Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications
Abstract
:1. Introduction
2. Plant Polyphenols
3. Polyphenolic Antimicrobials
3.1. Flavonoids
3.1.1. Flavones
3.1.2. Flavonols
3.1.3. Flavanones
3.1.4. Flavanols
3.1.5. Chalcones
3.2. Non-Flavonoids
3.2.1. Phenolic Acids
3.2.2. Stilbenes
3.2.3. Lignans
3.2.4. Coumarins
3.2.5. Tannins
3.2.6. Quinones
3.2.7. Curcuminoid and Xanthanoids
4. Technological Applications
4.1. Direct Incorporation
4.2. Encapsulation
4.3. Edible Films and Coatings
4.4. Food Packaging
5. Other Trends
6. Challenges in the Application to Food Industry
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nascimento, K.; Paes, S.N.D.; Augusta, I.M. A review ‘Clean Labeling’: Applications of natural ingredients in bakery products. J. Food Nutr. Res. 2018, 6, 285–294. [Google Scholar] [CrossRef]
- Tomadoni, B.; Viacava, G.; Cassani, L.; Moreira, M.d.R.; Ponce, A. Novel biopreservatives to enhance the safety and quality of strawberry juice. J. Food Sci. Technol. 2016, 53, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Bukvički, D.; Stojković, D.; Soković, M.; Vannini, L.; Montanari, C.; Pejin, B.; Savić, A.; Veljić, M.; Grujić, S.; Marin, P.D. Satureja horvatii essential oil: In vitro antimicrobial and antiradical properties and in situ control of Listeria monocytogenes in pork meat. Meat Sci. 2014, 96, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- WHO. Estimating the Burden of Foodborne Diseases. 2020. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 14 October 2021).
- Akila, P.; Price, L.; Bharathidasan, R.; Krishnapriya, K. Antibacterial activity of herbal plants. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 681–688. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcus, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Liao, N.; Sun, L.; Wang, D.; Chen, L.; Wang, J.; Qi, X.; Zhang, H.; Tang, M.; Wu, G.; Chen, J.; et al. Antiviral properties of propolis ethanol extract against norovirus and its application in fresh juices. LWT-Food Sci. Technol. 2021, 152, e112169. [Google Scholar] [CrossRef]
- Aguiar, J.; Estevinho, B.N.; Santos, L. Microencapsulation of natural antioxidants for food application–The specific case of coffee antioxidants–A review. Trends Food Sci. Technol. 2016, 58, 21–39. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Lee, J.; Chen, W.N. Potential natural food preservatives and their sustainable production in yeast: Terpenoids and polyphenols. J. Agric. Food Chem. 2019, 67, 4397–4417. [Google Scholar] [CrossRef]
- Gutiérrez-del-Río, I.; Fernández, J.; Lombó, F. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. Int. J. Antimicrob. Agents 2018, 52, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Panića, M.; Stojković, M.R.; Kraljić, K.; Škevin, D.; Redovniković, I.R.; Srček, V.G.; Radošević, K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Mitsagga, C.; Giavasis, I.; Petrotos, K.; Lampakis, D.; Leontopoulos, S.; Hadjichristodoulou, C.; Tsakalof, A. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. J. Food Meas. Charact. 2019, 13, 2017–2031. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-R.; Shi, Q.-S.; Liang, Q.; Xie, X.-B.; Huang, X.-M.; Chen, Y.-B. Antibacterial Activity and Kinetics of Litsea cubeba Oil on Escherichia coli. PLoS ONE 2014, 9, e110983. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.-X.; Ngadjui, B.T.; Abegaz, B.M. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol. 2008, 116, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, T.; Wang, K.; Hou, C.; Cai, S.; Huang, Y.; Du, Z.; Huang, H.; Kong, J.; Chen, Y. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS ONE 2016, 11, e0153468. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, Y.; Yang, F.; Meng, Q. Synthesis and molecular docking studies of chrysin derivatives as antibacterial agents. Med. Chem. Res. 2017, 26, 2225–2234. [Google Scholar] [CrossRef]
- Babu, K.S.; Babu, T.H.; Srinivas, P.V.; Kishore, K.H.; Murthy, U.S.N.; Rao, J.M. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett. 2006, 16, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, X.; Li, W.; Zhang, H.; Zhang, B.; Li, G.; Liu, B.; Deng, X.; Peng, L. Diosmetin inhibits the expression of alpha-hemolysin in Staphylococcus aureus. Antonie Van Leeuwenhoek 2015, 108, 383–389. [Google Scholar] [CrossRef]
- Chan, B.C.L.; Ip, M.; Gong, H.; Lui, S.L.; See, R.H.; Jolivalt, C.; Fung, K.P.; Leung, P.C.; Reiner, N.E.; Lau, C.B.S. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine 2013, 20, 611–614. [Google Scholar] [CrossRef]
- Kuete, V.; Simo, I.K.; Ngameni, B.; Bigoga, J.D.; Watchueng, J.; Kapguep, R.N.; Etoa, F.-X.; Tchaleu, B.N.; Beng, V.P. Antimicrobial activity of the methanolic extract, fractions and four flavonoids from the twigs of Dorstenia angusticornis Engl. (Moraceae). J. Ethnopharmacol. 2007, 112, 271–277. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 2012, 17, 7284–7293. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xie, M. Antibacterial activity and mechanism of luteolin on Staphylococcus aureus. Wei Sheng Wu Xue Bao Acta Microbiol. Sin. 2010, 50, 1180–1184. [Google Scholar]
- Dzoyem, J.P.; Hamamoto, H.; Ngameni, B.; Ngadjui, B.T.; Sekimizu, K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov. Ther. 2013, 7, 66–72. [Google Scholar]
- Sklenickova, O.; Flesar, J.; Kokoska, L.; Vlkova, E.; Halamova, K.; Malik, J. Selective growth inhibitory effect of biochanin a against intestinal tract colonizing bacteria. Molecules 2010, 15, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Fazlara, A.; Mohammadi, S. Comparing the antimicrobial effectiveness of genistein and daidzein on some food-borne pathogen bacteries. Iran. Vet. J. 2014, 9, 55–62. [Google Scholar]
- Verdrengh, M.; Collins, L.V.; Bergin, P.; Tarkowski, A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 2004, 6, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tanaka, H.; Tani, N.; Nagayama, M.; Yamaguchi, R. Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2006, 43, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Hamilton, V.E.S.; Chapman, D.G.; Taylor, P.W.; Lamb, A.J. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol. 2007, 103, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Ming, D.; Wang, D.; Cao, F.; Xiang, H.; Mu, D.; Cao, J.; Li, B.; Zhong, L.; Dong, X.; Zhong, X.; et al. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus aureus. Front. Microbiol. 2017, 8, 2263. [Google Scholar] [CrossRef] [Green Version]
