Rootstock Affects the Fruit Quality of ‘Early Bigi’ Sweet Cherries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sweet Cherry Raw Material
2.2. Sensory Profile
2.3. Fruit Weight (FW) and Size (FS)
2.4. Fruit Color
2.5. Epidermis Rupture Force (ERF) and Flesh Firmness (FF)
2.6. Total Soluble Solids, Titratable Acidity, Maturity Index, and pH
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sensory Profile
3.2. Fruit Weight (FW) and Size (FS)
3.3. Fruit Color
3.4. Epidermis Rupture Force (ERF) and Flesh Firmness (FF)
3.5. Soluble Solids Content (SSC), Titratable Acidity (TA), Maturity Index (MI) and pH
3.6. Principal Component Analysis
3.7. Discriminant Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hewitt, S.; Kilian, B.; Hari, R.; Koepke, T.; Sharpe, R.; Dhingra, A. Evaluation of multiple approaches to identify genome–wide polymorphisms in closely related genotypes of sweet cherry (Prunus avium L.). Comput. Struct. Biotechnol. J. 2017, 15, 290–298. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry antioxidants: From farm to Table. Molecules 2010, 15, 6993–7005. [Google Scholar] [CrossRef]
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2010, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Oey, I. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem. 2012, 133, 1577–1587. [Google Scholar] [CrossRef]
- Dziedzic, E.; Błaszczyk, J. Evaluation of sweet cherry fruit quality after short-term storage in relation to the rootstock. Hortic. Environ. Biotechnol. 2019, 60, 925–934. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Landbo, A.K.; Knudsen, D.; Silva, A.P.; Moutinho-Pereira, J.; Rosa, E. Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). J. Agric. Food Chem. 2004, 52, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Guillen, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int. J. Food Sci. Technol. 2011, 46, 2530–2537. [Google Scholar] [CrossRef]
- Serra, A.T.; Duarte, R.O.; Bonze, M.R.; Duarte, C.M.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem. 2011, 125, 318–325. [Google Scholar] [CrossRef]
- Kim, D.O.; Heo, H.J.; Kim, Y.J.; Yang, H.S.; Lee, C.Y. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem. 2005, 53, 9921–9927. [Google Scholar] [CrossRef]
- Matias, A.A.; Rosado-Ramos, R.; Nunes, S.L.; Figueira, I.; Serra, A.T.; Bronze, M.R.; Santos, C.N.; Duarte, C.M. Protective effect of a (poly)phenol-rich extract derived from sweet cherries culls against oxidative cell damage. Molecules 2016, 21, 406. [Google Scholar] [CrossRef]
- Acero, N.; Gradillas, A.; Beltran, M.; Garcia, A.; Muñoz-Mingarro, D. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem. 2019, 279, 260–271. [Google Scholar] [CrossRef]
- Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.A.; Spinozzi, G.M.; Simon, V.A.; Kelley, D.S.; Prior, R.L.; Hess-Pierce, B. Consumption of cherries lowers plasma urate in healthy women. J. Nutr. 2003, 133, 1826–1829. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Seeram, N.P.; Nair, M.G.; Bourquin, L.D. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett. 2003, 194, 13–19. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Laugero, K.D. A review of the health benefits of cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansavini, S.; Lugli, S. Sweet cherry breeding programs in Europe and Asia. Acta Hortic. 2008, 795, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Long, L.E.; Kaiser, C. Sweet Cherry Rootstocks for the Pacific Northwest; OSU Extension Service: Eugene, OR, USA, 2010; Volume 619, p. 8. [Google Scholar]
