Effect of Alternative Preservatives on the Quality of Rice Cakes as Halal Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microbial Analysis
2.3. Color Assessment
2.4. Texture Profile Analysis (TPA)
2.5. Consumer Acceptance Test
2.6. Ethanol Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Microbial Analysis
3.2. Color Assessment
3.3. Texture Profile Analysis (TPA)
3.4. Consumer Acceptance
3.5. Ethanol Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karahalil, E. Principles of halal-compliant fermentations: Microbial alternatives for the halal food industry. Trends Food Sci. Technol. 2020, 98, 1–9. [Google Scholar] [CrossRef]
- Van der Spiegel, M.; van der Fels-Klerx, H.J.; Sterrenburg, P.; van Ruth, S.M.; Scholtens-Toma, I.M.J.; Kok, E.J. Halal assurance in food supply chains: Verification of halal certificates using audits and laboratory analysis. Trends Food Sci. Technol. 2012, 27, 109–119. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.C.; Lee, H.S.; Jeoung, S.W.; Shim, Y.S. Determination of five alcohol compounds in fermented Korean foods via simple liquid extraction with dimethyl-sulfoxide followed by gas chromatography-mass spectrometry for Halal food certification. Food Sci. Technol. 2016, 74, 563–570. [Google Scholar] [CrossRef]
- Alzeer, J.; Hadeed, K.A. Ethanol and its Halal status in food industries. Trends Food Sci. Technol. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- Cai, J.; Yang, D.; Zhang, J.; Guo, J.; Jiang, L. Evaluation of bio-guided fraction from Laminaria japonica as a natural food preservative based on antimicrobial activity. J. Food Meas. Charact. 2020, 14, 735–748. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Mazza, G. Antimicrobial properties of isothiocyanates in food preservation. Food Technol. 1995, 49, 73–84. [Google Scholar]
- Afroja, S.; Falgunee, F.N.; Jahan, M.M.; Akanda, K.M.; Mehjabin, S.; Parvez, G.M.M. Antibacterial Activity of Different Citrus Fruits. Spec. J. Med. Res. Health Sci. 2017, 2, 25–32. [Google Scholar]
- Kim, H.J.; Kuak, B.M.; Ahn, J.H.; Park, J.S. Simultaneous determination of Synephrine and N-Methyltyramine in orange fruit and juice from Korean market by UPLC-FLD. Korean J. Food Sci. Technol. 2014, 46, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Hsouna, A.B.; Hamdi, N.; Halima, N.B.; Abdelkafi, S. Characterization of essential oil from Citrus aurantium L. flowers: Antimicrobial and antioxidant activities. J. Oleo Sci. 2013, 62, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.A.C.; Zambrana, J.R.M.; Iorio, F.B.R.D.; Pereira, C.A.; Jorge, A.O.C. The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Braz. Oral Res. 2014, 28, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Beuchat, L.R.; Golden, D.A. Antimicrobials occurring naturally in foods. Food Technol. 1989, 43, 134–142. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products, Int. Food Res. J. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing themicrobiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
- Kong Y., J.; Park, B.K.; Oh, D.H. Antimicrobial activity of Quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Korean J. Food Sci. Technol. 2001, 33, 178–183. [Google Scholar]
- Han, J.Y.; Song, W.J.; Kang, J.H.; Min, S.C.; Eom, S.; Hong, E.J.; Ryu, S.; Kim, S.B.; Cho, S.; Kang, D.H. Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake. LWT-Food Sci. Technol. 2020, 120, 108918. [Google Scholar] [CrossRef]
- Kim, D.H.; Lim, Y.T.; Park, Y.J.; Yeon, S.J.; Jang, K.I. Antioxidant activities and physicochemical properties of tteokbokki rice cakes containing cinnamon powder. Food Sci. Biotechnol. 2014, 23, 425–430. [Google Scholar] [CrossRef]
