Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety
Abstract
:1. Introduction
2. Literature Review
3. Genome-Editing Techniques: Tools That Alter the Genetic Code
4. CRISPR/Cas9: A New Era of Genome Editing
5. CRISPR/Cas9: The Machinery
- Stage II, expression stage: The Cas9 protein is expressed at this stage, and the CRISPR array is transcribed into a precursor RNA transcript (pre-crRNA). The pre-crRNA and Cas9 protein are then hybridized by a non-coding trans-activating CRISPR-RNA (crRNA) and are processed into a mature RNA unit known as crRNA [50,51].
6. CRISPR/Cas9: Challenges and Consequences in the Wheat Genome
7. Application of CRISPR/Cas9 System in Wheat Genome Editing
8. RNA Interference (RNAi): Biology
9. Role of RNAi in Modifying the Wheat Genome
10. Applications of CRISPR/Cas9 and RNAi: A Comparative Analysis
- Knockout vs. Knockdown: CRISPR causes gene knockouts, which occur when DSB is made within the coding region of the gene [93]. This DSB triggers NHEJ or HDR [94]. RNAi reduces or knocks down gene expression at the post-transcriptional level by targeting RNA, where it generates a hypomorphic phenotype in contrast to the true null knockout that is possible with CRISPR/Cas9.
- Ease of Design: The designing of a siRNA requires the sequence information of the corresponding mRNA transcript. siRNA is designed to target any transcript at almost any locus, but its activity is influenced by other factors such as the structure of the mRNA target region, base preferences, and overall siRNA G/C content. The design of a siRNA is a critical component of an effective RNAi experiment. CRISPR, on the other hand, requires information about the genomic DNA sequence. A CRISPR system such as CRISPR/Cas9 requires the protospacer adjacent motif (or PAM), a short DNA sequence required to cleave the targeted DNA. Depending on the type of Cas9, the PAM sequence recognizes the 5′-NGG-3′ site (where “N” can be any nucleotide base) [95].
- Timespan: The mode of action differs between CRISPR/Cas9 and RNAi, which greatly impacts the duration of gene expression. siRNA knockdown exhibits significant gene repression within only 24 h of treatment. However, genome editing with CRISPR/Cas9 may result in a permanent effect, which usually requires the selection of cells with the desired InDels (insertion-deletion mutation) in all alleles, a time-consuming process depending on the specific need [96].
- Flexibility: Targeted gene editing, especially CRISPR/Cas9, is heritable, i.e., once it introduces the change in the genome of the host cells, its physiological effect is passed on to the next generation. RNAi, unlike CRISPR/Cas9, does not result in a stable gene fragment, mutation, or inactive gene [97]. The in vivo application of RNAi is limited to instances where gene expression is suppressed post-transcriptionally.
- Off targets: Since the discovery of RNAi, off-targets are one of its biggest limitations. siRNA induces the silencing of non-target mRNA with a limited sequence complementarity, via interaction with 3′UTR. However, it has been discovered that a single siRNA could potentially repress hundreds of transcripts with limited complementarity. However, the CRISPR/Cas9 system also has some sequence-specific target effects that can be overcome over a short period of time. This shortcoming was rectified through the use of the Cas9-nickase, a mutation in one of the Cas9 nucleases that reduces off targeting by 50-1500 fold [98]. While optimal siRNA design and chemical modifications have reduced the off-target activity of RNAi, a recent comparative study found that CRISPR/Cas9 is less susceptible to off-target effects than RNAi [99].
11. CRISPR/Cas9 Is a Method-of-Choice for Wheat Genome Editing
12. Discussion
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Wheat—Statistics & Facts. Available online: https://www.Statista.Com/Topics/1668/Wheat/ (accessed on 27 June 2020).
- Gatti, S.; Lionetti, E.; Balanzoni, L.; Verma, A.K.; Galeazzi, T.; Gesuita, R.; Scattolo, N.; Cinquetti, M.; Fasano, A.; Catassi, C.; et al. Increased Prevalence of Celiac Disease in School-Age Children in Italy. Clin. Gastroenterol. Hepatol. 2020, 18, 596–603. [Google Scholar] [CrossRef]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.R.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of Gluten-Related Disorders: Consensus on New Nomenclature and Classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; de Magistris, L.; Dolinsek, J.; et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7, 4966–4977. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Singh, A.; Gatti, S.; Lionetti, E.; Galeazzi, T.; Monachesi, C.; Franceschini, E.; Ahuja, V.; Catassi, C.; Makharia, G.K. Validation of a Novel Single-Drop Rapid Human Leukocyte Antigen-DQ2/-DQ8 Typing Method to Identify Subjects Susceptible to Celiac Disease. JGH Open 2018, 2, 311–316. [Google Scholar] [CrossRef]
- Ciacci, C.; Ciclitira, P.; Hadjivassiliou, M.; Kaukinen, K.; Ludvigsson, J.F.; McGough, N.; Sanders, D.S.; Woodward, J.; Leonard, J.N.; Swift, G.L. The Gluten-Free Diet and Its Current Application in Coeliac Disease and Dermatitis Herpetiformis. United Eur. Gastroenterol. J. 2015, 3, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, E.; Catassi, C. New Clues in Celiac Disease Epidemiology, Pathogenesis, Clinical Manifestations, and Treatment. Int. Rev. Immunol. 2011, 30, 219–231. [Google Scholar] [CrossRef]
- Sharma, G.M.; Rallabhandi, P.; Williams, K.M.; Herrmann, M.; Sadrieh, N. Gluten Quantitation in Cosmetic Products by Enzyme-Linked Immunosorbent Assay. Available online: http://www.ingentaconnect.com/content/aoac/jaoac/2016/00000099/00000003/art00002;jsessionid=14qariq4i3ll9.x-ic-live-01 (accessed on 16 September 2018).
