Multivariate Analysis Coupled with M-SVM Classification for Lard Adulteration Detection in Meat Mixtures of Beef, Lamb, and Chicken Using FTIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Sample Collection
2.2. Extraction Procedure and Sample Distribution
2.3. Spectral Data Pre-Processing
2.4. Preparing Mixture Samples
3. Results and Discussion
3.1. FTIR Spectra Analysis of Pure Samples
3.2. Results of Principal Component Analysis
3.3. Multiclass Support Vector Machine Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Principal Component Analysis
Appendix A.2. Support Vector Machine Classification
References
- Spink, J.; Moyer, D.C. Defining the Public Health Threat of Food Fraud. J. Food Sci. 2011, 76, R157–R163. [Google Scholar] [CrossRef] [PubMed]
- The Guardian. Allergic Teenager’s Death after Eating Kebab Was Accidental, Rules Coroner. The Guardian, 2017. Available online: https://www.theguardian.com/uk-news/2017/jun/16/teenager-with-dairy-allergy-died-accidentally-rules-coroner(accessed on 16 July 2017).
- Li, D.K. Toddler Allergic to Dairy Dies after Pre-School Serves Him Grilled Cheese. New York Post, 9 November 2017. [Google Scholar]
- Barlass, T. Child Aged 10 Dies after Drinking Coconut Drink as Importer Admits Label Charges. Sydney Morning Herald, 6 October 2015. [Google Scholar]
- FSA. (2013, 7/2/2018). Timeline on Horse Meat Issue. Available online: http://www.food.gov.uk/enforcement/monitoring/horse-meat/timeline-horsemeat (accessed on 16 August 2021).
- Rohman, A.; Man, Y.B.C. Analysis of Pig Derivatives for Halal Authentication Studies. Food Rev. Int. 2012, 28, 97–112. [Google Scholar] [CrossRef]
- Tähkäpää, S.; Maijala, R.; Korkeala, H.; Nevas, M. Patterns of food frauds and adulterations reported in the EU rapid alert system for food and feed and in Finland. Food Control 2015, 47, 175–184. [Google Scholar] [CrossRef]
- Wood, R. Symposium on Food Identification and Authentication. Available online: https://qualityalchemist.blogspot.com/2012/01/symposium-on-food-identification-and.html (accessed on 16 July 2017).
- Guan, N.; Fan, Q.; Ding, J.; Zhao, Y.; Lu, J.; Ai, Y.; Xu, G.; Zhu, S.; Yao, C.; Jiang, L.; et al. Melamine-Contaminated Powdered Formula and Urolithiasis in Young Children. N. Engl. J. Med. 2009, 360, 1067–1074. [Google Scholar] [CrossRef][Green Version]
- Jia, C.; Jukes, D. The national food safety control system of China e a systematic review. Food Control 2013, 32, 236–245. [Google Scholar] [CrossRef]
- Borda, I.A.; Philen, R.M.; de la Paz, M.P.; de la Cámara, A.G.; Ruiz-Navarro, M.D.; Ribota, O.G.; Soldevilla, J.A.; Terracini, B.; Peña, S.S.; Leal, C.F.; et al. Toxic oil syndrome mortality: The first 13 years. Int. J. Epidemiol. 1998, 27, 1057–1063. [Google Scholar] [CrossRef][Green Version]
- Regenstein, J.M.; Chaudry, M.M.; Regenstein, C.E. The Kosher and Halal Food Laws. Compr. Rev. Food Sci. Food Saf. 2003, 2, 111–127. [Google Scholar] [CrossRef]
- Chuah, L.-O.; He, X.B.; Effarizah, M.E.; Syahariza, Z.A.; Shamila-Syuhada, A.K.; Rusul, G. Mislabelling of beef and poultry products sold in Malaysia. Food Control 2016, 62, 157–164. [Google Scholar] [CrossRef]
- Reuters, T. State of The Global Islamic Economy Report 2016/17. 2016. Available online: https://www.iedcdubai.ae/ (accessed on 16 July 2017).