- Sivaranjani, M.; Gowrishankar, S.; Kamaladevi, A.; Pandian, S.K.; Balamurugan, K.; Ravi, A.V. Morin inhibits biofilm production and reduces the virulence of Listeria monocytogenes—An in vitro and in vivo approach. Int. J. Food Microbiol. 2016, 237, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Abirami, G.; Alexpandi, R.; Durgadevi, R.; Kannappan, A.; Veera Ravi, A. Inhibitory effect of morin against Candida albicans pathogenicity and virulence factor production: An in vitro and in vivo approaches. Front. Microbiol. 2020, 11, 2320. [Google Scholar] [CrossRef]
- Pinto, H.B.; Brust, F.R.; Macedo, A.J.; Trentin, D.S. The antivirulence compound myricetin possesses remarkable synergistic effect with antibacterials upon multidrug resistant Staphylococcus aureus. Microb. Pathog. 2020, 149, 104571. [Google Scholar] [CrossRef]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2017, 81, 68–78. [Google Scholar] [CrossRef]
- Erhabor, R.C.; Aderogba, M.A.; Erhabor, J.O.; Nkadimeng, S.M.; McGaw, L.J. In vitro bioactivity of the fractions and isolated compound from Combretum elaeagnoides leaf extract against selected foodborne pathogens. J. Ethnopharmacol. 2021, 273, 113981. [Google Scholar] [CrossRef]
- Al-Shabib, N.A.; Husain, F.M.; Ahmad, I.; Khan, M.S.; Khan, R.A.; Khan, J.M. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 2017, 79, 325–332. [Google Scholar] [CrossRef]
- Navrátilová, A.; Nešuta, O.; Vančatová, I.; Čížek, A.; Varela, M.R.E.; López-Abán, J.; Villa-Pulgarin, J.A.; Mollinedo, F.; Muro, A.; Žemličková, H. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. Pharm. Biol. 2016, 54, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- Parkar, S.G.; Stevenson, D.E.; Skinner, M.A. The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol. 2008, 124, 295–298. [Google Scholar] [CrossRef]
- Song, H.-S.; Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Kim, H.J.; Park, Y.-L.; Han, Y.-H.; Park, J.Y.; Lee, S.M.; Park, S.L. Naringenin as an antibacterial reagent controlling of biofilm formation and fatty acid metabolism in MRSA. bioRxiv 2020. [Google Scholar] [CrossRef]
- Soromou, L.W.; Zhang, Y.; Cui, Y.; Wei, M.; Chen, N.; Yang, X.; Huo, M.; Baldé, A.; Guan, S.; Deng, X.; et al. Subinhibitory concentrations of pinocembrin exert anti-Staphylococcus aureus activity by reducing α-toxin expression. J. Appl. Microbiol. 2013, 115, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grecco, D.S.; Dorigueto, A.C.; Landre, I.M.; Soares, M.G.; Martho, K.; Lima, R.; Pascon, R.C.; Vallim, M.A.; Capello, T.M.; Romoff, P. Structural crystalline characterization of sakuranetin—An antimicrobial flavanone from twigs of Baccharis retusa (Asteraceae). Molecules 2014, 19, 7528–7542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathima, A.; Rao, J.R. Selective toxicity of Catechin—A natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 2016, 100, 6395–6402. [Google Scholar] [CrossRef]
- Cetin-Karaca, H.; Newman, M.C. Antimicrobial efficacy of natural phenolic compounds against gram positive foodborne pathogens. J. Food Res. 2015, 4, 14. [Google Scholar] [CrossRef]
- Shah, S.; Stapleton, P.D.; Taylor, P.W. The polyphenol (−)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus. Lett. Appl. Microbiol. 2008, 46, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochem. 2015, 79, 845–854. [Google Scholar] [CrossRef]
- Messier, C.; Grenier, D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses 2011, 54, e801–e806. [Google Scholar] [CrossRef]
- Zhou, T.; Deng, X.; Qiu, J. Antimicrobial activity of licochalcone E against Staphylococcus aureus and its impact on the production of staphylococcal alpha-toxin. J. Microbiol. Biotechnol. 2012, 22, 800–805. [Google Scholar] [CrossRef]
- Wang, L.; Bi, C.; Cai, H.; Liu, B.; Zhong, X.; Deng, X.; Wang, T.; Xiang, H.; Niu, X.; Wang, D. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front. Microbiol. 2015, 6, 1031. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Lee, D.G. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli. Free Radic. Res. 2018, 52, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.M.; Couto, J.A.; Hogg, T.A. Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J. Appl. Microbiol. 2003, 94, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, X.; Sun, Y.; Yang, M.; Song, K.; Zheng, Z.; Chen, Y.; Liu, X.; Jia, Z.; Dong, R. Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action. Foodborne Pathog. Dis. 2016, 13, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Miyague, L.; Macedo, R.E.F.; Meca, G.; Holley, R.A.; Luciano, F.B. Combination of phenolic acids and essential oils against Listeria monocytogenes. LWT-Food Sci. Technol. 2015, 64, 333–336. [Google Scholar] [CrossRef]
- Keman, D.; Soyer, F. Antibiotic-Resistant Staphylococcus aureus Does Not Develop Resistance to Vanillic Acid and 2-Hydroxycinnamic Acid after Continuous Exposure in Vitro. ACS Omega 2019, 4, 15393–15400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famakin, J.; Katerere, D. Isolation of an antibacterial stilbene from Combretum woodii (Combretaceae) leaves. Afr. J. Biotechnol. 2005, 4, 1167–1171. [Google Scholar]
- Wu, J.; Li, B.; Xiao, W.; Hu, J.; Xie, J.; Yuan, J.; Wang, L. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity. Int. J. Antimicrob. Agents 2020, 55, 105821. [Google Scholar] [CrossRef]
- Ma, D.S.L.; Tan, L.T.-H.; Chan, K.-G.; Yap, W.H.; Pusparajah, P.; Chuah, L.-H.; Ming, L.C.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. Resveratrol—Potential Antibacterial Agent against Foodborne Pathogens. Front. Pharmacol. 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Mahendra Kumar, C.; Singh, S.A. Bioactive lignans from sesame (Sesamum indicum L.): Evaluation of their antioxidant and antibacterial effects for food applications. J. Food Sci. Technol. 2015, 52, 2934–2941. [Google Scholar] [CrossRef] [Green Version]
- Gertsch, J.; Tobler, R.T.; Brun, R.; Sticher, O.; Heilmann, J. Antifungal, antiprotozoal, cytotoxic and piscicidal properties of Justicidin B and a new arylnaphthalide lignan from Phyllanthus piscatorum. Planta Med. 2003, 69, 420–424. [Google Scholar]
- Wynn, J.P.; Kendrick, A.; Ratledge, C. Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids 1997, 32, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Bhat, K.A.; Raja, A.F.; Shawl, A.S.; Alam, M.S. Isolation, characterisation and antibacterial activity studies of coumarins from Rhododendron lepidotum Wall. ex G. Don, Ericaceae. Rev. Bras. Farmacogn. 2010, 20, 886–890. [Google Scholar]
- Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem. 2015, 186, 133–138. [Google Scholar] [PubMed]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Park, J.-H.; Cho, H.S.; Joo, S.W.; Cho, M.H.; Lee, J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 2013, 29, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Liu, H.; Yu, X.; Zhang, X.; Lu, H.; Zhou, T.; Cao, J. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res. 2018, 32, 2225–2228. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, J.-D.; Lee, J.-H.; Choi, K.M.; Choi, S.-M.; Park, J.H. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2014, 2014, 450572. [Google Scholar] [CrossRef] [Green Version]
- Ignacimuthu, S.; Pavunraj, M.; Duraipandiyan, V.; Raja, N.; Muthu, C. Antibacterial activity of a novel quinone from the leaves of Pergularia daemia (Forsk.), a traditional medicinal plant. Asian J. Tradit. Med. 2009, 4, 36–40. [Google Scholar]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, K.S.; Negi, P.S.; Srinivas, P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem. 2009, 115, 265–271. [Google Scholar] [CrossRef]
- Luo, J.; Yang, M. Demethoxycurcumin: A potential antimicrobial agent. J. Therm. Anal. Calorim. 2014, 115, 2331–2338. [Google Scholar] [CrossRef]
- Koh, J.-J.; Qiu, S.; Zou, H.; Lakshminarayanan, R.; Li, J.; Zhou, X.; Tang, C.; Saraswathi, P.; Verma, C.; Tan, D.T. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta Biomembr. 2013, 1828, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Beck, S.; Stengel, J. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 2016, 130, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527. [Google Scholar] [CrossRef]
- Farooq, S.; Wahab, A.T.; Fozing, C.D.; Rahman, A.U.; Choudhary, M.I. Artonin I inhibits multidrug resistance in Staphylococcus aureus and potentiates the action of inactive antibiotics in vitro. J. Appl. Microbiol. 2014, 117, 996–1011. [Google Scholar] [CrossRef] [PubMed]
- FDA. GRAS Notice on Quercetin (GRN no. 341); FDA: Silver Spring, MD, USA, 2010. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices&id=341&sort=GRN_No&order=DESC&startrow=1&type=basic&search=341 (accessed on 14 October 2021).
- Li, G.; Wang, G.; Li, M.; Li, L.; Liu, H.; Sun, M.; Wen, Z. Morin inhibits Listeria monocytogenes virulence in vivo and in vitro by targeting listeriolysin O and inflammation. BMC Microbiol. 2020, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H.; Iinuma, M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 2000, 7, 161–165. [Google Scholar] [CrossRef]
- Mun, S.-H.; Kang, O.-H.; Joung, D.-K.; Kim, S.-B.; Seo, Y.-S.; Choi, J.-G.; Lee, Y.-S.; Cha, S.-W.; Ahn, Y.-S.; Han, S.-H. Combination therapy of sophoraflavanone B against MRSA: In vitro synergy testing. Evid.-Based Complement. Altern. Med. 2013, 2013, 823794. [Google Scholar] [CrossRef] [Green Version]
- Reygaert, W.C. The antimicrobial possibilities of green tea. Front. Microbiol. 2014, 5, 434. [Google Scholar] [CrossRef]
- Levy, J.; Boyer, R.R.; Neilson, A.P.; O’Keefe, S.F.; Chu, H.S.S.; Williams, R.C.; Dorenkott, M.R.; Goodrich, K.M. Evaluation of peanut skin and grape seed extracts to inhibit growth of foodborne pathogens. Food Sci. Nutr. 2017, 5, 1130–1138. [Google Scholar] [CrossRef]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta Biomembr. 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Cushnie, T.; Taylor, P.; Nagaoka, Y.; Uesato, S.; Hara, Y.; Lamb, A. Investigation of the antibacterial activity of 3-O-octanoyl-(–)-epicatechin. J. Appl. Microbiol. 2008, 105, 1461–1469. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiari, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Elegir, G.; Kindl, A.; Sadocco, P.; Orlandi, M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzym. Microb. Technol. 2008, 43, 84–92. [Google Scholar] [CrossRef]
- Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech. J. Food Sci. 2010, 28, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Almajano, M.; Carbo, R.; Delgado, M.; Gordon, M. Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid. J. Food Sci. 2007, 72, C258–C263. [Google Scholar] [CrossRef]
- Pernin, A.; Guillier, L.; Dubois-Brissonnet, F. Inhibitory activity of phenolic acids against Listeria monocytogenes: Deciphering the mechanisms of action using three different models. Food Microbiol. 2019, 80, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Larraínzar, M.; Rúa, J.; Caro, I.; de Castro, C.; de Arriaga, D.; García-Armesto, M.R.; del Valle, P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 2012, 26, 555–563. [Google Scholar] [CrossRef]
- Shen, T.; Wang, X.-N.; Lou, H.-X. Natural stilbenes: An overview. Nat. Prod. Rep. 2009, 26, 916–935. [Google Scholar] [CrossRef]
- Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J. Phytopathol. 1995, 143, 135–139. [Google Scholar] [CrossRef]
- Paul, B.; Chereyathmanjiyil, A.; Masih, I.; Chapuis, L.; Benoı̂t, A. Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiol. Lett. 1998, 165, 65–70. [Google Scholar] [CrossRef]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef]
- Kumar, K.A.; Renuka, N.; Pavithra, G.; Kumar, G.V. Comprehensive review on coumarins: Molecules of potential chemical and pharmacological interest. J. Chem. Pharm. Res. 2015, 7, 67–81. [Google Scholar]
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The antimicrobial agents. Syst. Rev. Pharm. 2017, 8, 62. [Google Scholar] [CrossRef]
- Farha, A.K.; Yang, Q.-Q.; Kim, G.; Li, H.-B.; Zhu, F.; Liu, H.-Y.; Gan, R.-Y.; Corke, H. Tannins as an alternative to antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Goel, S.; Parihar, P.S.; Meshram, V. Plant-derived quinones as a source of antibacterial and anticancer agents. In Bioactive Natural Products in Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2020; pp. 245–279. [Google Scholar]
- Pérez-Sacau, E.; Díaz-Peñate, R.G.; Estévez-Braun, A.; Ravelo, A.G.; García-Castellano, J.M.; Pardo, L.; Campillo, M. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line. J. Med. Chem. 2007, 50, 696–706. [Google Scholar] [CrossRef]
