Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analyses on Chemical Composition and Physico-Chemical Properties of Initial Samples
2.2.1. Sugar Composition
2.2.2. pH and Titrable Acidity
2.2.3. Moisture Content and Water Activity
2.2.4. Texture Profile Analysis (TPA)
2.2.5. Color Attributes of Raisins
2.2.6. Visual Inspection and Microscopic Analysis of Raisin Samples
2.3. Thermal Pretreatment and Crystallization Kinetics of Raisins
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Khiari, R.; Zemni, H.; Mihoubi, D. Raisin Processing: Physicochemical, Nutritional, and Microbiological Quality Characteristics as Affected by Drying Process. Food Rev. Int. 2018, 35, 1–53. [Google Scholar] [CrossRef]
- USDA. Raisins: World Markets and Trade. 2018. Available online: https://apps.fas.usda.gov/psdonline/circulars/raisins.pdf (accessed on 20 October 2020).
- González, S. Chile Raisin Annual. GAIN Report Number: CI1817; USDA Forein Agricultural Service, 2018; pp. 1–7. Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Raisin%20Annual_Santiago_Chile_7-18-2018.pdf (accessed on 20 October 2020).
- Langová, R.; Juzl, M.; Cwiková, O.; Ivica, K. Effect of Different Method of Drying of Five Varieties Grapes (Vitis vinifera L.) on the Bunch Stem on Physicochemical, Microbiological, and Sensory Quality. Foods 2020, 9, 1183. [Google Scholar] [CrossRef]
- Zemni, H.; Sghaier, A.; Khiari, R.; Chebil, S.; Ismail, H.B.; Nefzaoui, R.; Hamdi, Z.; Lasram, S. Physicochemical, Phytochemical and Mycological Characteristics of Italia Muscat Raisins Obtained Using Different Pre-treatments and Drying Techniques. Food Bioprocess Technol. 2017, 10, 479–490. [Google Scholar] [CrossRef]
- USDA. United State Standards for Grades of Processed Raisins. 2016. Available online: https://www.ams.usda.gov/sites/default/files/media/Raisin_Standard%5B1%5D_0.pdf (accessed on 10 November 2020).
- Sikuka, W. South Africa’s Raisin Supply and Demand Report Gain Report. USDA Forein Agricultural Service, 2017; pp. 1–7. Available online: http://www.chilealimentos.com/wordpress/wp-content/uploads/2017/08/Raisin_Annual_Pretoria_South_Africa_7_2017.pdf (accessed on 10 November 2020).
- Bhandari, B.R.; Howes, T. Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 1999, 40, 71–79. [Google Scholar] [CrossRef]
- Sperling, L.H. Introduction to Physical Polymer Science; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Bazardeh, M.E.; Esmaiili, M. Sorption isotherm and state diagram in evaluating storage stability for sultana raisins. J. Stored Prod. Res. 2014, 59, 140–145. [Google Scholar] [CrossRef]
- Truong, T.; Dahal, D.; Urrutia, P.; Alvarez, L.; Almonacid, S.; Bhandari, B. Crystallisation and glass transition behavior of Chilean raisins in relation to their sugar compositions. Food Chem. 2020, 311, 125929. [Google Scholar] [CrossRef]
- Bolin, H. Texture and crystallization control in raisins. J. Food Sci. 1976, 41, 1316–1319. [Google Scholar] [CrossRef]
- Akev, K.; Koyuncu, M.A.; Erbaş, D. Quality of raisins under different packaging and storage conditions. J. Hortic. Sci. Biotechnol. 2018, 93, 107–112. [Google Scholar] [CrossRef]
- Alvarez, L.; Urrutia, P.; Olivares, A.; Flores, A.; Bhandari, B.; Truong, T.; Almonacid, S. Impact of thermal pretreatment on crystallization of Thompson raisins. Food Chem. 2020, 317, 126381. [Google Scholar] [CrossRef]
