80–12.81% (intra–day), 1.2–16.5% (inter–day) | [68] | |
Medicinal plants | Lycium barbarum (goji) | 6 Active ingredients of pyrethrins | SPE | 0.24–2.1 µg/kg | 0.8–7 µg/kg | 88.3–111.5% | 0.4–8.3% | [26] | |
Panax notoginseng (Burk) F.H.Chen root | Pesticide residues | QuEChERS | 0.0015 mg/kg | 0.005 mg/kg | 94–125% for quintozene, 84–119% for hexachlorobenzene (HCB) | 6.2–16.1% | [69] | ||
Chenpi | 133 Pesticide residues | QuEChERS | – | 0.005–0.01 mg/kg | 70–112.2% | 0.2–14.4% | [70] | ||
Notoginseng Radix et Rhizome | 116 Pesticide residues | QuEChERS | – | 0.01–0.05 mg/kg | 64.3–119.4% | <18.3% | [71] | ||
Dried Herbs | 235 Pesticides | QuEChERs | 0.0003–0.0007 mg/kg | 0.001–0.002 mg/kg | 70–120% | <20% | [72] | ||
Herbal species–ready application | 201 Pesticides | QuEChERS | – | ≤10 ng/mL | 70.0–120.0% | ≤20% | [73] | ||
Cardamom | 243 Pesticide residues | QuEChERS | – | 10 mg/kg | 70.0–120% | <20% | [74] | ||
Condiment | Capsicum annum | Chlorantraniliprole | QuEChERS | 0.005 mg/kg | 0.01 mg/kg | 85–91% | <2% (intra-day and inter-day) | [76] | |
Pepper, chili peppers and its sauce product | 47 Pesticide residues | QuEChERS | – | 0.01 mg/kg | 70–120% (except for pyrimethanil) | <17% | [77] | ||
Edible fungi | Edible mushrooms | 10 Pyrethroid insecticides | QuEChERs | 0.015−1.67 μg/kg | 0.051−5.57 μg/kg | 72.8–103.6% | <13% | [78] | |
Condiment and medicinal plants | Spices and herbs | 140 Organic contamination | QuEChERS | 0.04–5.20 ng/g | 0.08–17.19 ng/g | 80–137% | <20% | [79] | |
Muti-matrices | Tea and herbal infusion | 300 Pesticides | QuEChERS | 0.018–40 µg/kg | 0.06–135 µg/kg | 70–120% | <20% | [80] | |
Dried herbs and dried fruit | 236 Pesticides | QuEChERS | 0.001 mg/kg | 0.005 mg/kg | 62–125% | 1–19% | [81] | ||
Beverages, ‘pesto’ sauces, meat preparation | Methyleugenol | QuEChERS | 0.4 μg/kg | 1 μg/kg | 94.29–100.27% | <9% | [82] | ||
Beef jerky, cod liver oil, candy | 8 Prohibited flavor compounds | QuEChERS | 0.005−0.2 μg/kg | 0.03−0.8 μg/kg | 80.2–110.6% (beef jerky), 82.3–94.1% (cod liver oil), 83.6–104.1% (candy) | − | [83] |
Food Type | Sample | Analyte | Preparation Method | Limit of Detection | Limit of Quantitation | Recoveries | RSD | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Extraction | Clean-up | ||||||||
Animal origin food | Fish | Persistent organic pollutants (POPs) | Accelerated solvent extraction (ASE) | – | 0.01–4.44 ng/g | 70–120% | <20% | [19] | |
Fish | POPs | Hexane–acetone | Florisil and silica gel | 0.001–0.040 ng/g | 0.004–0.12 ng/g | 60–127% | ≤20% | [17] | |
Sea fish | Dihydroxylated PBDEs | Pressurized liquid extraction (PLE) | Florisil cartridge | 3.98–38.74 pg/g | 11.95–116.22 pg/g | 19–101% in 10 ng, 28–88% in 20 ng, 42–90% in 40 ng | – | [23] | |
77 Smoked meat products | PAHs | Extracted by dichlormethane/hexane | Gel permeation chromatography (GPC) | 0.02–0.03 µg/kg | 0.06–0.09 µg/kg | 97–115% | 3–9% (intra-day), 6–9% (inter-day) | [95] | |
