A Statistical Approach to Describe the Ripening Evolution of Sangiovese Grapes Coming from Different Chianti Classico Sub-Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Nine Selected Areas
2.2. Description of the Weather Station
2.3. Soil Characteristics
2.4. Description of Sampling Modes
2.5. Chemical Composition Analyses
2.6. Statistical Analyses
3. Results and Discussion
3.1. Climatic and Vineyard Site Considerations
3.2. Evolution of the Composition of the Grapes during the Pre-Harvest Period
3.2.1. Grapes’ Primary Metabolism: Accumulation of Sugars
3.2.2. Grapes’ Primary Metabolism: Decrease in Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gergaud, O.; Livat, F.; Rickard, B.; Warzynski, F. Evaluating the net benefits of collective reputation: The case of Bordeaux wine. Food Policy 2017, 71, 8–16. [Google Scholar] [CrossRef]
- Rienth, M.; Lamy, F.; Noll, D.; Lorenzini, F.; Viret, O.; Zufferey, V. An example of a vine-physiology based fine-scale terroir study in the AOC Lavaux-region in Switzerland. E3S Web Conf. 2018, 50, 02011. [Google Scholar] [CrossRef][Green Version]
- Zsófi, Z.S.; Tóth, E.; Rusjan, D.; Bálo, B. Terroir aspects of grape quality in a cool climate wine region: Relationship between water deficit, vegetative growth and berry sugar concentration. Sci. Hortic. 2011, 127, 494–499. [Google Scholar] [CrossRef]
- Jones, G.V. The climate component of terroir. Elements 2018, 14, 167–172. [Google Scholar] [CrossRef]
- Tomasi, D.; Gaiotti, F.; Jones, G.V. The Power of the Terroir: The Case Study of Prosecco Wine, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783034806282. [Google Scholar]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef][Green Version]
- Jones, G.V.; Webb, L.B. Climate change, viticulture, and wine: Challenges and opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- European Parliament and of the Council EU regulation No 1308/2013. Off. J. Eur. Communities 2013, 2008, 1–22. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R1308&from=EN (accessed on 20 August 2020).
- Ministero delle Politiche Agricole Alimentari, Forestali e del Turismo. Gazzetta Ufficiale della Repubblica Italiana DPR 02.07; Italy, 1984; Available online: https://www.valoritalia.it/wp-content/uploads/2018/04/Chianti-Classico-DOCG-1.pdf (accessed on 20 August 2020).
- Istituto di Servizi per il Mercato Agricolo Alimentare (ISMEA) Rete Vino DOP e IGP. Available online: https://www.ismeamercati.it/flex/FixedPages/IT/VinoCertificatoScheda.php/L/IT/ID/30/REG/9/tip/0/col/1/from/- (accessed on 20 August 2020).
- Malorgio, G.; Grazia, C. Quantity and quality regulation in the wine sector: The Chianti Classico appellation of origin. Int. J. Wine Bus. Res. 2007, 19, 298–310. [Google Scholar] [CrossRef]
- Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An overview of the recent approaches for terroir functional modelling, footprinting and zoning. SOIL Discuss. 2014, 1, 827–906. [Google Scholar] [CrossRef][Green Version]
- Gonzálvez, A.; Llorens, A.; Cervera, M.L.; Armenta, S.; de la Guardia, M. Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chem. 2009, 112, 26–34. [Google Scholar] [CrossRef]
- Canuti, V.; Picchi, M.; Zanoni, B.; Fia, G.; Bertuccioli, M. A multivariate methodological approach to relate wine to characteristics of grape composition: The case of typicality. Am. J. Enol. Vitic. 2017, 68, 49–59. [Google Scholar] [CrossRef]
- Venturi, F.; Andrich, G.; Sanmartin, C.; Taglieri, I.; Serni, E.; Zinnai, A. Winemaking of Sangiovese grapes with and without the addition of different oenological tannins in order to increase the colour intensity of Chianti wine. Agrochimica 2015, 59. [Google Scholar] [CrossRef]
- Monaci, F.; Bargagli, R.; Focardi, S. Element concentrations in Chianti Classico appellation wines. J. Trace Elem. Med. Biol. 2003, 17, 45–50. [Google Scholar] [CrossRef]
- Marone, E.; Menghini, S. Sviluppo sostenibile: Il caso di Greve in Chianti e del Chianti Classico. Ce.S.E.T 1991, 21, 1000–1013. [Google Scholar] [CrossRef]
- Vouillamoz, J.F.; Monaco, A.; Costantini, L.; Stefanini, M.; Scienza, A.; Grando, M.S. The parentage of “Sangiovese”, the most important Italian wine grape. Vitis J. Grapevine Res. 2007, 46, 19–22. [Google Scholar]
- Rinaldi, A.; Moine, V.; Moio, L. Astringency subqualities and sensory perception of Tuscan Sangiovese wines. Oeno One 2020, 54, 75–85. [Google Scholar] [CrossRef]
- Priori, S.; Pellegrini, S.; Perria, R.; Puccioni, S.; Storchi, P.; Valboa, G.; Costantini, E.A.C. Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany, Italy). Geoderma 2019, 334, 99–112. [Google Scholar] [CrossRef]
- Mazzilli, R. Come Cambiano i Vigneti nel Chianti Classico in Base All’altitudine che Regola i Fattori Pedologici e Climatici. February 2014. Available online: http://www.insidechianticlassico.com/home/come-cambiano-i-vigneti-nel-chianti-classico-in-base-allaltitudine-che-regola-i-fattori-pedologici-e-climatici (accessed on 20 August 2020).