- Verma, A.K.; Lionetti, E.; Gatti, S.; Franceschini, E.; Catassi, G.N.; Catassi, C. Contribution of Oral Hygiene and Cosmetics on Contamination of Gluten-Free Diet: Do Celiac Customers Need to Worry About? J. Pediatr. Gastroenterol. Nutr. 2019, 68, 26–29. [Google Scholar] [CrossRef]
- Wolf, R.L.; Lebwohl, B.; Lee, A.R.; Zybert, P.; Reilly, N.R.; Cadenhead, J.; Amengual, C.; Green, P.H.R. Hypervigilance to a Gluten-Free Diet and Decreased Quality of Life in Teenagers and Adults with Celiac Disease. Dig. Dis. Sci. 2018, 63, 1438–1448. [Google Scholar] [CrossRef]
- Sánchez-León, S.; Gil-Humanes, J.; Ozuna, C.V.; Giménez, M.J.; Sousa, C.; Voytas, D.F.; Barro, F. Low-Gluten, Nontransgenic Wheat Engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018, 16, 902–910. [Google Scholar] [CrossRef]
- Jouanin, A.; Schaart, J.G.; Boyd, L.A.; Cockram, J.; Leigh, F.J.; Bates, R.; Wallington, E.J.; Visser, R.G.F.; Smulders, M.J.M. Outlook for Coeliac Disease Patients: Towards Bread Wheat with Hypoimmunogenic Gluten by Gene Editing of α- and γ-Gliadin Gene Families. BMC Plant Biol. 2019, 19, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollid, L.M.; Qiao, S.-W.; Anderson, R.P.; Gianfrani, C.; Koning, F. Nomenclature and Listing of Celiac Disease Relevant Gluten T-Cell Epitopes Restricted by HLA-DQ Molecules. Immunogenetics 2012, 64, 455–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhász, A.; Belova, T.; Florides, C.G.; Maulis, C.; Fischer, I.; Gell, G.; Birinyi, Z.; Ong, J.; Keeble-Gagnère, G.; Maharajan, A.; et al. Genome Mapping of Seed-Borne Allergens and Immunoresponsive Proteins in Wheat. Sci. Adv. 2018, 4, eaar8602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altenbach, S.B.; Chang, H.-C.; Simon-Buss, A.; Mohr, T.; Huo, N.; Gu, Y.Q. Exploiting the Reference Genome Sequence of Hexaploid Wheat: A Proteomic Study of Flour Proteins from the Cultivar Chinese Spring. Funct. Integr. Genom. 2020, 20, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollid, L.M.; Khosla, C. Future Therapeutic Options for Celiac Disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005, 2, 140–147. [Google Scholar] [CrossRef]
- Kasarda, D.D. Can an Increase in Celiac Disease Be Attributed to an Increase in the Gluten Content of Wheat as a Consequence of Wheat Breeding? J. Agric. Food Chem. 2013, 61, 1155–1159. [Google Scholar] [CrossRef]
- Wang, J.; Luo, M.-C.; Chen, Z.; You, F.M.; Wei, Y.; Zheng, Y.; Dvorak, J. Aegilops Tauschii Single Nucleotide Polymorphisms Shed Light on the Origins of Wheat D-Genome Genetic Diversity and Pinpoint the Geographic Origin of Hexaploid Wheat. New Phytol. 2013, 198, 925–937. [Google Scholar] [CrossRef]
- van Herpen, T.; Goryunova, S.; van der Schoot, J.; Mitreva, M.; Salentijn, E.; Vorst, O.; Schenk, M.; van Veelen, P.; Koning, F.; van Soest, L.; et al. Alpha-Gliadin Genes From the A, B, and D Genomes of Wheat Contain Different Sets of Celiac Disease Epitopes. BMC Genom. 2006, 7, 1. [Google Scholar] [CrossRef]
- Jouanin, A.; Boyd, L.; Visser, R.G.F.; Smulders, M.J.M. Development of Wheat with Hypoimmunogenic Gluten Obstructed by the Gene Editing Policy in Europe. Front. Plant Sci. 2018, 9, 1523. [Google Scholar] [CrossRef] [Green Version]
- Jouanin, A.; Gilissen, L.J.W.J.; Boyd, L.A.; Cockram, J.; Leigh, F.J.; Wallington, E.J.; van den Broeck, H.C.; van der Meer, I.M.; Schaart, J.G.; Visser, R.G.F.; et al. Food Processing and Breeding Strategies for Coeliac-Safe and Healthy Wheat Products. Int. Food Res. J. 2018, 110, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Morita, R.; Kusaba, M.; Iida, S.; Yamaguchi, H.; Nishio, T.; Nishimura, M. Molecular Characterization of Mutations Induced by Gamma Irradiation in Rice. Genes Genet. Syst. 2009, 84, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockram, J.; Mackay, I.J.; O’Sullivan, D.M. The Role of Double-Stranded Break Repair in the Creation of Phenotypic Diversity at Cereal VRN1 Loci. Genetics 2007, 177, 2535–2539. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Kaur, A.; Pandey, A.; Mamrutha, H.M.; Singh, G.P. CRISPR-Based Genome Editing in Wheat: A Comprehensive Review and Future Prospects. Mol. Biol. Rep. 2019, 46, 3557–3569. [Google Scholar] [CrossRef]