- Demirkeser, T.H.; Kaplankiran, M.; Toplu, C.; Yildiz, E. Yield and fruit quality performance of Nova and Robinson mandarins on three rootstock in Eastern Mediterranean. Afr. J. Agric. Res. 2009, 9, 262–268. [Google Scholar]
- Miljković, I.; Čmelik, Z.; Vrsaljko, A. Podloge za trešnju. Pomol. Croat. 2002, 8, 1–4. [Google Scholar]
- Moreno, M. Breeding and selection of Prunus rootstocks at the Aula Dei Experimental Station, Zaragoza, Spain. Acta Hortic. 2004, 658, 519–528. [Google Scholar] [CrossRef]
- Guajardo, V.; Hinrichsen, P.; Muñoz, C. Breeding rootstocks for Prunus species: Advances in genetic and genomics of peach and cherry as a model. Chil. J. Agric. Res. 2015, 75, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, S.V.; Hanke, M.V. Transgenic temperate fruit tree rootstocks. In Tree Transgenesis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 335–350. [Google Scholar]
- Webster, A.D.; Lucas, A. Sweet cherry rootstock studies: Comparisons of Prunus cerasus L. and Prunus hybrid clones as rootstocks for Van, Merton Glory and Merpet scions. J. Hort. Sci. 1997, 72, 469–481. [Google Scholar] [CrossRef]
- Franken-Bembenek, S. Gisela® 5 rootstock in Germany. Acta Hortic. 2005, 667, 167–172. [Google Scholar] [CrossRef]
- Sekse, L. Fruit quality of sweet cherry cultivars. Forsk. Fors. Landber. 1986, 37, 225–229. [Google Scholar]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Tavarini, S.; Gil, M.I.; Tomás-Barberán, F.A.; Buendia, B.; Remorini, D.; Massai, R.; Degl’Innocenti, E.; Guidi, L. Effects of water stress and rootstocks on fruit phenolic composition and physical/chemical quality in Suncrest peach. Ann. Appl. Biol. 2011, 158, 226–233. [Google Scholar] [CrossRef]
- Koc, A.; Celik, Z.; Akbulut, M.; Bilgener, S.; Ercisli, S.; Gunes, M.; Gercekcioglu, R.; Esitken, A. Morphological characterization of cherry rootstock candidates selected from central and east black sea regions in Turkey. Sci. World J. 2013, 2013, 916520. [Google Scholar] [CrossRef] [PubMed]
- Milinović, B.; Dragović-Uzelac, V.; Kazija, D.H.; Jelačić, T.; Vujević, P.; Čiček, D.; Biško, A.; Čmelik, Z. Influence of four different dwarfing rootstocks on phenolic acids and anthocyanin composition of sweet cherry (Prunus avium L.) cvs. ‘Kordia’ and ‘Regina’. J. Appl. Bot. Food Qual. 2016, 89, 29–37. [Google Scholar]
- Schmitt, E.R.; Duhme, F.; Schmid, P.P.S. Water relations in sweet cherries (Prunus avium L.) on sour cherry rootstocks (Prunus cerasus L.) of different compatibility. Sci. Hortic. 1989, 39, 189–200. [Google Scholar] [CrossRef]
- Facteau, T.J.; Chestnut, N.E.; Rowe, K. Tree, fruit size, and yield of Bing sweet cherry as influenced by rootstock, replant area, and training system. Sci. Hortic. 1996, 67, 13–26. [Google Scholar] [CrossRef]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.; et al. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology 1997, 7, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Szot, I.; Meland, M. Influence of rootstocks on size distribution and fruit quality of sweet cherry cultivars. Int. Agrophys. 2001, 15, 207–214. [Google Scholar]
- Whiting, M.; Lang, G.; Ophardt, D. Rootstock and training system affected sweet cherry growth, yield, and fruit quality. Hort. Sci. 2005, 40, 582–586. [Google Scholar]