- Consorzio Vino Chianti Classico. Territorio. 2020. Available online: https://www.chianticlassico.com/territorio/caratteristiche/ (accessed on 20 August 2020).
- Repetti, E. Notizie e Guida di Firenze e De’suoi Contorni, 2nd ed.; Piatti, G., Ed.; Harvard University Library, 1841; Available online: https://books.google.be/books?id=N2sTAAAAYAAJ&pg=PR1&hl=it&source=gbs_selected_pages&cad=2#v=onepage&q&f=false (accessed on 20 August 2020).
- Priori, S.; Barbetti, R.; L’Abate, G.; Bucelli, P.; Storchi, P.; Costantini, E.A.C. Natural terroir units, Siena province, Tuscany. J. Maps 2014, 10, 466–477. [Google Scholar] [CrossRef][Green Version]
- Amato, V.; Valletta, M. Wine Landscapes of Italy. World Geomorphol. Landsc. 2017, 523–536. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Analysis; 2021; ISBN 9782850380334. OIV-35 RUE DE MONCEAU, 75008 PARIS. Available online: https://www.oiv.int/public/medias/7788/oiv-compendium-of-international-methods-of-analysis-vol2-en.pdf (accessed on 20 August 2020).
- Brun, R.; Rademakers, F. ROOT—An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Bianchi, A.; Sgherri, C.; Quartacci, M.F.; De Leo, M.; Pistelli, L.; Palla, F.; et al. Bread fortified with cooked purple potato flour and citrus albedo: An evaluation of its compositional and sensorial properties. Foods 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Tabares, J.A.; Martin-Luis, B.; Carrillo-Lopez, M.; Diaz-Diaz, E.; Darias-Martin, J. Effect of altitude on the wine-making potential of Listan negro and Ruby Cabernet cultivars in the south of Tenerife island. J. Int. Sci. Vigne Vin 2002, 36, 185–194. [Google Scholar] [CrossRef][Green Version]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2017, 97, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
Agronomic Parameters | |
---|---|
Variety | 100% Sangiovese |
Clones | As genetically similar as possible |
Rootstock | As similar as possible |
Planting distances | 80–90 cm × 250–280 cm |
Plant density | Around 4500 to 5000 plants per hectare |
Training system | Spurred cordon 80–90 cm |
Age of the vineyard | Between 12 and 20 years |
Number of vital spurs | More than 3 have approximately 6 to 8 productive shoots |
Number of grapes | Around 6–8 bunches |
Production | Between 60–75 quintals per hectare |
Vigour | Normal |
Phytosanitary management | According to the good agricultural practices (GAPs) to produce good-quality grapes |
Vineyard | Location | Total Area (ha) | Planting Density (cm × cm) | Pruning System | Rootstock | Clone | Planting Year |
---|---|---|---|---|---|---|---|