- Kang, H.J.; Park, J.D.; Lee, H.Y.; Kum, J.S. Effect of grapefruit seed extracts and acid regulation agents on the qualities of Topokkidduk. J. Korean Soc. Food Sci. Nutr. 2013, 42, 948–956. [Google Scholar] [CrossRef]
- Ji, Y.; Zhu, K.; Qian, H.; Zhou, H. Staling of cake prepared from rice flour and sticky rice flour. Food Chem. 2007, 104, 53–58. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.K.; Lim, S.T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J. Cereal Sci. 2009, 50, 43–48. [Google Scholar] [CrossRef]
- Institute of Food Technologists/U.S. Food and Drug Administration. Analysis of microbial hazards related to time/temperature control of foods for safety. Compr. Rev. Food Sci. Food Saf. 2003, 2, 33–41. [Google Scholar] [CrossRef]
- Lake, R.; Hudson, A.; Cressey, P. Risk Profile: Bacillus spp. In Rice Client Report FW0319; Institute of Environmental Science and Research: Wellington, New Zealand, 2004. [Google Scholar]
- Oh, S.K.; Lee, N.; Cho, Y.S.; Shin, D.B.; Choi, S.Y.; Koo, M. Occurrence of toxigenic Staphylococcus aureus in Ready-to-Eat food in Korea. J. Food Prot. 2007, 70, 1153–1158. [Google Scholar] [CrossRef]
- Jeong, S.H.; Choi, S.Y.; Cho, J.I.; Lee, S.H.; Hwang, I.G.; Na, H.J. Microbiological contamination levels in the processing of Korea rice cakes. J. Food Hyg. Saf. 2012, 27, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Han, S.; Han, G. Application of retrogradation-retardation technology to Korean rice cake, Garaedduk made from non-waxy rice. Food Sci. Technol. Res. 2012, 18, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Chung, S.J.; Kim, K.O.; Nielsen, B.; Ishii, R.; O’Mahony, M. A cross-cultural study of acceptability and food pairing for hot sauces. Appetite 2018, 23, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeong, D.W.; Kim, M.K. Influence of bacterial starter culture on the sensory characteristic of doenjang, a fermented soybean paste, and their impact on consumer hedonic perception. J. Sens. Stud. 2019, 34, e12508. [Google Scholar] [CrossRef]
- Mansur, A.R.; Oh, J.; Lee, H.S.; Oh, S.Y. Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: A validated method for halal verification. Food Chem. 2021, 366, 130526. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.E.; Cornforth, D.P.; Whittier, D. Consumer preferences for beef color and packaging did not affect eating satisfaction. Meat Sci. 2001, 57, 359–363. [Google Scholar] [CrossRef]
- Ren, C.; Shin, M. Effects of cross-linked resistant rice starch on the quality of Korean traditional rice cake. Food Sci. Biotechnol. 2013, 22, 697–704. [Google Scholar] [CrossRef]
- Park, H.J.; Song, J.C.; Shin, W.C. Optimization of modified starches on retrogradation of Korean rice cake (Garaeduk). Korean J. Food Nutr. 2006, 19, 279–287. [Google Scholar]
- Jang, S.; Shin, W.; Kim, Y. Texture of steamed rice cake prepared via soy residue and hydroxypropyl methylcellulose supplementation. Cereal Chem. 2019, 96, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Hollis, F.H.; Denney, S.; Halfacre, J.; Jackson, T.; Link, A.; Orr, D. Human perception of fresh produce treated with grape seed extract: A preliminary study. J. Sens. Stud. 2020, 35, e12554. [Google Scholar] [CrossRef]
- Pauzi, N.; Man, S.; Nawawi, M.S.A.M.; Abu-Hussin, M.F. Ethanol standards in halal dietary product among Southeast Asian halal governing bodies. Trends Food Sci. Technol. 2019, 86, 375–380. [Google Scholar] [CrossRef]
Treated Solution | Total Plate Count (log CFU/g) | Mold and Yeast Count (log CFU/g) | ||||||
---|---|---|---|---|---|---|---|---|
0 Day | 7 Day | 21 Day | 28 Day | 0 Day | 7 Day | 21 Day | 28 Day | |