- Kader, A.A. Post-harvest quality maintenance of fruits and vegetables in developing countries. In Post-Harvest Physiology and Crop Preservation; Springer: Boston, MA, USA, 1983; pp. 455–470. [Google Scholar]
- Vangdal, E. Quality factors of pears, plums and sweet cherries for fresh consumption. Acta Agric. Scand. 1982, 32, 129–133. [Google Scholar] [CrossRef]
- Moreno, M.A.; Adrada, R.; Aparicio, J.; BetráN, S. Performance of ‘Sunburst’ sweet cherry grafted on different rootstocks. J. Hortic. Sci. Biotechnol. 2001, 76, 167–173. [Google Scholar] [CrossRef]
- Betrán, J.A.; Val, J.; Millán, L.M.; Monge, E.; Montañés, L.; Moreno, M.A. Influence of rootstock on the mineral concentrations of flowers and leaves from sweet cherry. Acta Hortic. 1997, 448, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Čmelik, Z.; Družić Orlić, J. Performance of some sweet cherry cultivars on ‘Weiroot 158’ rootstock. Acta Hortic. 2008, 795. [Google Scholar]
- Bielicki, P.; Rozpara, E.J. Growth and yield of ‘Kordia’ sweet cherry trees with various rootstock and interstem combinations. J. Fruit Ornam. Plant. Res. 2010, 18, 45–50. [Google Scholar]
- Gratacós, E.; Cortés, A.; Kulczewski, M. Flowering, production and fruit quality of eleven sweet cherry cultivars in central chile. Acta Hortic. 2008, 795, 331–338. [Google Scholar] [CrossRef]
- Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A.P.; Bacelar, E.; Correia, C.; Rosa, E. Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol. 2006, 26, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, G.; Hrotkó, K.; Magyar, L. Fruit quality of sweet cherry cultivars grafted on four different rootstocks. Acta Hortic. 2004, 658, 365–370. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Factors affecting mechanical properties of the skin of sweet cherry fruit. J. Amer Soc. Hort. Sci. 2016, 141, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.). Front. Plant Sci. 2017, 8, 2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usenik, V.; Fajt, N.; Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. Sweet cherry pomological and biochemical characteristics influenced by rootstock. J. Agric. Food Chem. 2010, 58, 4928–4933. [Google Scholar] [CrossRef] [PubMed]
- Feucht, W.; Treutter, D. Phenol gradients in opposing cells of Prunus heterografts. Adv. Hort. 1991, 5, 107–111. [Google Scholar]
- Usenik, V.; Štampar, F. Influence of various rootstocks for cherries on p-coumaric acid, genistein and prunin content and their involvement in the incompatibility process. Gartenbauwissenschaft 2000, 65, 245–250. [Google Scholar]
- Usenik, V.; Krška, B.; Vičan, M.; Štampar, F. Early detection of graft incompatibility in apricot (Prunus armeniaca L.) using phenol analyses. Sci. Hortic. 2006, 109, 332–338. [Google Scholar] [CrossRef]
- Mng’omba, S.A.; du Toit, E.S.; Akinnifesi, F.K. The relationship between graft incompatibility and phenols in Uapaca kirkiana Muell Arg. Sci. Hortic. 2008, 117, 212–218. [Google Scholar] [CrossRef]
- Jimenez, S.; Aparicio, J.; Betran, J.A.; Gogorcena, Y.; Moreno, M.A. Influencia de diferentes patrones de cerezo sobre la composicion mineral de hojas y brotes leñosos. Vida Rural 2007, 55–58. [Google Scholar]
- Lynn, E.L.; Gregory, A.L.; Clive, K. Sweet cherries. In Crop Production Science in Horticulture; CABI: Boston, UK, 2021; 391p. [Google Scholar]
- Espada, J.L.; Romero, J.; Segura, J. Resultados de un ensayo de variedades y patrones de cerezo. ITEA 2005, 101, 373–384. [Google Scholar]