Fish shellfish and muscle of terrestrial animals | PBDEs and hexabromocyclododecanes (HBCDs) | QuEChERS | GPC | – | 10 pg/g, for BDE-206; 100 pg/g for BDE-209 | 72–97% | 9–22% | [96] | |
5 Kinds of marine products | 9 Pefluoroalkyl carboxylic acids (PCAs) | Alkaline digestion | SPE | 0.04–0.10 ng/g | – | 54.72−107.29% | 1.53−11.89% | [100] | |
233 Fish and aquatic invertebrate samples | 6 Polychlorinated biphenyls (PCBs) | QuEChERs | 3–13 ng/g | 9–40 ng/g | 75–113% | 2–12% | [116] | ||
Mussels and clams | PCBs, Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), PAHs, and perfluoroalkyl substances (PFASs) | QuEChERS | – | 0.5–5 ng/g | 70–120% | <20% | [108] | ||
Marine bivalves | 211 Analytes, including pesticides, PCBs, PAHs, PBDEs, and other flame retardants | QuEChERS | – | 0.2–10 μg/kg | 80–120% | – | [109] | ||
Shellfish samples | 84 PCBs and OCPs | QuEChERS | 0.004–2.705 μg/kg | 0.01–9.02 μg/kg | 70–120% | <10% | [117] | ||
Pork | PBDEs and PFASs | QuEChERS | 5–50 pg/g | 15–150 pg/g | 80–119% | 6–19% (intra-day), 9–20% (inter-day) | [112] | ||
Plastic packaged baby food samples | Bisphenols (BPs) | Liquid extraction | Dispersive sorbents | 0.1–1 ng/g | 0.5–4 ng/g | 91–110% | <13% | [114] | |
Chicken meat and edible offal | 8 Trichothecenes | QuEChERS | 0.05–0.15 μg/g | 0.25–0.75 μg/kg | 85.1–108.4% | <8% | [118] | ||
60 Infant formula and baby foodproducts | Monochloropropanediol (MCPDEs) and glycidol (GEs) | SPE | 0.1−0.6 µg/kg | 1, 2, and 1.2 μg/kg in baby food; 1.2, 1, and 0.5 μg/kg in infant formula | 91−106% for baby food; 94−99% for infant formula | 1.2−7.8% | [121] | ||
Milk and milk powder | Sodium fluoroacetate (1080) | SPE | 0.0013–0.0025 µg/kg | 0.0042–0.0085 µg/kg | 90–105% | <6% | [40] | ||
Milk | Hexamethylenetetramine (HMT) | Magnetic molecularly imprinted polymers | 0.3 μg/kg | 1.0 μg/kg | 88.7–111.4% | 2.6–5.2% (intra-day), 3.6–11.5 (inter-day) | [30] | ||
Grains, vegetables and fruits | Wheat flour samples | Bifenox, dichlobenil and diclofop methyl | MSPE | 0.39 ng/g (DCB), 0.24 ng/g (BFO), 0.68 ng/g (DCM) | 1.33 ng/g (DCB), 0.76 ng/g (BFO), 2.18 ng/g (DCM) | 88.8–96.6% | <3.5% | [27] | |
Cereal products | Sum of BaP, benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and chrysene (Chr) | Extracted dichlormethane/hexane (1:1, v/v) | GPC | 0.002–0.006 μg/kg | 0.07–0.75 μg/kg | 92–103% | 4–19% | [97] | |
12 Commercially available plant extract-based dietary supplement samples | 21 POPs | Stir-bar sorptive extraction (SBSE) | – | 0.00899−0.0931 ng/g | – | 4.48−12.9% | [89] | ||
Vegetables | 17 Emerging contaminants | Ultrasound-assisted matrix solid-phase dispersion (UAE-MSPD) | 0.1–0.4 ng/g | 0.1–0.8 ng/g | 55–138% | ≤13% (intra-day), ≤16% (inter-day) | [47] | ||
Tomatoes | 20 Organochlorine pesticides | QuEChERS | 0.001–0.1 μg/kg | 0.01–0.33 µg/kg | 71.2–95.3% | <20% | [113] | ||