- Eyong, K.O.; Kumar, P.S.; Kuete, V.; Folefoc, G.N.; Nkengfack, E.A.; Baskaran, S. Semisynthesis and antitumoral activity of 2-acetylfuranonaphthoquinone and other naphthoquinone derivatives from lapachol. Bioorg. Med. Chem. Lett. 2008, 18, 5387–5390. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Alibert-Franco, S.; Eyong, K.; Ngameni, B.; Folefoc, G.; Nguemeving, J.; Tangmouo, J.; Fotso, G.; Komguem, J.; Ouahouo, B. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int. J. Antimicrob. Agents 2011, 37, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Kurek, A.N.; Grudniak, A.M.; Kraczkiewicz-Dowjat, A.; Wolska, K.I. New antibacterial therapeutics and strategies. Pol. J. Microbiol. 2011, 60, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, B.; Cui, Y.; Chen, S.; Teng, Z.; Lu, G.; Wang, J.; Deng, X. Curcumin Promotes the Clearance of Listeria monocytogenes both In Vitro and In Vivo by Reducing Listeriolysin O Oligomers. Front. Immunol. 2017, 8, 574. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.d.M.; Takeuchi, K.P.; Geraldine, R.M.; Moura, C.J.d.; Torres, M.C.L. Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci. Technol. 2015, 35, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Sivaranjani, M.; Krishnan, S.R.; Kannappan, A.; Ramesh, M.; Ravi, A.V. Curcumin from Curcuma longa affects the virulence of Pectobacterium wasabiae and P. carotovorum subsp. carotovorum via quorum sensing regulation. Eur. J. Plant Pathol. 2016, 146, 793–806. [Google Scholar] [CrossRef]
- Tan, Y.; Leonhard, M.; Moser, D.; Ma, S.; Schneider-Stickler, B. Antibiofilm efficacy of curcumin in combination with 2-aminobenzimidazole against single-and mixed-species biofilms of Candida albicans and Staphylococcus aureus. Colloids Surf. B Biointerfaces 2019, 174, 28–34. [Google Scholar] [CrossRef]
- Shlar, I.; Poverenov, E.; Vinokur, Y.; Horev, B.; Droby, S.; Rodov, V. High-throughput screening of nanoparticle-stabilizing ligands: Application to preparing antimicrobial curcumin nanoparticles by antisolvent precipitation. Nano-Micro Lett. 2015, 7, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef]
- Gul, P.; Bakht, J. Antimicrobial activity of turmeric extract and its potential use in food industry. J. Food Sci. Technol. 2015, 52, 2272–2279. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, E.F.; Tosati, J.V.; Tikekar, R.V.; Monteiro, A.R.; Nitin, N. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest. Biol. Technol. 2018, 137, 86–94. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Li, H.; Zeng, Q.-H.; Wang, J.J.; Liu, H.; Pan, Y.; Zhao, Y. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control 2020, 108, 106886. [Google Scholar] [CrossRef]
- Ibrahim, M.Y.; Hashim, N.M.; Mariod, A.A.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab. J. Chem. 2016, 9, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, G.A.; Al-Abd, A.M.; El-halawany, A.M.; Abdallah, H.M.; Ibrahim, S.R.M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 2017, 198, 302–312. [Google Scholar] [CrossRef]
- Asasutjarit, R.; Larpmahawong, P.; Fuongfuchat, A.; Sareedenchai, V.; Veeranondha, S. Physicochemical Properties and Anti-Propionibacterium acnes Activity of Film-Forming Solutions Containing Alpha-Mangostin-Rich Extract. AAPS PharmSciTech 2014, 15, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.-J.; Lin, S.; Aung, T.T.; Lim, F.; Zou, H.; Bai, Y.; Li, J.; Lin, H.; Pang, L.M.; Koh, W.L. Amino acid modified xanthone derivatives: Novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections. J. Med. Chem. 2015, 58, 739–752. [Google Scholar] [CrossRef]
- Dharmaratne, H.R.W.; Sakagami, Y.; Piyasena, K.G.P.; Thevanesam, V. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure–activity relationship studies. Nat. Prod. Res. 2013, 27, 938–941. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Lopes, N.A.; Brandelli, A. Nanostructures for delivery of natural antimicrobials in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 2202–2212. [Google Scholar] [CrossRef]
- Galotto, M.J.; Guarda, A.; López de Dicastillo, C. Antimicrobial active polymers in food packaging. Funct. Polym. Food Sci. 2015, 2015, 323–351. [Google Scholar]
- Davidson, P.M. Chemical preservatives and natural antimicrobial compounds. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Beuchat, L.R., Montville, T.J., Eds.; ASM Press: Washington, DC, USA, 1997. [Google Scholar]
- Gyawalli, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Riaz, Q.U.; Masud, T. Recent trends and applications of encapsulating materials for probiotic stability. Crit. Rev. Food Sci. Nutr. 2013, 53, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Tampau, A.; González-Martínez, C.; Chiralt, A. Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll. 2018, 79, 158–169. [Google Scholar] [CrossRef]
- Cui, H.; Li, W.; Lin, L. Antibacterial activity of liposome containing curry plant essential oil against Bacillus cereus in rice. J. Food Saf. 2016, 37, e12302. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, C.; Wu, T.; Li, Y.; Chen, S.; Yuan, C.; Hu, Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr. Polym. 2018, 193, 144–152. [Google Scholar] [CrossRef]
- Başyiğit, B.; Sağlam, H.; Kandemir, Ş.; Karaaslan, A.; Karaaslan, M. Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technol. 2020, 364, 654–663. [Google Scholar] [CrossRef]
- Ruan, C.; Zhang, Y.; Sun, Y.; Gao, X.; Xiong, G.; Liang, J. Effect of sodium alginate and carboxymethyl cellulose edible coating with epigallocatechin gallate on quality and shelf life of fresh pork. Int. J. Biol. Macromol. 2019, 141, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Kaewprachu, P.; Amara, C.B.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin films with nisin and catechin for minced pork preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). LWT 2016, 70, 213–222. [Google Scholar] [CrossRef]
- Andrade, M.A.; Ribeiro-Santos, R.; Bonito MC, C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Krepker, M.; Shemesh, R.; Poleg, Y.D.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control 2017, 76, 117–126. [Google Scholar] [CrossRef]
- Severo, C.; Anjos, I.; Souza, V.G.L.; Canejo, J.P.; Bronze, M.R.; Fernando, A.L.; Coelhoso, I.; Bettencourt, A.F.; Ribeiro, I.A.C. Development of cranberry extract films for the enhancement of food packaging antimicrobial properties. Food Packag. Shelf Life 2021, 28, 100646. [Google Scholar] [CrossRef]
- Bhargava, K.; Conti, D.S.; da Rocha, S.R.; Zhang, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 2015, 47, 69–73. [Google Scholar] [CrossRef]
