Spices and Seasoning Mixes in European Union—Innovations and Ensuring Safety
Abstract
:1. Introduction
2. Spices and Seasoning Mixes—Definitions and Importance in Food and Nutrition
- the desire to obtain stronger, more refined, or repeatable tastes in dishes;
- the need to streamline the preparation of meals in gastronomy and at home;
- the need to ensure the quality of spices by selecting the proper ingredients, i.e., the inclusion of individual spices and their proportions;
- the standardization of the composition of the spice mixtures in order to obtain repeatability of sensory impressions in the prepared dishes in gastronomic conditions and in production.
- loose spices of varying degrees of fragmentation–cut, broken, or powdered;
- liquid spices, emulsions, or liquid extracts;
- spices in the form of pastes or dry extracts.
3. Risks Related to the Use of Spices and Seasoning Mixes
3.1. Health Risks Related to Excess Sodium Chloride in Food
3.2. Health Risks Related to the Addition of Flavor Enhancers to Spices
3.3. Health Risks Related to the Presence of Allergens in Spices and Their Labeling
3.4. Adulteration and Lack of Authenticity of Spices and Seasoning Mixtures
3.5. Threats Connected with the Microbiological Safety of Spices and Seasoning Mixes
3.6. Threats Due to Heavy Metals, Pesticides, Plant Protection Products, Synthetic Fertilizers, and Undeclared Additives in Spices
4. Product and Process Innovations in Spice and Seasoning Mixes
4.1. Product Innovations in the Group of Spices and Seasoning Mixes
4.2. Process Innovations in the Group of Spices and Seasoning Mixes
5. The Role of the Law in Advancing Innovation and Ensuring the Quality of Herbs and Spices
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Łuczaj, Ł.; Pieroni, A.; Tardío, J.; Pardo-De-Santayana, M.; Sõukand, R.; Svanberg, I.; Kalle, R. Wild food plant use in 21st century Europe: The disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Soc. Bot. Pol. 2012, 81, 359–370. [Google Scholar] [CrossRef]
- Leja, K.B.; Czaczyk, K. The industrial potential of herbs and spices—A mini review. Acta Sci. Pol. Technol. Aliment. 2016, 15, 353–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Graciá, C.; González-Bermúdez, C.A.; Cabellero-Valcárcel, A.M.; Santaella-Pascual, M.; Frontela-Saseta, C. Use of herbs and spices for food preservation: Advantages and limitations. Curr. Opin. Food Sci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- García-Casal, M.; Peña-Rosas, J.P.; Malavé, H.G. Sauces, Spices, and Condiments: Definitions, Potential Benefits, CONSUMPTION Patterns, and Global Markets. Ann. N. Y. Acad. Sci. 2016, 1379, 3–16. Available online: http://www.innocua.net/web/download-5387/garc-a-casal-et-al-2016-annals-of-the-new-york-academy-of-sciences.pdf (accessed on 19 August 2021). [CrossRef] [PubMed]
- Balekundri, A.; Mannur, V. Quality control of the traditional herbs and herbal products: A review. Future J. Pharm. Sci. 2020, 6. [Google Scholar] [CrossRef]
- Newerli-Guz, J. Antioxidant properties of spice blends—Example Herbes de Provence. Towarozn. Probl. Jakości 2013, 4, 112–116. [Google Scholar]
- Jordan, S.A.; Cunningham, D.G.; Marles, R.J. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol. Appl. Pharmacol. 2010, 243, 198–216. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Steinhoff, B. Review: Quality of herbal medicinal products: State of the art of purity assessment. Phytomedicine 2019, 60, 153003. [Google Scholar] [CrossRef]
- Faccio, G. Plant complexity and cosmetic innovation. iScience 2020, 23, 101358. [Google Scholar] [CrossRef] [PubMed]
- Śmiechowska, M.; Kaczmarczyk, A. Seasoning mixes—A hidden source of salt. Probl. Hig. Epidemiol. 2014, 95, 128–130. [Google Scholar]
- Kloss, L.; Meyer, J.D.; Graeve, L.; Vetter, W. Sodium intake and its reduction by food reformulation in the European Union—A review. NFS J. 2015, 1, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Jobin, K.; Müller, D.N.; Jantsch, J.; Kurts, C. Sodium and its manifold impact on our immune system. Trends Immunol. 2021, 42, 469–479. [Google Scholar] [CrossRef]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P. Sodium intake and hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, S.; Provenzano, M.; Gagliardi, I.; Michael, A.; Liberti, M.E.; De Nicola, L.; Conte, G.; Garofalo, C.; Andreucci, M. Sodium intake and chronic kidney disease. Int. J. Mol. Sci. 2020, 21, 4744. [Google Scholar] [CrossRef]
- He, F.J.; MacGregor, G.A. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef]
- World Health Organization—WHO. Sodium Intake for Adults and Children. Guidel. Sodium Intake Adults Child. 2012, 56. Available online: http://www.who.int/nutrition/publications/guidelines/sodium_intake/en/ (accessed on 19 August 2021).