Castellina | 43°26’32.8″ N 11°14′58.7″ E | 3 | 250 × 80 | Cordon | 110R | VCR 23 | 2005 |
Castelnuovo Berardenga | 43°23′46.1″ N 11°20′35.6″ E | 2.2 | 275 × 80 | Cordon 30% | 775P, VGV16 | SG 12T | 2007 |
Gaiole | 43°25′44.8″ N 11°23′16.0″ E | 2.1 | 250 × 80 | Cordon | 110R | VCR 30 | 2006 |
Greve | 43°40′49.6″ N 11°20′16.7″ E | 1.7 | 230 × 80 | Cordon | 779P, 1103P | SSF9A448, R24 | 2000 |
Radda | 43°28′46.7″ N 11°22′28.2″ E | 0.9 | 250 × 80 | Cordon 20% | 110R | VCR5 | 2000 |
Lamole | 43°32′49.6″ N 11°21′11.6″ E | 1.1 | 230 × 80 | Cordon 40% | 420A | GM32 | 2009 |
Panzano | 43°33′33.0″ N 11°16′01.8″ E | 0.4 | 230 × 80 | Cordon 50% | 110R | G 76 | 2003 |
San Casciano | 43°40′24.6″ N 11°10′33.4″ E | 1.3 | 280 × 80 | Cordon | 420A, SO4 | Ch. 2005, Ch. 2002, R23 | 2009 |
Tavarnelle | 43°34′53.3″ N 11°14′46.6″ E | 2.1 | 230 × 80 | Cordon | 420A | BF30 | 2004 |
Vineyard | Soil Classification | Altitude | Slope | Soil Exposure | Row Orientation |
---|---|---|---|---|---|
Gaiole | A (sandstone + Galestro) | 444 m a.s.l. | 13.79% | SW | NE–SW |
Greve | A (sandstone + Galestro) | 289 m a.s.l. | 21.30% | SE | NW–SE |
Radda | A (sandstone + Galestro) | 449 m a.s.l. | 18% | SE | NW–SE |
Panzano | B (calcareous-clayey + Alberese/Pietraforte) | 335 m a.s.l. | 28.20% | SE | NW–SE |
Lamole | B (calcareous-clayey + Alberese) | 546 m a.s.l. | 15.30% | SW | NE–SW |
San Casciano | C (sandy marine deposits + siliceous pebbles) | 281 m a.s.l. | 0.60% | E | NE–SW |
Castelnuovo Berardenga | D (marine deposits + prevalence of clay) | 386 m a.s.l. | 23.70% | NW | NW–SE |
Castellina | E (ancient lake deposit + low skeleton made of tuff) | 289 m a.s.l. | 12.90% | N | N–S |
Tavarnelle | E (ancient lake deposit + low skeleton made of tuff) | 333 m a.s.l. | 7.14% | SE | NW–SE |
Vineyard | Altitude (m a.s.l.) | Average Temperature (°C) | Max of T.max (°C) | Max of T.min (°C) | Average Excursion (°C) | Relative Humidity (%) | Rainfall (mm) |
---|---|---|---|---|---|---|---|
Castellina | 289 | 21.8 | 35.8 | 19.9 | 14.3 | 79.9 | 169.5 |
Castelnuovo Berardenga | 386 | 21.5 | 37.0 | 19.5 | 15.4 | 51.0 | 47.0 |
Gaiole | 444 | 20.8 | 34.8 | 19.7 | 13.1 | 78.7 | 80.8 |
Greve | 289 | 22.5 | 36.6 | 21.2 | 11.3 | 73.0 | 83.4 |
Lamole | 546 | 19.5 | 33.3 | 18.5 | 16.8 | 55.2 | 60.2 |
Panzano | 335 | 21.5 | 36.2 | 20.1 | 13.7 | 57.0 | 16.6 |
Radda | 449 | 19.2 | 33.7 | 18.1 | 16.6 | 74.0 | 95.2 |
San Casciano | 281 | 23.7 | 38.4 | 22.6 | 10.0 | 64.0 | 38.8 |
Tavarnelle | 333 | 21.0 | 35.1 | 19.8 | 12.6 | 73.3 | 105.9 |