- Barnett, J.; Begen, F.; Howes, S.; Regan, A.; McConnon, A.; Marcu, A.; Rowntree, S.; Verbeke, W. Consumers’ confidence, reflections and response strategies following the horsemeat incident. Food Control 2016, 59, 721–730. [Google Scholar] [CrossRef][Green Version]
- Schmutzler, M.; Beganovic, A.; Böhler, G.; Huck, C.W. Methods for detection of pork adulteration in veal product based on FT-NIR spectroscopy for laboratory, industrial and on-site analysis. Food Control 2015, 57, 258–267. [Google Scholar] [CrossRef]
- Vlachos, A.; Arvanitoyannis, I.S.; Tserkezou, P. An Updated Review of Meat Authenticity Methods and Applications. Crit. Rev. Food Sci. Nutr. 2016, 56, 1061–1096. [Google Scholar] [CrossRef] [PubMed]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- Kurniawati, E.; Rohman, A.; Triyana, K. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Sci. 2014, 96, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Meza-Márquez, O.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Sci. 2010, 86, 511–519. [Google Scholar] [CrossRef]
- Rahmania, H.; Sudjadi; Rohman, A. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Sci. 2015, 100, 301–305. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C.; Hashim, P.; Ismail, A. FTIR spectroscopy combined with chemometrics for analysis of lard adulteration in some vegetable oils Espectroscopia FTIR combinada con quimiometría para el análisis de adulteración con grasa de cerdo de aceites vegetales. CyTA J. Food 2011, 9, 96–101. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B. FTIR spectroscopy combined with chemometrics for analysis of lard in the mixtures with body fats of lamb, cow and chicke. Int. Food Res. J. 2010, 17, 519–527. [Google Scholar]
- Suparman, W.S.; Sundhani, E.; Saputri, S.D. The use of Fourier transform infrared spectroscopy (FTIR) and gas chromatography mass spectroscopy (GCMS) for Halal authentication in imported chocolate with various variants. Analysis 2015, 2, 3. [Google Scholar]
- Xu, L.; Cai, C.B.; Cui, H.F.; Ye, Z.H.; Yu, X.P. Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat Sci. 2012, 92, 506–510. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J.; Paradkar, M.M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 2005, 93, 25–32. [Google Scholar] [CrossRef]
- Alfar, I.J.; Khorshidtalab, A.; Akmeliawati, R.; Ahmad, S.; Jaswir, I. Towards authentication of beef, chicken and lard using micro near-infrared spectrometer based on support vector machine classification. ARPN J. Eng. Appl. Sci. 2016, 11, 4130–4136. [Google Scholar]
- Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; Sun, D.-W.; Su, C. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen–thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg. Technol. 2013, 18, 226–236. [Google Scholar] [CrossRef]
- Morsy, N.; Sun, D.-W. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Meat Sci. 2013, 93, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Nizar, N.N.A.; Marikkar, J.M.N.; Hashim, D.M. Differentiation of lard, chicken fat, beef fat and mutton fat by GCMS and EA-IRMS techniques. J. Oleo Sci. 2013, 62, 459–464. [Google Scholar] [CrossRef]
- Marikkar, J.M.N.; Ghazali, H.M.; Man, Y.B.C.; Peiris, T.S.G.; Lai, O.M. Distinguishing lard from other animal fats in admixtures of some vegetable oils using liquid chromatographic data coupled with multivariate data analysis. Food Chem. 2005, 91, 5–14. [Google Scholar] [CrossRef]
- Wang, L.; Hang, X.; Geng, R.; Wang, L.; Hang, X.; Geng, R. Molecular detection of adulteration in commercial buffalo meat products by multiplex PCR assay. Food Sci. Technol. 2019, 39, 344–348. [Google Scholar] [CrossRef][Green Version]
- Man, Y.B.C.; Syahariza, Z.A.; Mirghani, M.E.S.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem. 2005, 90, 815–819. [Google Scholar]
- The Harmful Effects of Counterfeit Goods–Athens State University. Available online: https://www.athens.edu/business-journal/spring-2013/asowder-couterfeit/ (accessed on 10 November 2019).