- Cook, N.R.; He, F.J.; MacGregor, G.A.; Graudal, N. Sodium and health—Concordance and controversy. BMJ 2020, 369, m2440. [Google Scholar] [CrossRef]
- Gündoğdu, S. Contamination of table salts from Turkey with microplastics. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2018, 35, 1006–1014. [Google Scholar] [CrossRef]
- Jinap, S.; Hajeb, P. Glutamate. Its applications in food and contribution to health. Appetite 2010, 55, 1–10. [Google Scholar] [CrossRef]
- Zanfirescu, A.; Ungurianu, A.; Tsatsakis, A.M.; Nitulescu, G.M.; Kouretas, D.; Veskoukis, A.; Tsoukalas, D.; Engin, A.B.; Aschner, M.; Margina, D. A review of the alleged health hazards of monosodium glutamate. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1111–1134. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, X.; Liu, Y. Characterization and evaluation of umami taste: A review. TrAC Trends Anal. Chem. 2020, 127, 115876. [Google Scholar] [CrossRef]
- Wu, B.; Eldeghaidy, S.; Ayed, C.; Fisk, I.D.; Hewson, L.; Liu, Y. Mechanisms of umami taste perception: From molecular level to brain imaging. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- European Commission. EUR-Lex—32011R1169—EN—EUR-Lex. Regulation (EU) No 1169/2011. Published 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1169&qid=1623672705269%0Ahttps://eur-lex.europa.eu/eli/reg/2011/1169/oj%0Ahttps://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169%0Ahttps://eur-lex.europa.eu/legal-content/en (accessed on 19 August 2021).
- Święs, D.; Sikora, T. Allergens: Intended and unintended presence in the context of law and GFSI standard requirements. Zywn. Nauk. Technol. Jakość/Food Sci. Technol. Qual. 2019, 26, 30–44. [Google Scholar] [CrossRef]
- Wen, H.; Lee, Y.M. Effects of message framing on food allergy communication: A cross-sectional study of restaurant customers with food allergies. Int. J. Hosp. Manag. 2020, 89, 102401. [Google Scholar] [CrossRef]
- Słowianek, M.; Skorupa, M.; Hallmann, E.; Rembiałkowska, E.; Leszczyńska, J. Allergenic potential of tomatoes cultivated in organic and conventional systems. Plant Foods Hum. Nutr. 2016, 71, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Barbero, G.F.; Liazid, A.; Azaroual, L.; Palma, M.; Barroso, C.G. Capsaicinoid contents in peppers and pepper-related spicy foods. Int. J. Food Prop. 2015, 19, 485–493. [Google Scholar] [CrossRef]
- Usman, M.G.; Rafii, M.Y.; Ismail, M.R.; Malek, M.A.; Latif, M.A. Capsaicin and dihydrocapsaicin determination in chili pepper genotypes using ultra-fast liquid chromatography. Molecules 2014, 19, 6474–6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinholds, I.; Bartkevics, V.; Silvis, I.C.J.; van Ruth, S.M.; Esslinger, S. Analytical techniques combined with chemometrics for authentication and determination of contaminants in condiments: A review. J. Food Compos. Anal. 2015, 44, 56–72. [Google Scholar] [CrossRef]
- Sgorbini, B.; Bicchi, C.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P. Herbs and spices: Characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis. J. Chromatogr. A 2015, 1376, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Silvis, I.C.J.; Luning, P.A.; Klose, N.; Jansen, M.; van Ruth, S.M. Similarities and differences of the volatile profiles of six spices explored by Proton Transfer Reaction Mass Spectrometry. Food Chem. 2019, 271, 318–327. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Karpinska, J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem. J. 2020, 153, 104278. [Google Scholar] [CrossRef]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Hamidpour, R.; Hamidpour, M.; Hamidpour, S.; Shahlari, M. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer’s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities. J Tradit. Complement. Med. 2015, 5, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Labib, R.M.; Noleto, C.; Porzel, A.; Wessjohann, L.A. NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. LWT 2018, 90, 491–498. [Google Scholar] [CrossRef]
- Liyanage, N.M.N.; Bandusekara, B.S.; Kanchanamala, R.W.; Hathurusinghe, H.A.; Dilhan, A.M.; Pushpakumara, D.G.; Samita, S.; Wijesinghe, K.G.; Jayasinghe, G.G.; Liyanage, W.K.; et al. Identification of superior Cinnamomum zeylanicum Blume germplasm for future true cinnamon breeding in the world. J. Food Compos. Anal. 2021, 96, 103747. [Google Scholar] [CrossRef]
- Modupalli, N.; Naik, M.; Sunil, C.K.; Natarajan, V. Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci. Technol. 2021, 108, 133–147. [Google Scholar] [CrossRef]
- Agricultural and Food Quality Inspection—Annual Report 2019. Available online: https://www.gov.pl/web/ijhars/sprawozdanie-roczne (accessed on 12 August 2021).