- Zimet, P.; Mombrú, Á.W.; Faccio, R.; Brugnini, G.; Miraballes, I.; Rufo, C.; Pardo, H. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT 2018, 91, 107–116. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Fernandes, R.V.B.; Botrel, D.A.; Monteiro, P.S.; Borges, S.V.; Souza, A.U.; Mendes, L.E.S. Microencapsulated oregano essential oil in grated parmesan cheese conservation. Int. Food Res. J. 2018, 25, 661–669. [Google Scholar]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Guo, M.; Jin, T.Z.; Gurtler, J.B.; Fan, X.; Yadav, M.P. Inactivation of Escherichia coli O157:H7 and Salmonella and native microbiota on fresh strawberries by antimicrobial washing and coating. J. Food Prot. 2018, 81, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, F.; Guan, H.; Xu, Y.; Fu, Q.; Li, D. Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control 2017, 74, 34–44. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the art of antimicrobial edible coatings for food packaging applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Tsiraki, M.I.; Karam, L.; Abiad, M.G.; Yehia, H.M.; Savvaidis, I.N. Use of natural antimicrobials to improve the quality characteristics of fresh “phyllo” A dough-based wheat product shelf-life assessment. Food Microbiol. 2017, 62, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Aloui Khwaldia, K. Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1080–1103. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, R.; Parafati, L.; Restuccia, C.; Fallico, B. Application of prickly pear fruit extract to improve domestic shelf life, quality and microbial safety of sliced beef. Food Chem. Toxicol. 2018, 118, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Shit, S.C.; Shah, P.M. Edible polymers: Challenges and opportunities. J. Polym. 2014, 2014, 427259. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.; Carratelli, C.R.; Losacco, A.; Iovene, M.R. Antimicrobial effect of natural polyphenols with or without antibiotics on Chlamydia pneumoniae infection in vitro. Microb. Drug Resist. 2014, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Sokovic, M.; Ciric, A.; Koukoulitsa, C.; Bilia, A.R.; Skaltsa, H. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics: Evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile. J. Agric. Food Chem. 2011, 59, 6412–6422. [Google Scholar] [CrossRef] [PubMed]
- Haroun, M.F.; Al-Kayali, R.S. Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug-resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iran. J. Basic Med. Sci. 2016, 19, 1193–1200. [Google Scholar]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.G. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Ouedrhiri, W.; Mounyr, B.; Harki, E.H.; Moja, S.; Greche, H. Synergistic antimicrobial activity of two binary combinations of marjoram, lavender, and wild thyme essential oils. Int. J. Food Prop. 2017, 20, 3149–3158. [Google Scholar] [CrossRef] [Green Version]
- Skroza, D.; Šimat, V.; Smole Možina, S.; Katalinić, V.; Boban, N.; Generalić, M.I. Interactions of resveratrol with other phenolics and activity against food-borne pathogens. Food Sci. Nutr. 2019, 7, 2312–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, D.; Daly, K.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant essential oils for controlling Listeria monocytogenes. Appl. Environ. Microbiol. 2015, 81, 2762–2769. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.C.B.; Barbosa, L.N.; Andrade, B.F.M.T.; Albano, M.; Furtado, F.B.; Marques Pereira, A.F.; Rall, V.L.M.; Júnior, A.F. Short communication: Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 2016, 99, 1831–1836. [Google Scholar] [CrossRef] [Green Version]
- Ayari, S.; Dussault, D.; Hamdi, M.; Lacroix, M. Growth and toxigenic potential of Bacillus cereus during storage temperature abuse in cooked irradiated chicken rice in combination with nisin and carvacrol. LWT-Food Sci. Technol. 2016, 72, 19–25. [Google Scholar] [CrossRef]
- Smith, M.K.; Draper, L.A.; Hazelhoff, P.J.; Cotter, P.D.; Ross, R.P.; Hill, C. A Bioengineered Nisin derivative, M21A, in combination with good grade additives eradicates biofilms of Listeria monocytogenes. Front. Microbiol. 2016, 7, 1939. [Google Scholar] [CrossRef] [Green Version]
- Alejo-Armijo, A.; Glibota, N.; Frías, M.P.; Altarejos, J.; Gálvez, A.; Ortega-Morente, E.; Salido, S. Antimicrobial and antibiofilm activities of procyanidins extracted from laurel wood against a selection of foodborne microorganisms. Int. J. Food Sci. Technol. 2017, 52, 679–686. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Glibota, N.; Frías, M.P.; Altarejos, J.; Gálvez, A.; Salido, S.; Ortega-Morente, E. Synthesis and evaluation of antimicrobial and antibiofilm properties of A-type procyanidin analogues against resistant bacteria in food. J. Agric. Food Chem. 2018, 66, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Xu, C.M.; Zhang, Y.L.; Wang, J.; Lu, J.A. Extraction, distribution and characterisation of phenolic compounds and oil in grapeseeds. Food Chem. 2010, 122, 688–694. [Google Scholar] [CrossRef]
- Złotek, U.; Mikulska, S.; Nagajek, M.; Świeca, M. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci. 2019, 23, 628–633. [Google Scholar] [CrossRef]
- Jun, X. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit. Rev. Food Sci. Nutr. 2013, 53, 837–852. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Moreira, M.-d.e.l.-R.; Roura, S.I.; Ayala-Zavala, J.F.; Gonzalez-Aguilar, G.A. Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: Types of antimicrobials. In Handbook of Natural Antimicrobials for Food Safety and Quality; Elsevier Ltd.: Sawston, Cambridge, UK, 2014; pp. 287–313. [Google Scholar]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2013, 68, 121–129. [Google Scholar] [CrossRef]
- Bazinet, L.; Araya-Farias, M.; Doyen, A.; Trudel, D.; Têtu, B. Effect of process unit operations and long-term storage on catechin contents in EGCG-enriched tea drink. Food Res. Int. 2010, 43, 1692–1701. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhuang, H.; Chen, X.; Li, L.; Zhang, J. Effects of plant polyphenols and α-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon. LWT-Food Sci. Technol. 2015, 60, 199–206. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Asmari, F.; Mereddy, R.; Sultanbawa, Y. The effect of photosensitization mediated by curcumin on storage life of fresh date (Phoenix dactylifera L.) fruit. Food Control 2018, 93, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Lin, D.; Warner, R.D.; Ha, M. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem. 2018, 260, 90–96. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity—A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, N.; Zúñiga, R.; Arancibia, C. Physical stability of nanoemulsions with emulsifier mixtures: Replacement of tween 80 with quillaja saponin. LWT-Food Sci. Technol. 2019, 111, 760–766. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- McClements, D.J.; Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci. Food 2017, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.F.; Heggelund, L.R.; Besora, P.R.; Mackevica, A.; Boldrin, A.; Baun, A. Nanoproducts–what is actually available to European consumers? Environ. Sci. Nano J. 2016, 3, 169–180. [Google Scholar] [CrossRef] [Green Version]
- The Nanodatabase. Available online: www.nanodb.dk (accessed on 14 October 2021).