- Jouanin, A.; Gilissen, L.J.W.J.; Schaart, J.G.; Leigh, F.J.; Cockram, J.; Wallington, E.J.; Boyd, L.A.; van den Broeck, H.C.; van der Meer, I.M.; America, A.H.P.; et al. CRISPR/Cas9 Gene Editing of Gluten in Wheat to Reduce Gluten Content and Exposure—Reviewing Methods to Screen for Coeliac Safety. Front. Nutr. 2020, 7, 51. [Google Scholar] [CrossRef]
- Maeder, M.L.; Gersbach, C.A. Genome-Editing Technologies for Gene and Cell Therapy. Mol. Ther. 2016, 24, 430–446. [Google Scholar] [CrossRef] [Green Version]
- Karkute, S.G.; Singh, A.K.; Gupta, O.P.; Singh, P.M.; Singh, B. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops. Front. Plant Sci. 2017, 8, 1635. [Google Scholar] [CrossRef] [Green Version]
- Lieber, M.R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [Green Version]
- Bortesi, L.; Fischer, R. The CRISPR/Cas9 System for Plant Genome Editing and Beyond. Biotechnol. Adv. 2015, 33, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, K.; Li, T.; Zhang, Y.; Wang, Y.; Zhao, Q.; Liu, J.; Zhang, H.; Liu, C.; Ran, Y.; et al. Efficient DNA-Free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes. Nat. Commun. 2017, 8, 14261. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Rodrìguez-Rodrìguez, D.; Ramìrez-Solìs, R.; Garza-Elizondo, M.; Garza-Rodrìguez, M.; Barrera-Saldana, H. Genome Editing: A Perspective on the Application of CRISPR/Cas9 to Study Human Diseases (Review). Int. J. Mol. Med. 2019, 43, 1559–1574. [Google Scholar] [CrossRef] [Green Version]
- Parashar, D.; Geethadevi, A.; Aure, M.R.; Mishra, J.; George, J.; Chen, C.; Mishra, M.K.; Tahiri, A.; Zhao, W.; Nair, B.; et al. MiRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer. Cell Rep. 2019, 29, 4389–4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bak, R.O.; Dever, D.P.; Porteus, M.H. CRISPR/Cas9 Genome Editing in Human Hematopoietic Stem Cells. Nat. Protoc. 2018, 13, 358–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, H.; Botella, J.R.; Zhu, J.-K. Generation of New Glutinous Rice by CRISPR/Cas9-Targeted Mutagenesis of the Waxy Gene in Elite Rice Varieties: CRISPR/Cas9 Create New Glutinous Rice Varieties. J. Integr. Plant Biol. 2018, 60, 369–375. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.-L.; et al. Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Schindele, A.; Dorn, A.; Puchta, H. CRISPR/Cas Brings Plant Biology and Breeding into the Fast Lane. Curr. Opin. Biotechnol. 2020, 61, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.; Bashir, T.; Hashem, A.; Abd_Allah, E.; Bae, H. Genome Editing Tools in Plants. Genes 2017, 8, 399. [Google Scholar] [CrossRef] [Green Version]
- Haurwitz, R.E.; Jinek, M.; Wiedenheft, B.; Zhou, K.; Doudna, J.A. Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease. Science 2010, 329, 1355–1358. [Google Scholar] [CrossRef] [Green Version]
- Wiedenheft, B.; Sternberg, S.H.; Doudna, J.A. RNA-Guided Genetic Silencing Systems in Bacteria and Archaea. Nature 2012, 482, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes. PLoS Comput. Biol. 2005, 1, e60. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R.; Song, G.; Gao, J.; Li, W.; Han, X.; Chen, M.; Li, Y.; Li, G. Targeted Mutagenesis Using the Agrobacterium tumefaciens-Mediated CRISPR-Cas9 System in Common Wheat. BMC Plant Biol. 2018, 18, 302. [Google Scholar] [CrossRef]
- Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature 2011, 471, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Marraffini, L.A. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annu. Rev. Microbiol. 2015, 69, 209–228. [Google Scholar] [CrossRef] [PubMed]
- van der Oost, J.; Jore, M.M.; Westra, E.R.; Lundgren, M.; Brouns, S.J.J. CRISPR-Based Adaptive and Heritable Immunity in Prokaryotes. Trends Biochem. Sci. 2009, 34, 401–407. [Google Scholar] [CrossRef]
- Garneau, J.E.; Dupuis, M.-È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/Cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA. Nature 2010, 468, 67–71. [Google Scholar] [CrossRef]