- Soon, J.M.; Brazier, A.K.M.; Wallace, C.A. Determining common contributory factors in food safety incidents—A review of global outbreaks and recalls 2008–2018. Trends Food Sci. Technol. 2020, 97, 76–87. [Google Scholar] [CrossRef]
- RASFF Window—Search. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search?event=notificationsList&StartRow=1 (accessed on 19 August 2021).
- Banach, J.L.; Stratakou, I.; van der Fels-Klerx, H.J.; Besten, H.M.W.; de Zwietering, M.H. European alerting and monitoring data as inputs for the risk assessment of microbiological and chemical hazards in spices and herbs. Food Control 2016, 69, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, B.; Menna, V.; Gruppioni, N.; Bergamini, C. Aflatoxins in spices, aromatic herbs, herb-teas and medicinal plants marketed in Italy. Food Control 2007, 18, 697–701. [Google Scholar] [CrossRef]
- Thanushree, M.P.; Sailendri, D.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Mycotoxin contamination in food: An exposition on spices. Trends Food Sci. Technol. 2019, 93, 69–80. [Google Scholar] [CrossRef]
- Pigłowski, M. Notifications to food from European Union countries in the rasff. Stud. Pr. WNEiZ US 2017, 47, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P.B. Food irradiation: Standards, regulations and world-wide trade. Radiat. Phys. Chem. 2016, 129, 30–34. [Google Scholar] [CrossRef]
- Feliciano, C.P. High-dose irradiated food: Current progress, applications, and prospects. Radiat. Phys. Chem. 2018, 144, 34–36. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Akbulut, M. Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem. 2008, 106, 852–858. [Google Scholar] [CrossRef]
- Gonzálvez, A.; Armenta, S.; Cervera, M.; de la Guardia, M. Elemental composition of seasoning products. Talanta 2008, 74, 1085–1095. [Google Scholar] [CrossRef]
- Mörtl, M.; Klátyik, S.; Molnár, H.; Tömösközi-Farkas, R.; Adányi, N.; Székács, A. The effect of intensive chemical plant protection on the quality of spice paprika. J. Food Compos. Anal. 2018, 67, 141–148. [Google Scholar] [CrossRef]
- Parrilla Vázquez, P.; Ferrer, C.; Martínez Bueno, M.; Fernández-Alba, A.R. Pesticide residues in spices and herbs: Sample preparation methods and determination by chromatographic techniques. TrAC Trends Anal. Chem. 2019, 115, 13–22. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Stefanaki, A.; van Andel, T. Mediterranean aromatic herbs and their culinary use. Aromat. Herbs Food 2021, 93–121. [Google Scholar] [CrossRef]
- Taladrid, D.; Laguna, L.; Bartolomé, B.; Moreno-Arribas, M.V. Plant-derived seasonings as sodium salt replacers in food. Trends Food Sci. Technol. 2020, 99, 194–202. [Google Scholar] [CrossRef]
- Deliza, R.; Lima, M.F.; Ares, G. Rethinking sugar reduction in processed foods. Curr. Opin. Food Sci. 2021, 40, 58–66. [Google Scholar] [CrossRef]
- Wijayasekara, K.N.; Wansapala, J. Comparison of a flavor enhancer made with locally available ingredients against commercially available Mono Sodium Glutamate. Int. J. Gastron. Food Sci. 2021, 23, 100286. [Google Scholar] [CrossRef]
- Regulation (EC) No 852/2004 of the European Parliamentand of the Council—Google Scholar. Available online: https://scholar.google.pl/scholar?hl=pl&as_sdt=0%2C5&q=Regulation+%28EC%29+No+852%2F2004+of+the+European+Parliament+and+of+the+Council+of+29+April+++++++++++2004+on+the+hygiene+of+foodstuffs++OJ+L+139%2C+30.4.2004%2C+p.+1–54+Current+consolidated+++&btnG= (accessed on 19 August 2021).