Distilled Water | 4.61 ± 0.08 c,d | 5.26 ± 0.10 d,e | 6.14 ± 0.13 b,f | 6.22 ± 0.21 b,f | 0.00 ± 0.00 d | 2.78 ± 0.06 b,e | 4.34 ± 0.63 b,f | 3.89 ± 0.16 b,f |
Ethanol (70%) | 2.85 ± 0.66 a,d | 2.58 ± 0.04 a,d | 4.10 ± 0.16 a,e | 4.05 ± 1.31 a,e | 0.00 ± 0.00 | 0.00 ± 0.00 a | 0.82 ± 1.42 a | 0.83 ± 1.44 a |
GSE (1%) | 4.31 ± 0.26 b,c,d | 4.91 ± 0.24 c,d | 6.41 ± 0.04 b,e | 6.70 ± 0.55 b,e | 0.00 ± 0.00 d | 3.09 ± 0.13 c,e | 3.75 ± 0.02 b,e,f | 4.49 ± 0.60 b,f |
MCO (1%) | 3.81 ± 0.12 b,d | 3.86 ± 0.00 b,d | 4.21 ± 0.73 a,e | 3.65 ± 0.09 a,e | 0.00 ± 0.00 d | 0.00 ± 0.00 a,d | 4.19 ± 0.84 b,e | 4.19 ± 0.05 b,e |
Value | Treated Solution | Storage Day | |||
---|---|---|---|---|---|
0 Day | 7 Day | 21 Day | 28 Day | ||
L* | Distilled Water | 78.53 ± 1.99 b,c,h | 69.22 ± 1.51 a,g | 68.95 ± 1.19 b,g | 69.99 ± 1.61 c,g |
Ethanol (70%) | 77.25 ± 1.65 a,h | 69.07 ± 1.35 a,g | 67.10 ± 1.68 a,f | 67.67 ± 1.07 a,f | |
GSE (1%) | 78.95 ± 1.30 c,g | 68.98 ± 1.18 a,f | 69.28 ± 1.51 b,f | 69.21 ± 1.74 b,c,f | |
MCO (1%) | 79.20 ± 1.08 c,h | 68.63 ± 1.49 a,f,g | 69.44 ± 1.04 b,g | 68.59 ± 2.14 a,b,f,g | |
a* | Distilled Water | 1.97 ± 0.10 b,h | 1.55 ± 0.07 c,g | 1.47 ± 0.05 c,f | 1.56 ± 0.12 c,g |
Ethanol (70%) | 1.81 ± 0.10 a,i | 1.55 ± 0.07 c,h | 1.37 ± 0.08 b,g | 1.44 ± 0.12 b,g | |
GSE (1%) | 1.82 ± 0.10 a,i | 1.37 ± 0.07 a,h | 1.27 ± 0.10 a,f,g | 1.34 ± 0.13 a,g,h | |
MCO (1%) | 1.93 ± 0.07 b,i | 1.66 ± 0.06 d,h | 1.41 ± 0.06 b,f | 1.41 ± 0.08 a,b,f | |
b* | Distilled Water | 0.78 ± 0.71 a,f | 0.88 ± 0.32 a,f | 0.59 ± 0.21 a,f | 0.67 ± 0.48 a,f |
Ethanol (70%) | 1.44 ± 0.48 c,g | 0.92 ± 0.55 a,f | 1.20 ± 0.19 d,f,g | 1.36 ± 0.31 c,g | |
GSE (1%) | 1.06 ± 0.40 a,b,c,f | 1.34 ± 0.53 b,f,g | 1.52 ± 0.18 e,g | 1.05 ± 0.47 b,f | |
MCO (1%) | 1.34 ± 0.54 b,c,g | 0.84 ± 0.47 a,f | 0.81 ± 0.16 b,f | 0.72 ± 0.24 a,f | |
ΔE | Distilled Water | 19.88 | 28.98 | 29.23 | 28.12 |
Ethanol (70%) | 21.29 | 29.13 | 31.15 | 30.53 | |
GSE (1%) | 19.56 | 28.39 | 29.09 | 28.98 | |
MCO (1%) | 19.38 | 28.64 | 28.80 | 29.52 |
Treated Solution | 7 Storage Day | 35 Storage Day | ||||||
---|---|---|---|---|---|---|---|---|
Distilled Water | Ethanol (70%) | GSE (1%) | MCO (1%) | Distilled Water | Ethanol (70%) | GSE (1%) | MCO (1%) | |
Overall liking | 5.70 ± 1.47 a | 4.77 ± 1.5b | 5.64 ± 1.45 a | 5.61 ± 1.67 a | 6.26 ± 1.65 b | 5.09 ± 1.76 a | 6.12 ± 1.35 b | 6.28 ± 1.50 b |
Color liking | 6.11 ± 1.47 * | 6.32 ± 1.64 * | 6.27 ± 1.53 * | 6.20 ± 1.37 * | 6.58 ± 1.38 * | 6.14 ± 1.47 * | 6.63 ± 1.18 * | 6.72 ± 1.26 * |
Flavor liking | 4.70 ± 1.96 a, b | 4.00 ± 1.63 a | 5.09 ± 1.78 b | 4.55 ± 1.82 a, b | 6.23 ± 1.69 b | 4.47 ± 2.14 a | 5.77 ± 1.49 b | 6.05 ± 1.76 b |
Taste liking | 5.50 ± 1.87 * | 4.80 ± 1.87 * | 5.59 ± 1.67 * | 5.25 ± 1.62 * | 6.14 ± 1.91 b | 4.98 ± 2.04 a | 5.86 ± 1.58 b | 6.05 ± 1.80 b |
Hardness liking | 5.93 ± 1.82 * | 5.48 ± 1.80 * | 6.05 ± 1.60 * | 5.89 ± 1.78 * | 6.53 ± 1.71 b | 5.51 ± 1.92 a | 5.79 ± 1.91 a, b | 6.06 ± 1.86 a, b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Kim, M.K. Effect of Alternative Preservatives on the Quality of Rice Cakes as Halal Food. Foods 2021, 10, 2291. https://doi.org/10.3390/foods10102291
Oh J, Kim MK. Effect of Alternative Preservatives on the Quality of Rice Cakes as Halal Food. Foods. 2021; 10(10):2291. https://doi.org/10.3390/foods10102291
Chicago/Turabian StyleOh, Jungmin, and Mina K. Kim. 2021. "Effect of Alternative Preservatives on the Quality of Rice Cakes as Halal Food" Foods 10, no. 10: 2291. https://doi.org/10.3390/foods10102291
APA StyleOh, J., & Kim, M. K. (2021). Effect of Alternative Preservatives on the Quality of Rice Cakes as Halal Food. Foods, 10(10), 2291. https://doi.org/10.3390/foods10102291