- Mojica, F.J.M.; Diez-Villasenor, C.; Garcia-Martinez, J.; Soria, E. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Gesner, E.M.; Schellenberg, M.J.; Garside, E.L.; George, M.M.; MacMillan, A.M. Recognition and Maturation of Effector RNAs in a CRISPR Interference Pathway. Nat. Struct. Mol. Biol. 2011, 18, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Carte, J.; Wang, R.; Li, H.; Terns, R.M.; Terns, M.P. Cas6 Is an Endoribonuclease That Generates Guide RNAs for Invader Defense in Prokaryotes. Genes Dev. 2008, 22, 3489–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedenheft, B.; van Duijn, E.; Bultema, J.B.; Waghmare, S.P.; Zhou, K.; Barendregt, A.; Westphal, W.; Heck, A.J.R.; Boekema, E.J.; Dickman, M.J.; et al. RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions. Proc. Nat. Acad. Sci. USA 2011, 108, 10092–10097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenova, E.; Jore, M.M.; Datsenko, K.A.; Semenova, A.; Westra, E.R.; Wanner, B.; van der Oost, J.; Brouns, S.J.J.; Severinov, K. Interference by Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNA Is Governed by a Seed Sequence. Proc. Nat. Acad. Sci. USA 2011, 108, 10098–10103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miglani, G.S. Genome Editing in Crop Improvement: Present Scenario and Future Prospects. J. Crop Improv. 2017, 31, 453–559. [Google Scholar] [CrossRef]
- Ricroch, A.; Clairand, P.; Harwood, W. Use of CRISPR Systems in Plant Genome Editing: Toward New Opportunities in Agriculture. Emerg. Top. Life Sci. 2017, 1, 169–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/SgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef] [PubMed]
- Choulet, F.; Alberti, A.; Theil, S.; Glover, N.; Barbe, V.; Daron, J.; Pingault, L.; Sourdille, P.; Couloux, A.; Paux, E.; et al. Structural and Functional Partitioning of Bread Wheat Chromosome 3B. Science 2014, 345, 1249721. [Google Scholar] [CrossRef]
- Ling, H.-Q.; Zhao, S.; Liu, D.; Wang, J.; Sun, H.; Zhang, C.; Fan, H.; Li, D.; Dong, L.; Tao, Y.; et al. Draft Genome of the Wheat A-Genome Progenitor Triticum Urartu. Nature 2013, 496, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Pan, Q.; He, F.; Akhunova, A.; Chao, S.; Trick, H.; Akhunov, E. Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR J. 2018, 1, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Alptekin, B.; Budak, H. CRISPR/Cas9 Genome Editing in Wheat. Funct. Integr. Genom. 2018, 18, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Q.; Wang, Y.; Li, J.; Gao, C. Genome Editing in Rice and Wheat Using the CRISPR/Cas System. Nat. Protoc. 2014, 9, 2395–2410. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.-L. Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef]
- Gil-Humanes, J.; Wang, Y.; Liang, Z.; Shan, Q.; Ozuna, C.V.; Sánchez-León, S.; Baltes, N.J.; Starker, C.; Barro, F.; Gao, C.; et al. High-Efficiency Gene Targeting in Hexaploid Wheat Using DNA Replicons and CRISPR/Cas9. Plant J. 2017, 89, 1251–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Chen, K.; Zhang, Y.; Liu, J.; Yin, K.; Qiu, J.-L.; Gao, C. Genome Editing of Bread Wheat Using Biolistic Delivery of CRISPR/Cas9 in Vitro Transcripts or Ribonucleoproteins. Nat. Protoc. 2018, 13, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Arndell, T.; Borisjuk, N.; Sharma, N.; Watson-Haigh, N.S.; Tucker, E.J.; Baumann, U.; Langridge, P.; Whitford, R. CRISPR/Cas9-mediated Knockout of Ms1 Enables the Rapid Generation of Male-sterile Hexaploid Wheat Lines for Use in Hybrid Seed Production. Plant Biotechnol. J. 2019, 17, 1905–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howells, R.M.; Craze, M.; Bowden, S.; Wallington, E.J. Efficient Generation of Stable, Heritable Gene Edits in Wheat Using CRISPR/Cas9. BMC Plant Biol. 2018, 18, 215. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R.; Gao, J.; Gu, T.; Song, G.; Li, W.; Li, D.; Li, Y.; Li, G. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium Tumefaciens-Mediated CRISPR/Cas9 System. Int. J. Mol. Sci. 2019, 20, 4257. [Google Scholar] [CrossRef] [Green Version]