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Ángel, A.; Figiel,, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Mathot, A.G.; Postollec, F.; Leguerinel, I. Bacterial spores in spices and dried herbs: The risks for processed food. Compr. Rev. Food Sci. Food Saf. 2021, 20, 840–862. [Google Scholar] [CrossRef] [PubMed]
- Schweiggert, U.; Carle, R.; Schieber, A. Conventional and alternative processes for spice production—A review. Trends Food Sci. Technol. 2007, 18, 260–268. [Google Scholar] [CrossRef]
- Securing the Spices and Herbs Commodity Chains in Europe against Deliberate, Accidental or Natural Biological and Chemical Contamination | SPICED Project|FP7|CORDIS|European Commission. Available online: https://cordis.europa.eu/project/id/312631 (accessed on 20 August 2021).
- Hallmann, E.; Sabała, P. Organic and conventional herbs quality reflected by their antioxidant compounds concentration. Appl. Sci. 2020, 10, 3468. [Google Scholar] [CrossRef]
- Watson, E.D.; Micklesfield, L.K.; van Poppel, M.N.M.; Norris, S.A.; Sattler, M.C.; Dietz, P. Validity and responsiveness of the global physical activity questionnaire (GPAQ) in assessing physical activity during pregnancy. PLoS ONE 2017, 12, e0177996. [Google Scholar] [CrossRef]
- Mrozek-Szetela, A.; Rejda, P.; Wińska, K. A review of hygienization methods of herbal raw materials. Appl. Sci. 2020, 10, 8268. [Google Scholar] [CrossRef]
- Roy, R.; Chowdhury, B.R.; Majumdar, P.; Mandal, D.; Basak, S.; Rout, T. Study on antiviral activities of some immunity boosting herbs-extraction, encapsulation and development of functional food. Int. J. Innov. Sci. Res. Technol. 2021, 6. Available online: www.ijisrt.com (accessed on 12 August 2021).
- Verma, T. Process Interventions for Improving the Microbiological Safety of Low Moisture Food Ingredients. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, Nebraska, 2021. [Google Scholar]
- Li, T.; Wei, Y.; Qu, M.; Mou, L.; Miao, J.; Xi, M.; Liu, Y.; He, R. Formaldehyde and de/methylation in age-related cognitive impairment. Genes 2021, 12, 913. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2018/183 of 7 February 2018 Concerning the Denial of Authorisation of Formaldehyde as a Feed Additive Belonging to the Functional Groups of Preservatives and Hygiene Condition Enhancers. EUR-Lex—32018R0183—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0183 (accessed on 21 September 2021).
- Rushing, J.W. Methods to ensure microbiological safety of organically produced medicinal plants: A review. HortScience 2006, 41, 292–295. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Subhashini, S.; Banuu Priya, E.P.; Kothakota, A.; Ramesh, S.V.; Shahir, S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2019, 41, 17–34. [Google Scholar] [CrossRef]
- Ouf, S.A.; Ali, E.M. Does the treatment of dried herbs with ozone as a fungal decontaminating agent affect the active constituents? Environ. Pollut. 2021, 277, 116715. [Google Scholar] [CrossRef] [PubMed]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China—A systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef]
- Voigt, A.M.; Ciorba, P.; Döhla, M.; Exner, M.; Felder, C.; Lenz-Plet, F.; Sib, E.; Skutlarek, D.; Schmithausen, R.; Faerber, H. The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. Int. J. Hyg. Environ. Health 2020, 224, 113449. [Google Scholar] [CrossRef]
- Related Meetings|CODEXALIMENTARIUS FAO-WHO. Available online: http://www.fao.org/fao-who-codexalimentarius/committees/committee/related-meetings/en/?committee=CCSCH (accessed on 20 August 2021).
