Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheepmeat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, W.S.; Maza, M.T.; Pardos, L. Aspects of quality related to the consumption and production of lamb meat. Consumers versus producers. Meat Sci. 2011, 87, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Monahan, F.J.; Schmidt, O.; Moloney, A.P. Meat provenance: Authentication of geographical origin and dietary background of meat. Meat Sci. 2018, 144, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Acciaro, M.; Decandia, M.; Sitzia, M.; Manca, C.; Giovanetti, V.; Cabiddu, A.; Addis, M.; Rassu, S.P.G.; Molle, G.; Dimauro, C. Discriminant analysis as a tool to identify bovine and ovine meat produced from pasture or stall-fed animals. Ital. J. Anim. Sci. 2020, 19, 1065–1070. [Google Scholar] [CrossRef]
- Erasmus, S.W.; Muller, M.; Van Der Rijst, M.; Hoffman, L.C. Stable isotope ratio analysis: A potential analytical tool for the authentication of South African lamb meat. Food Chem. 2016, 192, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Guo, B.; Wei, Y.; Fan, M. Classification of geographical origins and prediction of δ13C and δ15N values of lamb meat by near infrared reflectance spectroscopy. Food Chem. 2012, 135, 508–514. [Google Scholar] [CrossRef]
- Vasta, V.; Ratel, J.; Engel, E. Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. J. Agric. Food Chem. 2007, 55, 4630–4639. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Xu, Z.; Wang, Y.; Niu, C.; Yang, S. Liquid chromatography quadrupole time-of-flight mass spectrometry and rapid evaporative ionization mass spectrometry were used to develop a lamb authentication method: A preliminary study. Foods 2020, 9, 1723. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function-An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd-and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Maia, M.R.G.; Jeronimo, E.; Belo, A.T.; Cabrita, A.R.J.; Dewhurst, R.J.; Fonseca, A.J.M. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim. Feed Sci. Technol. 2009, 150, 197–206. [Google Scholar] [CrossRef]
- Prado, L.A.; Ferlay, A.; Noziere, P.; Schmidely, P. Predicting duodenal flows and absorption of fatty acids from dietary characteristics in ovine and bovine species: A meta-analysis approach. Animal 2019, 13, 727–739. [Google Scholar] [CrossRef]
- Ellison, M.J.; Conant, G.C.; Lamberson, W.R.; Cockrum, R.R.; Austin, K.J.; Rule, D.C.; Cammack, K.M. Diet and feed efficiency status affect rumen microbial profiles of sheep. Small Rumin. Res. 2017, 156, 12–19. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, P.; Wang, L.; Zhao, Z.; Chen, Y.; Yang, Y. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Appl. Microbiol. Biotechnol. 2017, 101, 3717–3728. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Demeyer, D.; Dewhurst, R.J. Effect of forage: Concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J. Dairy Sci. 2006, 89, 2668–2678. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Hao, X.; Xin, H. The relationships between odd-and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1103–1114. [Google Scholar] [CrossRef]
- Avilés Ramirez, C.; Peña Blanco, F.; Horcada, A.; Nuñez Sánchez, N.; Requena Domenech, F.; Guzman Medina, P.; Martínez Marín, A.L. Effects of concentrates rich in by-products on growth performance, carcass characteristics and meat quality traits of light lambs. Anim. Prod. Sci. 2019, 59, 593–599. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Galisteo, O.O.; Avilés Ramirez, C.; Peña Blanco, F.; de la Fuente, M.A.; Núñez Sánchez, N.; Martínez Marín, A.L. Intramuscular fatty acid profile of feedlot lambs fed concentrates with alternative ingredients. Anim. Prod. Sci. 2019, 59, 914–920. [Google Scholar] [CrossRef]
- Klecka, W.R. Discriminant Analysis; Sage Publications: Beverly Hills, CA, 1980. [Google Scholar]