- Abe, F.; Haque, E.; Hisano, H.; Tanaka, T.; Kamiya, Y.; Mikami, M.; Kawaura, K.; Endo, M.; Onishi, K.; Hayashi, T.; et al. Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat. Cell Rep. 2019, 28, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, Y.; Abe, F.; Mikami, M.; Endo, M.; Kawaura, K. A Rapid Method for Detection of Mutations Induced by CRISPR/Cas9-Based Genome Editing in Common Wheat. Plant Biotechnol. J. 2020, 37, 247–251. [Google Scholar] [CrossRef]
- Raffan, S.; Sparks, C.; Huttly, A.; Hyde, L.; Martignago, D.; Mead, A.; Hanley, S.J.; Wilkinson, P.A.; Barker, G.; Edwards, K.J.; et al. Wheat with Greatly Reduced Accumulation of Free Asparagine in the Grain, Produced by CRISPR/Cas9 Editing of Asparagine Synthetase Gene TaASN2. Plant Biotechnol. J. 2021, pbi.13573. [Google Scholar] [CrossRef]
- Liu, H.; Wang, K.; Jia, Z.; Gong, Q.; Lin, Z.; Du, L.; Pei, X.; Ye, X. Efficient Induction of Haploid Plants in Wheat by Editing of TaMTL Using an Optimized Agrobacterium-Mediated CRISPR System. J. Exp. Bot. 2020, 71, 1337–1349. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; He, G.; Ma, L.; Deng, X.W. CRISPR/Cas9-Mediated Disruption of TaNP1 Genes Results in Complete Male Sterility in Bread Wheat. J. Genet. Genom. 2020, 47, 263–272. [Google Scholar] [CrossRef]
- Cui, X.; Balcerzak, M.; Schernthaner, J.; Babic, V.; Datla, R.; Brauer, E.K.; Labbé, N.; Subramaniam, R.; Ouellet, T. An Optimised CRISPR/Cas9 Protocol to Create Targeted Mutations in Homoeologous Genes and an Efficient Genotyping Protocol to Identify Edited Events in Wheat. Plant Methods 2019, 15, 119. [Google Scholar] [CrossRef] [Green Version]
- Arndell, T.; Sharma, N.; Langridge, P.; Baumann, U.; Watson-Haigh, N.S.; Whitford, R. GRNA Validation for Wheat Genome Editing with the CRISPR-Cas9 System. BMC Biotechnol. 2019, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, J.; Chai, Z.; Chen, S.; Bai, Y.; Zong, Y.; Chen, K.; Li, J.; Jiang, L.; Gao, C. Generation of Herbicide Tolerance Traits and a New Selectable Marker in Wheat Using Base Editing. Nat. Plants 2019, 5, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hua, L.; Gupta, A.; Tricoli, D.; Edwards, K.J.; Yang, B.; Li, W. Development of an Agrobacterium-Delivered CRISPR/Cas9 System for Wheat Genome Editing. Plant Biotechnol. J. 2019, 17, 1623–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Kumar, M.; Albertsen, M.C.; Young, J.K.; Cigan, A.M. Concurrent Modifications in the Three Homeologs of Ms45 Gene with CRISPR-Cas9 Lead to Rapid Generation of Male Sterile Bread Wheat (Triticum aestivum L.). Plant Mol. Biol. 2018, 97, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, P.; Ellison, E.; Polley, B.; Bollina, V.; Kulkarni, M.; Ghanbarnia, K.; Song, H.; Gao, C.; Voytas, D.F.; Kagale, S. Targeted Mutagenesis in Wheat Microspores Using CRISPR/Cas9. Sci. Rep. 2018, 8, 6502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.-L.; Gao, C. Efficient and Transgene-Free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016, 7, 12617. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, S.K.; Kumar, J.; Alok, A.; Tuli, R. RNA-Guided Genome Editing for Target Gene Mutations in Wheat. G3 2013, 3, 2233–2238. [Google Scholar] [CrossRef] [Green Version]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Jorgensen, R.A.; Cluster, P.D.; English, J.; Que, Q.; Napoli, C.A. Chalcone Synthase Cosuppression Phenotypes in Petunia Flowers: Comparison of Sense vs. Antisense Constructs and Single-Copy vs. Complex T-DNA Sequences. Plant Mol. Biol. 1996, 31, 957–973. [Google Scholar] [CrossRef]
- Meyer, P.; Saedler, H. Homology-dependent gene silencing in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 23–48. [Google Scholar] [CrossRef] [Green Version]
- Gil-Humanes, J.; Pistón, F.; Hernando, A.; Alvarez, J.B.; Shewry, P.R.; Barro, F. Silencing of γ-Gliadins by RNA Interference (RNAi) in Bread Wheat. J. Cereal Sci. 2008, 48, 565–568. [Google Scholar] [CrossRef]
- Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obbard, D.J.; Gordon, K.H.J.; Buck, A.H.; Jiggins, F.M. The Evolution of RNAi as a Defence against Viruses and Transposable Elements. Phil. Trans. R. Soc. B 2009, 364, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Chuang, C.-F.; Meyerowitz, E.M. Specific and Heritable Genetic Interference by Double-Stranded RNA in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 4985–4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, D.; Uauy, C.; Blechl, A.; Dubcovsky, J. RNA Interference for Wheat Functional Gene Analysis. Transgenic Res. 2007, 16, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Travella, S.; Klimm, T.E.; Keller, B. RNA Interference-Based Gene Silencing as an Efficient Tool for Functional Genomics in Hexaploid Bread Wheat. Plant Physiol. 2006, 142, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Gil-Humanes, J.; Piston, F.; Tollefsen, S.; Sollid, L.M.; Barro, F. Effective Shutdown in the Expression of Celiac Disease-Related Wheat Gliadin T-Cell Epitopes by RNA Interference. Proc. Natl. Acad. Sci. USA 2010, 107, 17023–17028. [Google Scholar] [CrossRef] [Green Version]
- Gil-Humanes, J.; Pistón, F.; Altamirano-Fortoul, R.; Real, A.; Comino, I.; Sousa, C.; Rosell, C.M.; Barro, F. Reduced-Gliadin Wheat Bread: An Alternative to the Gluten-Free Diet for Consumers Suffering Gluten-Related Pathologies. PLoS ONE 2014, 9, e90898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haro, C.; Villatoro, M.; Vaquero, L.; Pastor, J.; Giménez, M.; Ozuna, C.; Sánchez-León, S.; García-Molina, M.; Segura, V.; Comino, I.; et al. The Dietary Intervention of Transgenic Low-Gliadin Wheat Bread in Patients with Non-Celiac Gluten Sensitivity (NCGS) Showed No Differences with Gluten Free Diet (GFD) but Provides Better Gut Microbiota Profile. Nutrients 2018, 10, 1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrangou, R.; Birmingham, A.; Wiemann, S.; Beijersbergen, R.L.; Hornung, V.; Smith, A.V.B. Advances in CRISPR-Cas9 Genome Engineering: Lessons Learned from RNA Interference. Nucleic Acids Res. 2015, 43, 3407–3419. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirci, Y.; Zhang, B.; Unver, T. CRISPR/Cas9: An RNA-Guided Highly Precise Synthetic Tool for Plant Genome Editing. J. Cell. Physiol. 2018, 233, 1844–1859. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 2013, 154, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Boettcher, M.; McManus, M.T. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol. Cell 2015, 58, 575–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014, 159, 647–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, I.; Greenside, P.G.; Natoli, T.; Lahr, D.L.; Wadden, D.; Tirosh, I.; Narayan, R.; Root, D.E.; Golub, T.R.; Subramanian, A.; et al. Evaluation of RNAi and CRISPR Technologies by Large-Scale Gene Expression Profiling in the Connectivity Map. PLoS Biol. 2017, 15, e2003213. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Chory, J.; Baulcombe, D. RNAi in Transgenic Plants. Curr. Protoc. Mol. Biol. 2005, 72, 26. [Google Scholar] [CrossRef] [PubMed]
- Zischewski, J.; Fischer, R.; Bortesi, L. Detection of On-Target and off-Target Mutations Generated by CRISPR/Cas9 and Other Sequence-Specific Nucleases. Biotechnol. Adv. 2017, 35, 95–104. [Google Scholar] [CrossRef]
- Verma, A.; Gatti, S.; Galeazzi, T.; Monachesi, C.; Padella, L.; Baldo, G.; Annibali, R.; Lionetti, E.; Catassi, C. Gluten Contamination in Naturally or Labeled Gluten-Free Products Marketed in Italy. Nutrients 2017, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Penagini, F.; Dilillo, D.; Meneghin, F.; Mameli, C.; Fabiano, V.; Zuccotti, G.V. Gluten-Free Diet in Children: An Approach to a Nutritionally Adequate and Balanced Diet. Nutrients 2013, 5, 4553–4565. [Google Scholar] [CrossRef] [Green Version]
- Makharia, G.K. Current and Emerging Therapy for Celiac Disease. Front. Med. 2014, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Yoosuf, S.; Makharia, G.K. Evolving Therapy for Celiac Disease. Front. Pediatr. 2019, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieser, H.; Koehler, P.; Folck, A.; Becker, D. Characterization of Wheat with Strongly Reduced α-Gliadin Content. In Proceedings of the 9th Annual Gluten Workshop, San Fransisco, CA, USA, 14–16 September 2006; pp. 13–16. [Google Scholar]