- Commission Implementing Regulation (EU) 2019/1715 of 30 September 2019 Laying Down Rules for the Functioning of the Information Management System for Official Controls and Its System Components (the IMSOC Regulation) (Text with EEA relevance)—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/1493493a-ee72-11e9-a32c-01aa75ed71a1/language-en/format-HTML (accessed on 19 August 2021).
- The Act of January 23, 2020 Amending the Act on the Commercial Quality of Agricultural and Food Products and Certain Other Acts, Polish Journal of Laws, 21 February 2020, pos. 285 Dziennik Ustaw 2021 r. Available online: https://www.dziennikustaw.gov.pl/DU/rok/2021 (accessed on 23 August 2021).
- Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Reg. Available online: https://webarchive.nationalarchives.gov.uk/eu-exit/https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R0625-20191214 (accessed on 19 August 2021).
- EFSA (European Food Safety Authority). Scientific and Technical Assistance on Trans Fatty Acids; EFSA: Parma, Italy, 2018. [Google Scholar]
Year | Notifications | Border Rejections | Official Market Control |
---|---|---|---|
2015 | 158 | 72 | 34 |
2016 | 195 | 110 | 39 |
2017 | 150 | 78 | 38 |
2018 | 124 | 42 | 50 |
2019 | 209 | 104 | 72 |
Notification Reason | Spice | Country of Origin |
---|---|---|
Aflatoxin B1, ochratoxin A | Nutmeg | Indonesia |
Spice mix | Sri Lanka, Bangladesh | |
Ginger | India | |
Spice mix, dried pepper | Ethiopia | |
Kebab spice mix | Ghana | |
Black pepper | Vietnam | |
Chili | India, China, Pakistan, Vietnam, Bangladesh | |
Spice mix | Kuwait, Hong Kong | |
Dried pepper | Turkey, India, Peru | |
Salmonella sp. | Cumin | Jordan |
Turmeric | Peru | |
Nettle powder | Albania, Bulgaria | |
Smoked pepper | Spain | |
Spice mix | Thailand | |
Ginger | Nigeria | |
Black pepper | Brazil | |
Spice mix | Spain, Austria, Serbia | |
Chili | Vietnam | |
Escherichia coli Shiga toxins | Pepper | Vietnam |
Coriander | Vietnam | |
Perilla (Perilla frutescens) | Laos | |
Basil | United Kingdom | |
Fresh mint | Laos | |
Non-declared radiation treatment of spices | Garlic powder | China |
Coriander powder | Bangladesh | |
Ginger | China | |
Dried chives | China | |
Nutmeg | India |
Notification Reason | Spice | Country of Origin |
---|---|---|
Non-declared addition of colorants or other substances (e.g., sodium benzoate) | Spice mix | Pakistan |
Sumac spice | Iran | |
Dried pepper | Ghana | |
Spice mix | Thailand | |
Chili | India | |
Presence of crop protection chemicals and pesticides | Mint leaves | Israel |
Curry | India | |
Basil | Laos, Cambodia, Thailand | |
Chili peppers | Gambia | |
Ginger | Nicaragua | |
Chili | Dominican Republic, Vietnam | |
Cardamom, cumin | India | |
Fresh mint | Morocco | |
Dried parsley | Egypt | |
Fennel seeds | Egypt | |
Coriander | Thailand | |
Dried pepper | Spain | |
Cumin | India |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmiechowska, M.; Newerli-Guz, J.; Skotnicka, M. Spices and Seasoning Mixes in European Union—Innovations and Ensuring Safety. Foods 2021, 10, 2289. https://doi.org/10.3390/foods10102289
Śmiechowska M, Newerli-Guz J, Skotnicka M. Spices and Seasoning Mixes in European Union—Innovations and Ensuring Safety. Foods. 2021; 10(10):2289. https://doi.org/10.3390/foods10102289
Chicago/Turabian StyleŚmiechowska, Maria, Joanna Newerli-Guz, and Magdalena Skotnicka. 2021. "Spices and Seasoning Mixes in European Union—Innovations and Ensuring Safety" Foods 10, no. 10: 2289. https://doi.org/10.3390/foods10102289
APA StyleŚmiechowska, M., Newerli-Guz, J., & Skotnicka, M. (2021). Spices and Seasoning Mixes in European Union—Innovations and Ensuring Safety. Foods, 10(10), 2289. https://doi.org/10.3390/foods10102289