- Food Taboos: Their Origins and Purposes. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711054/ (accessed on 10 November 2019).
- Alikord, M.; Momtaz, H.; keramat, J.; Kadivar, M.; Rad, A.H. Species identification and animal authentication in meat products: A review. J. Food Meas. Charact. 2018, 12, 145–155. [Google Scholar] [CrossRef]
- Rohman, A.; Sismindari; Erwanto, Y.; Man, Y.B.C. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 2011, 88, 91–95. [Google Scholar] [CrossRef]
- Manning, L.; Soon, J.M. Food Safety, Food Fraud, and Food Defense: A Fast Evolving Literature. J. Food Sci. 2016, 81, R823–R834. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, L.; Wu, T.; Liu, Y.; Zou, J.; Huang, Y.; Babu, V.S.; Lin, L. Rapid Identification of Pork Adulterated in the Beef and Mutton by Infrared Spectroscopy. J. Spectrosc. 2018, 2018, 2413874. [Google Scholar] [CrossRef]
Method | Meat Adulterant | Analysis Technique |
---|---|---|
Fourier Transform Infrared Spectroscopy | Palm Oil with Chicken Fat | Linear Discriminant Analysis |
E-Nose | Lard, Chicken, and Beef | K-Nearest Neighbors algorithm (KNN), Support Vector Machine (SVM) |
Fourier Transform Infrared Spectroscopy | Beef Jerky with pork | LDA, SIMCA, and SVM |
Fourier Transform Infrared Spectroscopy | Lard, Mutton, and Cow | PLS Regression |
Raman Spectroscopy | Beef and Horsemeat | PCA |
Fourier Transform Infrared Spectroscopy | Lard and Palm Oil | PLS |
Fourier Transform Infrared Spectroscopy | Lard, Beef Meatballs | PCA and PLS |
Fourier Transform Infrared Spectroscopy | Lard in Palm Oil | PCA and PLS |
Meat Specie | Number of Pieces | Number of Samples Obtained | Number of Spectra Obtained | |
---|---|---|---|---|
Pure Samples | Adulterated Samples (v/v) | |||
Beef | 20 | 10 × 2 = 20 | 15 × 2 = 30 | 50 |
Lamb | 20 | 10 × 2 = 20 | 15 × 2 = 30 | 50 |
Pork Chicken | 20 20 | 10 × 2 = 20 10 × 2 = 20 | - 15 × 2 = 30 | 20 50 |
Total | 80 | 80 | 90 | 170 |
Mixture Samples Label | Pork (v/v) | Lamb (v/v) | Beef (v/v) | Chicken (v/v) | Number of Samples |
---|---|---|---|---|---|
L-90% | 10% | 90% | - | - | 6 |
L-80% | 20% | 80% | - | - | 6 |
L-70% | 30% | 70% | - | - | 6 |
L-60% | 40% | 60% | - | - | 6 |
L-50% | 50% | 50% | - | - | 6 |
B-90% | 10% | - | 90% | - | 6 |
B-80% | 20% | - | 80% | - | 6 |
B-70% | 30% | - | 70% | - | 6 |
B-60% | 40% | - | 60% | - | 6 |
B-50% | 50% | - | 50% | - | 6 |
C-90% | 10% | - | - | 90% | 6 |
C-80% | 20% | - | - | 80% | 6 |
C-70% | 30% | - | - | 70% | 6 |
C-60% | 40% | - | - | 60% | 6 |
C-50% | 50% | - | - | 50% | 6 |
Total Mixture Samples | 90 |
Frequency (cm−1) | Functional Group Vibration |
---|---|
1155 | Vibrations of stretching mode from the C-O group in esters |