- Costa, M.; Alves, S.P.; Francisco, A.; Almeida, J.; Alfaia, C.M.; Martins, S.V.; Prates, J.A.M.; Santos-Silva, J.; Doran, O.; Bessa, R.J.B. The reduction of starch in finishing diets supplemented with oil does not prevent the accumulation of trans-10 18:1 in lamb meat. J. Anim. Sci. 2017, 95, 3745–3761. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Sci. 2017, 123, 166–172. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Francisco, A.; Alves, S.P.; Portugal, P.; Dentinho, T.; Almeida, J.; Soldado, D.; Jeronimo, E.; Bessa, R.J.B. Effect of dietary neutral detergent fibre source on lambs growth, meat quality and biohydrogenation intermediates. Meat Sci. 2019, 147, 28–36. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, X.; Li, F.; Li, F.; Guo, L. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs. J. Anim. Sci. 2020, 98, skaa228. [Google Scholar] [CrossRef]
- Huws, S.A.; Kim, E.J.; Cameron, S.J.S.; Girdwood, S.E.; Davies, L.; Tweed, J.; Vallin, H.; Scollan, N.D. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil. Microb. Biotechnol. 2015, 8, 331–341. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Z.; Li, X.; Zhu, B.; Guo, L.; Li, F.; Weng, X. Effect of duration of linseed diet supplementation before slaughter on the performances, meat fatty acid composition and rumen bacterial community of fattening lambs. Anim. Feed Sci. Technol. 2020, 263, 114457. [Google Scholar] [CrossRef]
Treatments 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Fatty Acids | CON | CAM | FIB | ||||||
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
Total saturated | 32.6 ± 1.76 | 29.2 | 34.8 | 33.3 ± 1.58 | 30.9 | 35.3 | 31.1 ± 2.04 | 27.1 | 33.7 |
Odd | 2.99 ± 0.57 | 2.08 | 3.90 | 2.66 ± 0.39 | 2.25 | 3.25 | 1.68 ± 0.22 | 1.42 | 2.12 |
Iso | 0.70 ± 0.09 | 0.56 | 0.83 | 0.59 ± 0.07 | 0.48 | 0.65 | 0.65 ± 0.06 | 0.54 | 0.75 |
Anteiso | 0.37 ± 0.06 | 0.30 | 0.45 | 0.54 ± 0.07 | 0.42 | 0.66 | 0.55 ± 0.09 | 0.43 | 0.76 |
Monounsaturated | 36.1 ± 2.56 | 31.6 | 41.5 | 40.1 ± 2.42 | 37.3 | 44.7 | 38.1 ± 2.59 | 35.6 | 43.5 |
Trans 18:1 | 4.47 ± 1.31 | 2.14 | 6.18 | 6.49 ± 0.74 | 5.70 | 8.08 | 8.86 ± 1.38 | 6.80 | 11,0 |
Polyunsaturated | 17.3 ± 1.30 | 14.7 | 18.8 | 15.4 ± 1.81 | 12.1 | 17.9 | 18.3 ± 2.60 | 14.1 | 21.2 |
CLA | 0.46 ± 0.07 | 0.36 | 0.62 | 0.57 ± 0.07 | 0.44 | 0.64 | 1.07 ± 0.24 | 0.75 | 1.51 |
Standardized Canonical Coefficients | Canonical Structure | |||
---|---|---|---|---|
DF1 1 | DF2 | DF1 | DF2 | |
Odd FA 2 | 1.00 | −0.47 | 0.81 | −0.56 |
Iso FA | 0.40 | 0.60 | 0.36 | 0.76 |
Anteiso FA | −0.85 | −0.34 | −0.76 | −0.46 |
Eigenvalues | 5.37 | 0.54 | ||
Variance explained (%) | 90.92 | 9.08 | ||
Bartlett test | p < 0.001 | p < 0.01 | ||
Canonical correlation | 0.92 | 0.59 | ||
Wilk’s lambda test | p < 0.001 | p < 0.01 | ||
Centroids 3 | ||||
CON | 2.88 | 0.37 | ||
CAM | −0.43 | −0.97 | ||
FIB | −2.45 | 0.61 |
Treatments 1 | |||
---|---|---|---|
CON | CAM | FIB | |
Intersection | −97.266 | −79.860 | −75.070 |
Odd FA 2 | 23.388 | 16.984 | 10.411 |
Iso FA | 168.825 | 139.528 | 141.459 |
Anteiso FA | 17.119 | 59.838 | 75.023 |
Treatments 1 | ||||
---|---|---|---|---|
CON (0.31) | CAM (0.40) | FIB (1.54) | SEM 3 | |
DF1: Odd FA/Anteiso FA 2 | 8.15 a | 4.93 b | 3.12 c | 0.419 |
DF2: Iso FA/(Anteiso FA+Odd FA) | 0.22 b | 0.19 b | 0.29 a | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cortés, P.; Requena Domenech, F.; Correro Rueda, M.; de la Fuente, M.Á.; Schiavone, A.; Martínez Marín, A.L. Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics. Foods 2021, 10, 77. https://doi.org/10.3390/foods10010077
Gómez-Cortés P, Requena Domenech F, Correro Rueda M, de la Fuente MÁ, Schiavone A, Martínez Marín AL. Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics. Foods. 2021; 10(1):77. https://doi.org/10.3390/foods10010077
Chicago/Turabian StyleGómez-Cortés, Pilar, Francisco Requena Domenech, Marta Correro Rueda, Miguel Ángel de la Fuente, Achille Schiavone, and Andrés L. Martínez Marín. 2021. "Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics" Foods 10, no. 1: 77. https://doi.org/10.3390/foods10010077
APA StyleGómez-Cortés, P., Requena Domenech, F., Correro Rueda, M., de la Fuente, M. Á., Schiavone, A., & Martínez Marín, A. L. (2021). Odd- and Branched-Chain Fatty Acids in Lamb Meat as Potential Indicators of Fattening Diet Characteristics. Foods, 10(1), 77. https://doi.org/10.3390/foods10010077