Flavonoid Class of Antimicrobial Polyphenols | ||||
---|---|---|---|---|
Compounds | Plant source | Bioactivity | Pathogens (MIC 1 Value in µg mL−1) | References |
Flavones | ||||
Amentoflavone | Dorstenia barteri | Antimicrobial | B. cereus, B. subtilis, S. dysenteriae, C. albicans, C. glabrata (>39.1) | [20] |
Baicalein | Scutellaria baicalensis | Anti-quorum sensing, Antibiofilm (modulating the expression of sarA and ica operon) | S. aureus (32 and 64) | [21] |
Chrysin derivative 8c | Oroxylum indicum | Antibacterial, targeting β-ketoacyl-acyl carrier protein synthase III (FabH protein) | E. coli (6.25) | [22,23] |
Diosmetin | Sophora moorcroftiana | Anti-virulence | S. aureus (32 and 64) | [24] |
Antibacterial, modulate the expression of ATP 2 Binding Cassette (ABC 6) transporter via synergistic action with erythromycin | S. aureus RN4220 (diosmetin (8) and erythromycin (32) with FICI 3 value of 0.28) | [25] | ||
Gancaonin Q | Dorstenia angusticornis | Antimicrobial | B. cereus (2.4), B. subtilis (9.76), Shigella dysenteriae (2.44), Shigella flexneri (19.53), Salmonella Typhi (39.06), and for C. albicans Candida krusei and Candida glabrata (>78.12) | [26] |
Licoflavone C | Retama raetam | Antibacterial | E. coli (7.8) | [27] |
Luteolin | Elsholtzia rugulosa | Antibacterial, via inhibiting DNA topoisomerase | S. aureus (1.6 mg mL−1) | [28] |
6-Prenylapigenin | Dorstenia sp., | Antimicrobial, rapid killing activity via depolarizing the cell membrane and inhibiting the biosynthesis of DNA, RNA and proteins | S. aureus (16 and 32) MRSA 4 (16–64) C. albicans (64) | [29] |
Isoflavones | ||||
Biochanin A | Lycium barbarum | Antibacterial (Strain dependent activity) | Clostridium perfringens (64–1024) | [30] |
Daidzein | Glycine max | Antibacterial | Listeria monocytogenes and Vibrio parahaemolyticus (125 µM ml−1), B. cereus, S. aureus and S. Typhimurium (500 µM ml−1) | [31] |
Genistein | Glycine max | Antibacterial, involve the stabilization of the covalent topoisomerase II-DNA cleavage | L. monocytogenes and V. parahaemolyticus (125 µM ml−1), Helicobacter pylori, S. aureus, B. cereus (100 µM ml−1) | [31,32] |
Isolupalbigenin | Erythrina poeppigiana | Antibacterial | MRSA 4 (1.56–3.13) | [33] |
Flavonols | ||||
Galangin | Helichrysum aureonitens | Antibacterial | S. aureus (50) | [34] |
Kaempferol | Glycine max | Antibiofilm, altering the activity of sortase enzyme and adhesin related gene expression | S. aureus (64) | [35] |
Morin | Psidium guajava | Antibiofilm and anti-virulence | L. monocytogenes (25) C. albicans (150) | [36,37] |
Antibacterial | L. monocytogenes (100) | |||
Myricetin | Myrica rubra | Antibiofilm | MRSA 4 (32) VISA 5 (16) S. aureus (32) | [38] |
Quercetin | Olea europaea | Antibacterial | E. coli, (0.0082 µM mL−1) S. Typhimurium (0.0072 µM mL−1) and S. aureus (0.0068 µM mL−1) | [39] |
Quercetin-3-O-rhamnoside | sCapsicum annuum | Antibiofilm | S. Typhimurium, and S. aureus (1 mg ml−1) | [40] |
Antibacterial | S. Typhimurium, S. Enteritidis, E. coli, S. aureus, C. jejuni, Stenotrophomonas maltophilia, Klebsiella pneumoniae and Enterobacter cloacae (0.03 to 1.25 mg ml−1) | |||
Rutin | Olea europaea | Antibacterial, both at mono and multispecies level | E. coli and S. aureus (400–1200) | [41] |
Flavanones | ||||
Diplacone | Paulownia tomentosa | Antibacterial | MRSA4 (2–16) | [42] |
Mimulone | MRSA4 (8–64) | |||
6, 8- Diprenyleriodictyol | Dorstenia sp., | Antimicrobial, rapid killing via depolarizing the cell membrane and inhibiting the biosynthesis of DNA, RNA and proteins | S. aureus (0.5 and 4) MRSA 4 (1–4) C. albicans (128) | [29] |
Naringenin | Citrus paradisi | Antibiofilm | S. Typhimurium (30) Lactobacillus rhamnosus (30) MRSA (200) | [43,44] |
Pinocembrin | Glycyrrhiza glabra | Anti-virulence, reducing α-toxin mediated cell injury in mouse model by reducing α-toxin production | S. aureus (64 to >128) | [45] |
Sakuranetin | Baccharis retusa | Antifungal | Candida dubliniensis, Candida tropicalis, C. glabrata, Candida parapsilosis and C. krusei (0.63) C. albicans and Cryptococcus gattii (0.32) C. neoformans (0.08 and 0.32) Saccharomyces cerevisiae (0.32) | [46] |
Flavanols | ||||
Catechins | Camellia sinensis | Antibacterial | B. subtilis and E. coli (9 ppm) | [47] |
Epicatechin | Malus domestica | Antibacterial | B. subtilis, B. subtilis, C. perfringens (20 ppm) L. monocytogenes (5–20 ppm) | [48] |
Epicatechin gallate | Camellia sinensis | Anti-virulence, targeting α-toxin, coagulase and protease activities | S. aureus (25) | [49] |
Epigallocatechin gallate | Camellia sinensis | Antibacterial, hinder the functions of membrane proteins, such as oligopeptide ABC6 transporter, phosphotransferase system transporter, phosphate ABC6 transporter, and penicillin binding protein 5 | B. subtilis JCM1465 7 (125) B. subtilis 168 (250) | [50] |
Chalcones | ||||
4-Hydroxyonchocarpin | Dorstenia sp., | Antibacterial | S. aureus (1–8) | [29] |
licochalcone A | Glycyrrhiza sp., | Antibiofilm and inhibit the yeast-hyphal transition | C. albicans (0.2) | [51] |
licochalcone E | Glycyrrhiza inflata | Antibacterial | S. aureus (1-4) | [52] |
Isobavachalcone | Psoralea corylifolia | Antibacterial | S. aureus (0.3) | [29] |