1467 | Bending vibrations of the CH2 and CH3 aliphatic groups |
1750 | Carbonyl (C=O) functional group of the ester linkage of triacylglycerol |
2921 | Asymmetrical or symmetrical stretching methylene (-CH2) band vibration |
Species Type | Sample | Absorbance Value at RoD(b)-a | Absorbance Value at RoD(b)-b | Percentage Difference w.r.t Pork | |
---|---|---|---|---|---|
Pure Lard | Pork-100% | 1.5963 | 1.75306 | RoD(b)-a | RoD(b)-b |
Adulterated Beef | B-50% | 1.6580 | 1.9154 | 3.79% | 8.85% |
B-60% | 1.8357 | 2.1793 | 13.95% | 21.67% | |
B-70% | 1.8310 | 2.1784 | 13.69% | 21.63% | |
B-80% | 1.7611 | 2.0906 | 9.81% | 17.56% | |
B-90% | 1.7262 | 2.0227 | 7.81% | 14.28% | |
Adulterated Chicken | C-50% | 1.5256 | 1.8577 | 4.52% | 5.79% |
C-60% | 1.5289 | 1.8737 | 4.31% | 6.65% | |
C-70% | 1.5312 | 1.8868 | 4.16% | 7.34% | |
1.5358 | 1.8995 | 3.86% | 8.01% | ||
C-90% | 1.5358 | 1.8995 | 3.86% | 8.01% | |
Adulterated Lamb | L-50% | 1.8739 | 2.2576 | 15.99% | 25.15% |
L-60% | 1.8739 | 2.2576 | 15.99% | 25.15% | |
L-70% | 1.8739 | 2.2576 | 15.99% | 25.15% | |
L-80% | 1.8739 | 2.2576 | 15.99% | 25.15% | |
L-90% | 1.8710 | 2.2396 | 15.84% | 24.37% |
Principal Component | Variance Contribution |
---|---|
PC1 | 97.31% |
PC2 | 2.05% |
PC3 | 0.64% |
Classified as | User Accuracy (Sensitivity) | Producer Accuracy (Precision) | Overall Accuracy |
---|---|---|---|
Beef | 85% | 85.00% | 81.25% |
Lamb | 85% | 85.00% | |
Chicken | 78% | 75.00% | |
Pork | 76% | 80.00% |
Classified as | User Accuracy (Sensitivity) | Producer Accuracy (Precision) | Overall Accuracy |
---|---|---|---|
a = AdulteratedBeef | 68.86% | 73.33% | 72.2% |
b = AdulteratedLamb | 67.19% | 76.66% | |
c = AdulteratedChicken | 83.20% | 66.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, M.A.; Khir, M.H.M.; Witjaksono, G.; Ghumman, A.S.M.; Junaid, M.; Magsi, S.A.; Saboor, A. Multivariate Analysis Coupled with M-SVM Classification for Lard Adulteration Detection in Meat Mixtures of Beef, Lamb, and Chicken Using FTIR Spectroscopy. Foods 2021, 10, 2405. https://doi.org/10.3390/foods10102405
Siddiqui MA, Khir MHM, Witjaksono G, Ghumman ASM, Junaid M, Magsi SA, Saboor A. Multivariate Analysis Coupled with M-SVM Classification for Lard Adulteration Detection in Meat Mixtures of Beef, Lamb, and Chicken Using FTIR Spectroscopy. Foods. 2021; 10(10):2405. https://doi.org/10.3390/foods10102405
Chicago/Turabian StyleSiddiqui, Muhammad Aadil, Mohd Haris Md Khir, Gunawan Witjaksono, Ali Shaan Manzoor Ghumman, Muhammad Junaid, Saeed Ahmed Magsi, and Abdul Saboor. 2021. "Multivariate Analysis Coupled with M-SVM Classification for Lard Adulteration Detection in Meat Mixtures of Beef, Lamb, and Chicken Using FTIR Spectroscopy" Foods 10, no. 10: 2405. https://doi.org/10.3390/foods10102405