- Chung, R.; Leanderson, L.; Gustafsson, N.; Jonasson, L. Liberation of lutein from spinach: Effects of heating time, microwave-reheating and liquefaction. Food Chem. 2019, 277, 573–578. [Google Scholar] [CrossRef]
- Özcan, M.; Al-Juhaimi, F.; Ahmed, I.A.; Osman, M.A.; Gassem, M.A. Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem. 2019, 278, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Concha, J.; Benlloch, M.; Camacho, M.M.; Martínez-Navarret, N. Effects of drying and pretreatment on the nutritional and functional quality of raisins. Food Bioprod. Process. 2012, 90, 243–248. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.-N.; Gang, Z.-J.; Xiao, H.-W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1408–1432. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, M.; Zielinska, D.; Markowski, M. The Effect of Microwave-Vacuum Pretreatment on the Drying Kinetics, Color and the Content of Bioactive Compounds in Osmo-Microwave-Vacuum Dried Cranberries (Vaccinium macrocarpon). Food Bioprocess Technol. 2018, 11, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Dehghan-Shoar, Z.; Hamidi-Esfahani, Z.; Abbasi, S. Effect of temperature and modified atmosphere on quality preservation of Sayer date fruits (Phoenix Dactylifera, L.). J. Food Process. Preserv. 2010, 34, 323–334. [Google Scholar] [CrossRef]
- Bongers, A.J.; Hinsch, R.T.; Bus, V.G. Physical and chemical characteristics of raisins from several countries. Am. J. Enol. Vitic. 1991, 42, 76–78. [Google Scholar]
- Guiné, R.; Almeida, I.; Correia, A.; Gonçalves, F. Evaluation of the physical, chemical, and sensory properties of raisins produced from grapes of the cultivar Crimson. Food Meas. 2015, 9, 337–346. [Google Scholar] [CrossRef]
- Bai, J.W.; Sun, D.W.; Xiao, H.W.; Mujumdar, A.S.; Gao, Z.J. Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innov. Food Sci. Emerg. Technol. 2013, 20, 230–237. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.-M.; Mujumdar, A.S.; Qian, J.Y.; Zhang, Q.; Yang, X.H.; Lium, Y.-H.; Gao, Z.-J.; Xiao, H.-W. Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chem. 2017, 20, 145–152. [Google Scholar] [CrossRef]
- Petrucci, V.E.; Clary, C.D. A Treatise on Raisin Production, Processing, and Marketing; Malcolm Media Press in association with American Vineyard Magazine: Clovis, CA, USA, 2002. [Google Scholar]
- McCoy, S.; Chang, J.W.; McNamara, K.T.; Oliver, H.F.; Deering, A.J. Quality and safety attributes of Afghan raisins before and after processing. Food Sci. Nutr. 2015, 3, 56–64. [Google Scholar] [CrossRef]
- Possingham, J.V. Surface wax structure in fresh and dried sultana grapes. Ann. Bot. 1972, 36, 993–996. [Google Scholar] [CrossRef]
- Wray, D.; Ramaswamy, H.S. Novel Concepts in Microwave Drying of Foods. Dry. Technol. Int. J. 2015, 33, 769–783. [Google Scholar] [CrossRef]
- Roos, Y.H.; Drusch, S. Physical state and molecular mobility. In Phase Transitions in Foods, 2nd ed.; Academic Press: Oxford, UK, 2016. [Google Scholar]
- Bhandari BRD’Arcy, B.R.; Kelly, C. Rheology and crystallisation kinetics of honey: Present status. Int. J. Food Prop. 1999, 2, 217–226. [Google Scholar] [CrossRef]
- Guiné, R.; Almeida, I.; Cruz, A.; Menses, M. Convective Drying of Apples: Kinetic Study, Evaluation of Mass Transfer Properties and Data Analysis using Artificial Neural Networks. Int. J. Food Eng. 2014, 10, 281–299. [Google Scholar] [CrossRef]