Non-Flavonoids classes of polyphenols | ||||
Phenolic acids | ||||
Chlorogenic acid | Coffea sp., | Anti-virulence, targeting sortase enzyme | S. aureus (33.86 ± 5.55) | [53] |
Antibacterial, leading cell death by targeting ROS mediated cell signaling | E. coli (64) | [54] | ||
ρ-Coumaric acid | Vitis vinifera | Antibacterial | Lactobacillus hilgardii (500) | [55] |
Ferulic acid | Beta vulgaris | Antibacterial | Cronobacter sakazakii (2.5–5.0 mg mL−1) E. coli (1.5 mg mL−1) S. aureus (1.75 mg mL−1) and L. monocytogenes (2.0 mg mL−1) | [56,57] |
Gallic acid | Vaccinium corymbosum | Antibacterial | E. coli (0.1 mg mL−1) S. aureus (1.25 mg mL−1) and L. monocytogenes (1.25 mg mL−1) | [56] |
ρ-Hydroxybenzoic acid | Macrotyloma uniflorum, Cocos nucifera | Antibacterial, displayed pH dependent activity in L. monocytogenes and exposure of higher MIC1 not develop resistance to antibiotics in S. aureus | L. monocytogenes (5 and 10 mM mL−1) S. aureus (1.6 mg mL−1) | [58,59] |
Vanillic acid | Angelica sinensis | Antibacterial, Exposure of higher MIC not develop resistance to antibiotics | S. aureus (2.5 mg mL−1) | [59] |
Stilbenes | ||||
Combretastatin B5 | Combretum woodii | Antibacterial | S. aureus (16 mg mL−1) | [60] |
Longistylin A | Cajanus cajan | Antibacterial, rapid activity by disturbing membrane potential and improved healing in infected mice wound model | MRSA 4 (1.56) | [61] |
Resveratrol | Vitis vinifera | Antibacterial | MRSA 4 (32–260) S. aureus (350) B. cereus ATCC11778 8 (52) and TISTR687 9 (64) L. monocytogenes and L. innocua (200) E. coli (32–521) S. Typhimurium (5–500) V. cholera ATCC39315 8 (0.625) and MCVO9 (60) C. coli (50) C. jejuni (100–313) Arcobacter butzleri (100) Arcobacter cryaerophilus (500) | [62] |
Lignan | ||||
Sesamin | Sesamum indicum | Antibacterial | S. aureus and B. cereus (2 mg mL−1) | [63] |
Justicidin B | Phyllanthus piscatorum | Antifungal | Aspergillus fumigatus (1) Aspergillus flavus (12) and C. albicans (4) | [64] |
Sesamol | Sesamum indicum | Antifungal | Mucor circinelloides,Aspergillus niger, S. cerevisiae, Aspergillus flavipes, Candida utilis, and Cryptococcus curvatus (7.2 mM mL−1) | [65] |
Sesamolin | Sesamum indicum | Antibacterial | S. aureus and B. cereus (2 mg mL−1) | [63] |
Coumarins | ||||
Umbelliferone | Rhododendron lepidotum | Antibacterial | S. aureus (500) MRSA4 and E. coli (1000) | [66] |
Xanthotoxin | Heracleum mantegazzianum | Antimicrobial | S. aureus (0.03–0.25) B. subtilis (0.03) B. cereus (0.5) Micrococcus luteus (0.03) E. coli (1.0) S. Typhimurium (1.0) C. albicans (0.125–0.25) Candida parapsilosis (0.06) | [67] |
Tannins | ||||
Casuarictin | Casuarina stricta | Antibacterial | H. pylori (12.5) | [68] |
Geraniin | Geranium thunbergii | Antibacterial | H. pylori (12.5) | |
Oenothein A | Oenothera stricta | Antibacterial | H. pylori (50) | |
Oenothein B | Oenothera stricta | Antibacterial | H. pylori (25) | |
Pedunculagin | Agrimonia pilosa | Antibacterial | H. pylori (12.5) | |
Penta-O-galloyl-β-D-glucose | Eucalyptus sp., | Antibacterial | H. pylori (12.5) | |
Procyanidin B-1 | Vitis vinifera | Antibacterial | H. pylori (100) | |
Procyanidin B-3 | Vitis vinifera | Antibacterial | H. pylori (100) | |
Tannic acid | Quercus sp., | Anti-virulence, manipulate the expression of hemolysin production and biofilm formation | S. aureus (50) | [69] |
Antibacterial | MRSA4 and S. aureus (40–160) | [70] | ||
Punicalagin | Punica granatum | Antibacterial | S. aureus (163–200) Salmonella arizonae (800) Salmonella anatum (800) Salmonella serotype O (600–800) E. coli (IFO-3.2; ATCC25922 8—1.6 mg mL−1) Nonpathogenic E. coli (2.1 mg mL−1) Enterohemorrhagic E. coli (1.44 mg mL−1) Enteroinvasive E. coli (1.0 mg mL−1) Enterotoxigenic E. coli (1.6 mg mL−1) V. cholera (100) V. parahaemolyticus (60–100) Vibrio vulnificus (45) | [71] |
Quinones | ||||
Cryptotanshinone | Salvia miltiorrhiza | Antibacterial | MRSA 4 (4–64) MSSA 10 (16–64) VRSA 11 (2–4) | [72] |
6-(4, 7 dihydroxy-heptyl) Quinone | Pergularia daemia | Antibacterial | S. aureus (75), B. subtilis (50) | [73] |
Curcuminoids | ||||
Curcumin | Curcuma longa | Antibacterial | MRSA 4 (129) MSSA 10 (219) B. subtilis (217) | [74] |
Curcumin-β-diglucoside | Derivative of curcumin | Antibacterial | B. cereus (0.181 µM), S. aureus (0.051 µM), E. coli (0.469 µM) and Y. enterocolitica (0.867 µM) | [75] |
Demethoxycurcumin | Derivative of curcumin | Antibacterial | E. coli (512), S. dysenteriae (1024) and S. aureus (1024) | [76] |
Xanthanoids | ||||
α-Mangostin | Garcinia mangostana | Antibacterial | MRSA 4 (0.78) MSSA 10 (1.56) | [77] |
Antimicrobial PE/Polyphenols | Method | Carrier | Results | References |
---|---|---|---|---|
Carvacrol | Encapsulation (electrospinning) | Poly-ε-caprolactone fibers | The resulting fiber (ca.200 nm in length) accommodate 11 g of drug per 100 g of fiber with encapsulation efficiency of 85%. The resulting fibre showed a controlled release drug over the period of test time. The fiber showed better activity against E. coli than L. innocua. Antimicrobial effect of the fiber not only depend on the drug alone but also its release capacity. | [135] |