- Laursen, L. Erratum: Will Europe Toast GM Wheat for Gluten Sufferers? Nat. Biotechnol. 2016, 34, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bawa, A.S.; Anilakumar, K.R. Genetically Modified Foods: Safety, Risks and Public Concerns—A Review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weeks, D.P.; Spalding, M.H.; Yang, B. Use of Designer Nucleases for Targeted Gene and Genome Editing in Plants. Plant Biotechnol. J. 2016, 14, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. CRISPR Plants Now Subject to Tough GM Laws in European Union. Nature 2018, 560, 16. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Nekrasov, V. Plant Genome Editing Made Easy: Targeted Mutagenesis in Model and Crop Plants Using the CRISPR/Cas System. Plant Methods 2013, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Li, H.; Chen, L.-L.; Xie, K. Recent Advances in Genome Editing Using CRISPR/Cas9. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Weeks, D.P. Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus. Prog. Mol. Biol. Transl. Sci. 2017, 149, 65–89. [Google Scholar] [CrossRef]
- Hall, N.J.; Rubin, G.; Charnock, A. Systematic Review: Adherence to a Gluten-Free Diet in Adult Patients with Coeliac Disease. Aliment. Pharmacol. Ther. 2009, 30, 315–330. [Google Scholar] [CrossRef] [PubMed]
S. No | Cultivar or Genotype | Target Gene (s) | Gene Function | Delivery Mode | SgRNA Promoter Used | Reference |
---|---|---|---|---|---|---|
1 | T. aestivum cv. Cadenza | TaASN2 | Genes encode for asparagine synthetase enzyme required in asparagine synthesis | Biolistic transformation | Ubi-1 | Raffan et al., (2021) [70] |
2 | T. aestivum line H29 cv. Fielder & Ningchun4 | TaWaxy & TaMTL | Pollen-specific phospholipase | Agrobactrium tumefaciens mediated transformation | OsU6a, TaU3, and TaU6 | Liu et al., (2020) [71] |
3 | Wheat variety CB037 | TaNP-A1, TaNP-B, TaNP-D1 | Expression in the tapetum and required for male fertility | Biolistic and protoplast mediated transformation | TaU6 and TaU3 | Li et al., (2020) [72] |
4 | Common wheat (T. aestivum L.) | TaQsd1, TraesCS4A02G110300 (IWGSC 2018) | Control seed dormancy in wheat | Biolistic transient expression and A. tumefaciens mediated transformation | TaU6 | Kamiya et al., (2020) [69] |
TaLOX2 | Encodes for lipoxygenase 2; grain development and growth | |||||
5 | T. aestivum cv. Fielder | TaABCC6 & TaNFXL1 | Susceptibility to Fusarium head blight (FHB) | Protoplast transformation | TaU6 | Cui et al., (2019) [73] |
TansLTP9.4 | FHB resistance | |||||
6 | T. aestivum cv. Fielder | EPSPS | The key enzyme involved in the metabolism of aromatic amino acid through the shikimate pathway | Protoplast transformation | TaU6 | Arndell et al., (2019) [74] |
7 | T. aestivum cv. Fielder | TaPinb | Control grain hardness | A. tumefaciens (EHA105) mediated transformation | TaU3 | Zhang et al., (2019) [67] |
TaDA1, TaDA2 | Negative regulates seed and organ size | |||||
TaNCED1 | Key enzyme in ABA biosynthesis pathway that confers resistance to drought stress | |||||
8 | T. aestivum cv. Fielder | TaQsd1 | Control seed dormancy in wheat | A. tumefaciens (EHA101) mediated transformation | OsU6 | Abe et al., (2019) [68] |
9 | T. aestivum cv. Kenong199 or Kenong9204 | TaALS, TaACCase | The absence of the gene provides herbicide tolerance | Biolistic transformation | TaU6 | Zhang et al., (2019) [75] |
10 | T. aestivum cv. Fielder & cv. Gladius | TaMs1 | Encodes a GPI, which is required for pollen exine development | A. tumefaciens mediated transformation | TaU6 | Okada et al., (2019) [65] |
11 | T. aestivum cv. Fielder | TaCKX2-1, TaGLW7, TaGW2, TaGW8 | Wheat grain-regulatory genes | A. tumefaciens mediated transformation | TaU6 | Zhang et al., (2019) [76] |
12 | T. aestivum cv. Fielder | TaPin a & b | Control grain hardness and contributes to anti-fungal properties | A. tumefaciens mediated transformation | TaU6 & TaU3 | Zhang et al., (2018) [44] |