Vineyard | Sugar Value at Veraison (t = −40 days) (g/L) | q (Intercept) | m (Slope) | R2 | Sugar Value at Harvest (g/L) |
---|---|---|---|---|---|
Greve | 140.3 ± 2.8 | 257.1 ± 3.2 | 2.92 ± 0.12 | 0.97 | 247.2 ± 1.5 |
Castellina | 154.1 ± 3.9 | 260.1 ± 4.5 | 2.65 ± 0.13 | 0.94 | 244.7 ± 0.8 |
Lamole | 165.8 ± 2.2 | 270.6 ± 2.8 | 2.62 ± 0.11 | 0.97 | 266.8 ± 0.9 |
San Casciano | 145.4 ± 1.2 | 249.0 ± 2.1 | 2.59 ± 0.14 | 0.95 | 253.7 ± 1.7 |
Tavarnelle | 148.5 ± 1.8 | 250.1 ± 1.9 | 2.54 ± 0.12 | 0.94 | 239.3 ± 1.1 |
Castelnuovo Berardenga | 149.4 ± 2.4 | 248.2 ± 2.5 | 2.47 ± 0.13 | 0.95 | 249.8 ± 1.3 |
Panzano | 150.5 ± 3.2 | 240.9 ± 3.9 | 2.26 ± 0.16 | 0.98 | 231.3 ± 1.6 |
Gaiole | 186.2 ± 1.6 | 246.2 ± 1.5 | 1.50 ± 0.11 | 0.98 | 247.2 ± 1.3 |
Radda | 185.3 ± 2.5 | 242.5 ± 2.3 | 1.43 ± 0.12 | 0.91 | 239.8 ± 1.2 |
Vineyard | Titratable Acidity at Veraison (t = −40 days) (g/L) | q (Intercept) | m (Slope) | R2 | Titratable Acidity at Harvest (g/L) |
---|---|---|---|---|---|
San Casciano | 9.12 ± 0.12 | 6.12 ± 0.08 | −0.075 ± 0.005 | 0.99 | 6.16 ± 0.09 |
Castellina | 8.41 ± 0.09 | 6.29 ± 0.11 | −0.053 ± 0.002 | 0.92 | 6.22 ± 0.10 |
Greve | 8.75 ± 0.13 | 6.87 ± 0.09 | −0.047 ± 0.003 | 0.99 | 6.90 ± 0.12 |
Panzano | 7.47 ± 0.08 | 5.67 ± 0.06 | −0.045 ± 0.004 | 0.99 | 5.70 ± 0.13 |
Tavarnelle | 8.74 ± 0.11 | 7.18 ± 0.07 | −0.039 ± 0.002 | 0.98 | 7.30 ± 0.12 |
Gaiole | 9.46 ± 0.08 | 7.94 ± 0.08 | −0.038 ± 0.004 | 0.96 | 8.09 ± 0.13 |
Lamole | 7.56 ± 0.06 | 6.00 ± 0.11 | −0.039 ± 0.002 | 0.99 | 6.17 ± 0.11 |
Castelnuovo Berardenga | 7.22 ± 0.07 | 6.06 ± 0.11 | −0.029 ± 0.003 | 0.98 | 6.17 ± 0.12 |
Radda | 7.24 ± 0.11 | 6.24 ± 0.07 | −0.025 ± 0.003 | 0.91 | 6.22 ± 0.09 |
Vineyard | Malic Acid at Veraison (t = −40 days) (g/L) | q (Intercept) | m (Slope) | R2 | Malic Acid at Harvest (g/L) |
---|---|---|---|---|---|
San Casciano | 3.52 ± 0.03 | 1.08 ± 0.04 | −0.061 ± 0.004 | 0.96 | 1.02 ± 0.03 |
Castellina | 3.28 ± 0.04 | 1.32 ± 0.05 | −0.049 ± 0.003 | 0.92 | 1.29 ± 0.02 |
Greve | 2.89 ± 0.04 | 1.25 ± 0.03 | −0.041 ± 0.003 | 0.99 | 1.29 ± 0.03 |
Panzano | 3.05 ± 0.05 | 1.65 ± 0.02 | −0.035 ± 0.002 | 0.98 | 1.68 ± 0.03 |
Tavarnelle | 2.27 ± 0.04 | 0.91 ± 0.03 | −0.034 ± 0.002 | 0.96 | 0.99 ± 0.04 |
Gaiole | 1.95 ± 0.03 | 0.63 ± 0.04 | −0.033 ± 0.002 | 0.96 | 0.70 ± 0.03 |
Lamole | 3.10 ± 0.04 | 1.86 ± 0.03 | −0.031 ± 0.001 | 0.98 | 2.02 ± 0.03 |
Castelnuovo Berardenga | 2.10 ± 0.02 | 1.18 ± 0.03 | −0.023 ± 0.002 | 0.99 | 1.27 ± 0.02 |
Radda | 1.60 ± 0.03 | 0.80 ± 0.02 | −0.020 ± 0.003 | 0.92 | 0.81 ± 0.03 |
Vineyard | pH at Veraison (t = −40 days) | q (Intercept) | m (Slope) | R2 | pH at Harvest |