Curry plant EO | Encapsulation (thin-film dispersion) | Soy lecithin/cholesterolliposomes | The average size of liposomal nanocarrier was 196 nm. The entrapment efficiency of the liposome nanocarrier was 56.34% One mililitre of nanocarrier was reported to accommodate 2–6 mg of the drug Drug loaded liposomal nanocarrier at 20% (v v−1) significantly reduced the B. cereus burden in the rice flour food model. | [136] |
Eugenol | Encapsulation (ultrasonication-mediated emulsification) | Chitosan | The size of the chitosan nanoparticles ranges between 215.5–794.4 nm. The encapsulation efficacy of chitosan nanoparticle was 11.61%. The MIC value of eugenol was reduced when used with chitosan nanoparticles, suggesting the potential of encapsulation in improving the bioactivity of the drug against S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella. The prepared encapsulaed drug also showed potent antioxidant activity. | [137] |
Sour cherry oil | Encapsulation (spray-drying) | Maltodextrin/ gum Arabic | The average paticle size of the encapsulated sour cherry oil is 10 μm. The encapsulation efficacy of the nanoparticle was approximately 89%. In thermal stability assay, the prepared nanoparticles surpasses 200 °C without any pronounced loss in mass. The resulted nanoparticles showed profound growth inhibitory activity against the tested MOs such as S. aureus, P. aeruginosa, E. faecalis, C. albicans. | [138] |
Epigallocatechin gallate (EGCG 1) | Edible coating (solution-casting method) | Sodium alginate (SA) and carboxymethyl cellulose (CMC) | EGCG 1 at 1.6% (w v−1) in SA-CMC solution prevent the pork samples from weight loss. The EGCG 1 edible coating prevent the pork from early decay by inhibiting the total viable counts. The resultant coating enhanced the shelf-life of the fresh pork. The sensory attributes of the pork coated with EGCG 1 were significantly improved. Moreover, the drug coatings significantly reduced the lipid peroxidation and total volatile basic nitrogen. | [139] |
Catechin/ nisin | Edible coating (solution-casting method) | Gelatin | The gelatin films incorporating nisin (0.12% w w−1)/ nisin-catechin combinations (0.06% w w−1, each) were effective against S. aureus and B. cereus. In the 7-days experimental period, the gelatin films were improved the quality attributes of minced pork. During this period, it was also found that the drug loaded gelatin films reduced the value of thiobarbituric acid reactive substances in the minced pork. | [140] |
Oregano EO (OEO 2)/ resveratrol (RES 3) | Edible coating (nanoemulsion) | Pectin | The initial particle size of the OEO 2 and OEO 2-RES 3 nanoemulsions, and OEO 2-RES 3 emulsions were found to be 48.49, 53.09 and 220.01 nm, respectively. OEO 2 and RES 3 nanoemulsions were showed a better stability at 4 °C for 15 days The pork loins coated with OEO 2 and RES 3 nanoemulsion showed an increased shelf-life by reducing the pH and colour change, delaying the oxidation of lipid and protein, maintaining meat tenderness, and inhibiting microbial growth, i.e., total viable counts. | [141] |
OEO 2/Bergamot PEO 4 | Edible coating | Hydroxypropyl methylcellulose | Coating containing 2% (v v−1) OEO 2 showed good antibacterial activity against E. coli. Coating containing 2% (v v−1) OEO2 extended the freshness of the food model plum, Prunus salicina. The coating containing the PEO4 did not affect the organoleptic properties of the plum. | [142] |
Rosemary PEO | Edible coating | Whey protein (Glycerol as plasticizer) | One percent (w w−1) of rosemary PEO4 inhibit the growth of the test pathogens, L. monocytogenes and S. aureus. The coating also showed good antioxidant activity. | [143] |
Thymol and Carvacrol | Active packaging | Low density polyethylene (LDPE 5) with hallosyte nanotubes | The LDPE5 films showed potent and prolonged antimicrobial activity in lab conditions and in real food system hummus spread. Comparing the individual durg stability and growth inhibitory activity against E. coli exerted by T 6/C 7 mixture was higher. Compared with the activity of reference film, the T 6-C 7 containing films have completely eradicated the E. coli growth in hummus spread. The films were able to retain their activity for the time of 8 weeks. | [144] |
Cranberry extract | Active packaging | Chitosan | Food preservative properties such as light penetration, and permeability to water and oxygen were apparent in film incorporating cranberry extract. The cranberry extract incorporated films exerts antimicrobial and antibiofilm activities against the tested MOs such as S. aureus and E. coli. | [145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinengo, P.; Arunachalam, K.; Shi, C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021, 10, 2469. https://doi.org/10.3390/foods10102469
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods. 2021; 10(10):2469. https://doi.org/10.3390/foods10102469
Chicago/Turabian StyleMartinengo, Peter, Kannappan Arunachalam, and Chunlei Shi. 2021. "Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications" Foods 10, no. 10: 2469. https://doi.org/10.3390/foods10102469
APA StyleMartinengo, P., Arunachalam, K., & Shi, C. (2021). Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods, 10(10), 2469. https://doi.org/10.3390/foods10102469