- Jimenez, S.; Garin, A.; Betran, J.A.; Gogorcena, Y.; Moreno, M.A. Influencia de diferentes patrones para cerezo en la calidad del fruto del cultivar “Sunburst”. ITEA 2003, 99, 112–119. [Google Scholar]
- Rodrigo, J.; Mené, R.; Andreu, J. Caracterizacion fenotípica de nuevos cultivares de cerezo de maduracion muy temprana. Acta Hortic. 2014, 69, 101–102. [Google Scholar]
- Schuster, M. Incompatible (S-) genotypes of sweet cherry cultivars (Prunus avium L.). Sci. Hortic. 2012, 148, 59–73. [Google Scholar] [CrossRef]
- Chauvin, M.A.; Whiting, M.; Ross, C.F. The influence of harvest time on sensory properties and consumer acceptance of sweet cherries. Horttechnology 2009, 19, 748–754. [Google Scholar] [CrossRef] [Green Version]
- ISO 8589. Sensory Analysis—General Guidance for the Design of Test Rooms, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2007; Volume 16. [Google Scholar]
- ISO 4121. Sensory Analysis—Guidelines for the Use of Quantitative Response Scales, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2003; Volume 9. [Google Scholar]
- Vilela, A.; Gonçalves, B.; Ribeiro, C.; Fonseca, A.T.; Correia, S.; Fernandes, H.; Ferreira, S.; Bacelar, E.; Silva, A.P. Study of textural, chemical, color and sensory properties of organic blueberries harvested in two distinct years: A chemometric approach. J. Texture Stud. 2016, 47, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.; Queirós, F.; Ribeiro, C.; Vilela, A.; Aires, A.; Barros, A.I.; Schouten, R.; Silva, A.P.; Gonçalves, B. Effects of calcium and growth regulators on sweet cherry (Prunus avium L.) quality and sensory attributes at harvest. Sci. Hortic. 2019, 248, 231–240. [Google Scholar] [CrossRef]
- Gonçalves, B.; Silva, A.P.; Moutinho-Pereira, J.; Bacelar, E.; Rosa, E.; Meyer, A.S. Effect of ripeness and postharvest storage on the evolution of color and anthocyanins in cherries (Prunus avium L.). Food Chem. 2007, 103, 976–984. [Google Scholar] [CrossRef]
- Giménez, M.J.; Serrano, M.; Valverde, J.M.; Martínez-Romero, D.; Castillo, S.; Valero, D.; Guillén, F. Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. J. Sci. Food Agric. 2016, 97, 1220–1228. [Google Scholar] [CrossRef]
- Hutchings, J.B. Food Color and Appearance; Blackie Academic & Professional: London, UK, 1994; pp. 1–29. [Google Scholar]
- Voss, D.H. Relating colorimeter measurement of plant color to the royal horticultural society color chart. HortScience 1992, 27, 1256–1260. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Cantín, C.M.; Pinochet, J.; Gogorcena, Y.; Moreno, M.A. Growth, yield and fruit quality of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Sci. Hortic. 2010, 123, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Kappel, F.; Granger, A.; Hrotkó, K.; Schuster, M. Cherry. Fruit Breed. 2012, 459–504. [Google Scholar]
- Olmstead, J.W.; Amy, F.I. Genotypic differences in sweet cherry fruit size are primariy a function of cell number. J. Am. Soc. Hort. Sci. 2007, 132, 697–703. [Google Scholar] [CrossRef]
- Forcada, C.; Pinochet, J.; Gogorcena, Y.; Moreno, M.A. Effect of eight different rootstocks on agronomic and fruit quality parameters of two sweet cherry cultivars in Mediterranean conditions. Acta Hortic. 2017, 1161, 315–320. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol. Technol. 2003, 28, 159–167. [Google Scholar] [CrossRef]
- Romano, G.S.; Cittadini, E.D.; Pugh, B.; Schouten, R. Sweet cherry quality in the horticultural production chain. Stewart Postharvest Rev. 2006, 6, 1–8. [Google Scholar]