---|---|---|---|---|---|
Lamole | 3.02 ± 0.02 | 3.50 ± 0.02 | 0.012 ± 0.001 | 0.97 | 3.47 ± 0.02 |
Panzano | 3.07 ± 0.02 | 3.51 ± 0.03 | 0.011 ± 0.002 | 0.98 | 3.54 ± 0.03 |
Castellina | 3.15 ± 0.01 | 3.55 ± 0.02 | 0.010 ± 0.001 | 0.95 | 3.52 ± 0.02 |
Castelnuovo Berardenga | 3.10 ± 0.02 | 3.50 ± 0.03 | 0.010 ± 0.002 | 0.93 | 3.58 ± 0.02 |
San Casciano | 3.01 ± 0.03 | 3.41 ± 0.04 | 0.010 ± 0.002 | 0.98 | 3.38 ± 0.03 |
Greve | 2.94 ± 0.03 | 3.26 ± 0.02 | 0.008 ± 0.001 | 0.99 | 3.24 ± 0.02 |
Tavarnelle | 3.03 ± 0.01 | 3.27 ± 0.02 | 0.006 ± 0.002 | 0.91 | 3.23 ± 0.02 |
Gaiole | 2.93 ± 0.02 | 3.17 ± 0.01 | 0.006 ± 0.001 | 0.95 | 3.12 ± 0.01 |
Radda | 3.08 ± 0.02 | 3.20 ± 0.02 | 0.003 ± 0.001 | 0.95 | 3.17 ± 0.01 |
Vineyard | Potassium at Veraison (t = −40 days) (mg/L) | q (Intercept) | m (Slope) | R2 | Potassium at Harvest (mg/L) |
---|---|---|---|---|---|
Greve | 1532 ± 12 | 1383 ± 13 | −3.73 ± 0.13 | 0.97 | 1374 ± 11 |
San Casciano | 1488 ± 18 | 1335 ± 15 | −3.83 ± 0.14 | 0.99 | 1345 ± 10 |
Castellina | 1440 ± 13 | 1277 ± 17 | −4.08 ± 0.18 | 0.99 | 1284 ± 8 |
Panzano | 1549 ± 14 | 1359 ± 19 | −4.75 ± 0.15 | 0.95 | 1354 ± 14 |
Castelnuovo Berardenga | 1533 ± 13 | 1341 ± 11 | −4.79 ± 0.09 | 0.96 | 1365 ± 13 |
Tavarnelle | 1416 ± 16 | 1205 ± 15 | −5.28 ± 0.15 | 0.95 | 1188 ± 13 |
Lamole | 1426 ± 14 | 1170 ± 10 | −6.40 ± 0.10 | 0.98 | 1164 ± 12 |
Gaiole | 1245 ± 15 | 973 ± 13 | −6.80 ± 0.16 | 0.99 | 1005 ± 14 |
Radda | 1168 ± 12 | 881 ± 11 | −7.18 ± 0.17 | 0.98 | 935 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, A.; Taglieri, I.; Rimbotti Antinori, V.; Palla, F.; Macaluso, M.; Ferroni, G.; Sanmartin, C.; Venturi, F.; Zinnai, A. A Statistical Approach to Describe the Ripening Evolution of Sangiovese Grapes Coming from Different Chianti Classico Sub-Areas. Foods 2021, 10, 2292. https://doi.org/10.3390/foods10102292
Bianchi A, Taglieri I, Rimbotti Antinori V, Palla F, Macaluso M, Ferroni G, Sanmartin C, Venturi F, Zinnai A. A Statistical Approach to Describe the Ripening Evolution of Sangiovese Grapes Coming from Different Chianti Classico Sub-Areas. Foods. 2021; 10(10):2292. https://doi.org/10.3390/foods10102292
Chicago/Turabian StyleBianchi, Alessandro, Isabella Taglieri, Verdiana Rimbotti Antinori, Fabrizio Palla, Monica Macaluso, Giuseppe Ferroni, Chiara Sanmartin, Francesca Venturi, and Angela Zinnai. 2021. "A Statistical Approach to Describe the Ripening Evolution of Sangiovese Grapes Coming from Different Chianti Classico Sub-Areas" Foods 10, no. 10: 2292. https://doi.org/10.3390/foods10102292