TaWAXY or GBSS | Key enzyme in amylase biosynthesis | |||||
TaDA1 | Negatively regulates seed and organ size by restricting the period of cell proliferation | |||||
13 | T. aestivum cv. Bobwhite | TaGW2 | Negative regulator of grain weight, grain size enlargement, especially increased kernel width | Protoplast transformation | TaU6 | Wang et al., (2018) [59] |
TaLpx-1 | Encodes 9-lipoxygenase, silencing results in resistance to Fusarium graminearum | |||||
TaMLO | Knockout mutants provide resistance to powdery mildew | |||||
14 | T. aestivum cv. Chinese Spring | TaPDS | Reduction or loss of function results in a photobleaching phenotype | A. tumefaciens mediated transformation | TaU6 | Howells et al., (2018) [66] |
15 | T. aestivum cv. Fielder or SBC0456D | TaMs45 | Contribute to male fertility | A. tumefaciens mediated transformation | TaU6 | Singh et al., (2018) [77] |
16 | Bread wheat, BW208 & THA53, & Durum wheat cv. Don Pedro | α-gliadin | Storage protein, adds to dough viscosity/plasticity and contains immunogenic epitopes for CD | Biolistic transformation | TaU6 | Sánchez-León et al. (2018) [12] |
17 | T. aestivum cv. Chinese spring | TaDREB2 | TF induced under water-deficient condition | Protoplast transformation | TaU6 | Kim et al., (2018) [60] |
TaERF3 | TF promotes tolerance under salt and drought stress | |||||
18 | T. aestivum cv. Bobwhite & AC Nanda | TaLox2 | Encodes for lipoxygenase enzyme, which hydrolyzes linoleic acid, α-linolenic acid, and arachidonic acid | Neon transfection of protoplasts and microspores | TaU6 | Bhowmik et al., (2018) [78] |
19 | T. aestivum cv. Bobwhite | TaUbi, TaMLO | Majorly responsible for powdery mildew vulnerability | WDV and Biolistic transformation | TaU6 | Gil-Humanes et al., (2017) [63] |
20 | T. aestivum cv. Kenong 199 | TaGW2-A1, -B1 & -D1 | Negatively regulates grain weight and width | Biolistic transformation | TaU6 | Liang et al., (2017) [31] |
21 | T. aestivum cv. Bobwhite & cv. Kenong199 | TaGASR7 | Gene controls the expression of grain length with pleiotropic effects on grain weight and yield | Biolistic transformation | TaU6 | Zhang et al., (2016) [79] |
TaDEP1 | Gene expression controls panicle size | |||||
TaLOX2 | Encodes for lipoxygenase 2 and plays a critical role in grain storage and seed vigor | |||||
TaNAC2 | TF promotes multiple abiotic stresses tolerance | |||||
TaPIN | Encodes for puroindoline gene and plays an important role in controlling the grain hardness | |||||
TaGW2 | Negative regulator of grain weight, grain size enlargement, and especially increased kernel width | |||||
22 | T. aestivum L. | TaMLO-A1, TaMLO-B1 & TaMLO-D1 | Loss of function confers resistance to Powdery mildew | Biolistic transformation | TaU6 | Wang et al., (2014) [62] |
23 | T. aestivum | TaINOX | Biogenesis of plant cell wall | A. tumefaciens (GV3101) mediated transformation | TaU6 and CaMV35s | Upadhyay et al., (2013) [80] |
TaPDS | Involved in carotenoid biosynthesis that protects chlorophyll from photobleaching |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, A.K.; Mandal, S.; Tiwari, A.; Monachesi, C.; Catassi, G.N.; Srivastava, A.; Gatti, S.; Lionetti, E.; Catassi, C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021, 10, 2351. https://doi.org/10.3390/foods10102351
Verma AK, Mandal S, Tiwari A, Monachesi C, Catassi GN, Srivastava A, Gatti S, Lionetti E, Catassi C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods. 2021; 10(10):2351. https://doi.org/10.3390/foods10102351
Chicago/Turabian StyleVerma, Anil K., Sayanti Mandal, Aadhya Tiwari, Chiara Monachesi, Giulia N. Catassi, Akash Srivastava, Simona Gatti, Elena Lionetti, and Carlo Catassi. 2021. "Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety" Foods 10, no. 10: 2351. https://doi.org/10.3390/foods10102351
APA StyleVerma, A. K., Mandal, S., Tiwari, A., Monachesi, C., Catassi, G. N., Srivastava, A., Gatti, S., Lionetti, E., & Catassi, C. (2021). Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods, 10(10), 2351. https://doi.org/10.3390/foods10102351