- Drake, S.R.; Elfving, D.C. Indicators of Maturity and Storage Quality of ‘Lapins’ Sweet Cherry. HortTechnology 2002, 12, 687–690. [Google Scholar] [CrossRef]
- Autio, W.R.; Southwick, F.W. Evaluation of a spur and a standard strain of Mcintosh on 3 rootstocks and one dwarfing interstem over 10 years. Fruit Var. J. 1993, 47, 95–102. [Google Scholar]
- Westwood, M.N.; Chaplin, M.H.; Roberts, A.N. Effects of rootstock on growth, bloom, yield, maturity, and fruit quality of prune (Prunus domestica L). J. Am. Soc. Hortic. Sci. 1973, 98, 352–357. [Google Scholar]
- Barret, D.M.; Gonzalez, C. Activity of softening enzymes during cherry maturation. J. Food Sci. 1994, 59, 574–577. [Google Scholar] [CrossRef]
- Wang, Y.; Long, L.E. Respiration and quality responses of sweet cherry to different atmospheres during cold storage and shipping. Postharvest Biol. Technol. 2014, 92, 62–69. [Google Scholar] [CrossRef]
- López-Ortega, G.; García-Montiel, F.; Bayo-Canha, A.; Frutos-Ruiz, C.; Frutos-Tomás, D. Rootstock effects on the growth, yield and fruit quality of sweet cherry cv. ‘Newstar’ in the growing conditions of the Region of Murcia. Sci. Hortic. 2016, 198, 326–335. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
L* | a* | b* | Chroma (C*) | Hue Angle (°) | |
---|---|---|---|---|---|
SL 64 | 48.72 ± 4.96 a | 34.13 ± 2.59 a | 23.26 ± 2.30 a | 41.34 ± 2.96 a | 34.26 ± 2.61 a |
Maxma 60 | 36.90 ± 3.20 b | 32.82 ± 3.25 b | 15.78 ± 3.58 b | 36.47 ± 4.44 b | 25.34 ± 3.01 b |
SSC | TA | MI | pH | |
---|---|---|---|---|
SL 64 | 11.22 ± 0.42 b | 6.03 ± 1.00 a | 1.91 ± 0.27 b | 3.79 ± 0.04 b |
Maxma 60 | 11.73 ± 0.15 a | 5.29 ± 0.26 b | 2.22 ± 0.12 a | 3.85 ± 0.04 a |
Wilks’ Lambda | ||||
---|---|---|---|---|
Function test | Wilks’ lambda | Chi-square | Gl | Sig. |
1 | 0.094 | 128.968 | 7 | 0.000 |
Eigenvalues | ||||
Function | Eigenvalue | % of variance | Cumulative % | Canonical correlation |
1 | 9.659 a | 100.0 | 100.0 | 0.952 |
a. The first canonical discriminating function was used in the analysis. | ||||
Canonical discriminant function coefficients | ||||
Function | ||||
1 | ||||
LD | 0.217 | |||
SSC | 1.252 | |||
pH | 13.676 | |||
ERF | 1.079 | |||
FF | −4.830 | |||
a* | 0.221 | |||
Hue angle | −0.442 | |||
(Constant) | −65.835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, V.; Silva, V.; Pereira, S.; Afonso, S.; Oliveira, I.; Santos, M.; Ribeiro, C.; Vilela, A.; Bacelar, E.; Silva, A.P.; et al. Rootstock Affects the Fruit Quality of ‘Early Bigi’ Sweet Cherries. Foods 2021, 10, 2317. https://doi.org/10.3390/foods10102317
Martins V, Silva V, Pereira S, Afonso S, Oliveira I, Santos M, Ribeiro C, Vilela A, Bacelar E, Silva AP, et al. Rootstock Affects the Fruit Quality of ‘Early Bigi’ Sweet Cherries. Foods. 2021; 10(10):2317. https://doi.org/10.3390/foods10102317
Chicago/Turabian StyleMartins, Valter, Vânia Silva, Sandra Pereira, Sílvia Afonso, Ivo Oliveira, Marlene Santos, Carlos Ribeiro, Alice Vilela, Eunice Bacelar, Ana Paula Silva, and et al. 2021. "Rootstock Affects the Fruit Quality of ‘Early Bigi’ Sweet Cherries" Foods 10, no. 10: 2317. https://doi.org/10.3390/foods10102317
APA StyleMartins, V., Silva, V., Pereira, S., Afonso, S., Oliveira, I., Santos, M., Ribeiro, C., Vilela, A., Bacelar, E., Silva, A. P., & Gonçalves, B. (2021). Rootstock Affects the Fruit Quality of ‘Early Bigi’ Sweet Cherries. Foods, 10(10), 2317. https://doi.org/10.3390/foods10102317