Carrots, turnips and potatoes | Bisphenol A, its chlorinated derivatives and structural analogues | Focused ultrasound solid–liquid extraction | Dispersive solid-phase extraction (d-SPE) | 0.02–0.33 ng/g/dw | 0.05–1 ng/g/dw | 74–105 % | <12% | [115] | |
Condiment | Capsicum cultivars | 12 Brominated flame retardants (BFRs) | QuEChERS | 1.4–9.3 μg/kg | 4.6–30.9 µg/kg | 66–104% | <20% | [110] | |
Oils | Edible Oils | PAHs | d-SPE | 0.06–0.21 μg/kg | 0.19–0.71 μg kg−1 | 98–108% | 2–5% (intra-day), 4–6% (inter-day) | [49] | |
Edible Oils | PAHs | d-SPE | 0.06–0.21 μg/kg | 0.19–0.71 μg/kg | 98–108% | 2–5% (intra-day), 4–6% (inter-day) | [107] | ||
Fish oils | BFRs and organochloride pollutants | Vortex assisted liquid–liquid microextraction (VALLME) technique | 0.2–0.7 ng/g | – | 76–90% | <20% | [111] | ||
Beverages | 30 Tea samples | 38 PCBs | d-SPE | 0.1–2.9 μg/kg | 2.0–10 μg/kg | 73−113% | 5−20% | [49] | |
54 Beverages | Gamma-hydroxybutyrate (GHB) | Dispersive liquid–liquid microextraction (DLLME) | 0.5 ng/mL | – | 78.2−84.7% | 4.9−5.7% | [93] | ||
Beverage samples | 15 PAEs | SPE | 0.005–2.748 µg/L | 0.018–9.151 µg/L | 79.3–121.8% | <8.8% (intra–day),<9.9% (inter-day) | [15] | ||
Brazilian Cachaça | 93 Pesticides and 6 PAHs | QuEChERS | 2.5 µg/L | 10.0 µg/L | 86.7–118.2% | ≤20% | [120] | ||
Yellow rice wine | Ethyl carbamate (EC) and N-nitrosoamines (NAs) | Ice bath-assisted sodium hydroxide purification | 0.1–0.5 μg/kg | 0.5–1.5 μg/kg | 81.5–121% | 2.2–9.4% (intra-day), 1.6–7.9% (inter-day) | [122] | ||
Tea | 9,10-Anthraquinone (AQ) | Solvent extraction | 10 μg/kg (tea shoots, tea), 0.4 μg/L (tea brew) | 0.01 mg/kg (tea shoots, tea), 0.4 mg/kg (tea brew) | 87.0–110.8% | 2.3–14.6% | [123] | ||
Medicinal plants | Ginseng | 5 Organochlorine pesticide | LLE | – | 0.02–0.12 µg/L in liquid samples, 0.001–0.004 μg/kg in solid samples | 70.3–85.6% in liquid samples, 83.4–106.9% in solid samples | – | [14] | |
Muti-matrices | Spices and dried herbs | PAHs | SPE | 0.25 μg/kg | 0.5 μg/kg | close to 100% | <22% | [119] | |
Cow milk, plastic bottled beverage, and edible oil | PAEs | SPE | 0.15–1.64 ng/g | – | 73.7–98.1% | 1.7–10.2%. | [41] | ||
Food Packaging Materials | Food Packaging Materials | 20 PAEs | Solvent extraction | 1.7–62.5 µg/kg | 5.5–208.3 µg/kg | 82.1–110.8% | 0.3–9.7%. | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.-L.; Gao, Y.; Wang, X.; Han, X.X.; Zhao, B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends. Foods 2021, 10, 2473. https://doi.org/10.3390/foods10102473
Xu M-L, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends. Foods. 2021; 10(10):2473. https://doi.org/10.3390/foods10102473
Chicago/Turabian StyleXu, Meng-Lei, Yu Gao, Xiao Wang, Xiao Xia Han, and Bing Zhao. 2021. "Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends" Foods 10, no. 10: 2473. https://doi.org/10.3390/foods10102473
APA StyleXu, M.-L., Gao, Y., Wang, X., Han, X. X., & Zhao, B. (2021). Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends. Foods, 10(10), 2473. https://doi.org/10.3390/foods10102473