- Jairaj, K.S.; Singh, S.P.; Srikant, K. A review of solar dryers developed for grape drying. Sol. Energy 2009, 83, 1698–1712. [Google Scholar] [CrossRef]
- Tulasidas, T.N.; Raghavan, G.S.V.; Mujumdar, A.S. Microwave drying of grapes in a single mode cavity at 2450 MHz. II. Drying kinetics. Dry. Technol. 1995, 13, 1973–1992. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, H.; Yang, J.; An, K.; Ding, S.; Zhao, D.; Wang, Z. Effect of carbonic maceration on infrared drying kinetics and raisin qualities of Red Globe (Vitis vinifera L.): A new pre-treatment technology before drying. Innov. Food Sci. Emerg. Technol. 2014, 26, 462–468. [Google Scholar] [CrossRef]
- Lokhande, S.; Ranveer, R.; Sahoo, A. Effect of microwave drying on textural and sensorial properties of grape raisins. Int. J. Chem Tech Res. 2017, 10, 938–947. [Google Scholar]
- Singh, V.; Guizani, N.; Al-Alawi, A.; Rahman, M.S. Instrumental texture profile analysis (TPA) of date fruits as a function of its physico- chemical properties. Ind. Crop. Prod. 2013, 50, 866–873. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of Convective and Vacuum–Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food Bioprocess Technol. 2014, 7, 829–841. [Google Scholar] [CrossRef] [Green Version]
aw | ||||||||
Time (d) | Control | TP1 | TP2 | TP3 | ||||
15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | |
0 A | 0.590 ± 0.033 a | 0.590 ± 0.033 a | 0.601 ± 0.009 b | 0.601 ± 0.009 b | 0.606 ± 0.011 c | 0.606 ± 0.011 c | 0.606 ± 0.018 b | 0.606 ± 0.018 b |
10 B | 0.631 ± 0.008 a | 0.592 ± 0.021 b | 0.578 ± 0.024 c | 0.581 ± 0.021 c | 0.593 ± 0.018 b | 0.568 ± 0.032 d | 0.587 ± 0.026 b | 0.613 ± 0.012 e |
20 B | 0.633 ± 0.015 a | 0.598 ± 0.012 b | 0.603 ± 0.010 c | 0.603 ± 0.008 c | 0.606 ± 0.013 c | 0.596 ± 0.020 b | 0.617 ± 0.012 d | 0.614 ± 0.022 d |
35 D | 0.643 ± 0.016 a | 0.599 ± 0.010 b | 0.596 ± 0.015 b | 0.608 ± 0.006 c | 0.615 ± 0.016 d | 0.609 ± 0.024 c | 0.622 ± 0.021 e | 0.620 ± 0.026 e |
Glucose/Fructose Ratio | ||||||||
Time (d) | Control | TP1 | TP2 | TP3 | ||||
15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | 15 °C | 25 °C | |
0 A | 0.98 ± 0.08 a | 0.98 ± 0.09 a | 0.95 ± 0.07 b | 0.95 ± 0.09 b | 0.94 ± 0.12 c | 0.94 ± 0.10 c | 0.94 ± 0.12 c | 0.94 ± 0.08 c |
10 B | 1.01 ± 0.01 a | 0.99 ± 0.07 b | 0.93 ± 0.04 c | 0.98 ± 0.11 d | 0.96 ± 0.09 b | 0.96 ± 0.07 b | 0.98 ± 0.04 d | 0.96 ± 0.11 b |
20 C | 1.04 ± 0.01 a | 1.04 ± 0.03 a | 0.98 ± 0.09 b | 0.98 ± 0.07 b | 0.98 ± 0.06 b | 0.98 ± 0.04 b | 0.99 ± 0.07 c | 0.98 ± 0.06 b |
35 D | 1.06 ± 0.06 a | 1.08 ± 0.11 b | 1.04 ± 0.04 c | 1.09 ± 0.08 b | 1.08 ± 0.09 b | 1.08 ± 0.06 b | 1.07 ± 0.11 b | 1.09 ± 0.03 b |
Sample | T °C | L* | a* | b* | E* |
---|---|---|---|---|---|
Fresh raisin (to) | n.c. | 25.00 ± 2.11 | 4.90 ± 1.59 | 5.40 ± 1.74 | n/a |
Control-15 °C | 15 | 23.66 ± 1.59 | 5.03 ± 1.34 | 6.12 ± 1.22 | 1.53 ± 0.17 a |
Control-25 °C | 25 | 23.65 ± 2.03 | 4.71 ± 1.25 | 6.06 ± 1.45 | 1.52 ± 0.15 a |
TP1-15 °C | 15 | 23.45 ± 1.48 | 5.19 ± 1.76 | 6.14 ± 1.81 | 1.74 ± 0.16 b |
TP1-25 °C | 25 | 24.32 ± 1.58 | 5.34 ± 1.85 | 6.37 ± 1.85 | 1.26 ± 0.15 c |
TP2-15 °C | 15 | 23.64 ± 1.84 | 5.01 ± 1.65 | 6.17 ± 1.54 | 1.57 ± 0.17 d |
TP2-25 °C | 25 | 23.29 ± 1.28 | 4.53 ± 1.13 | 5.53 ± 1.01 | 1.75 ± 0.15 b |
TP3-15 °C | 15 | 23.71 ± 1.91 | 5.21 ± 1.68 | 6.10 ± 1.32 | 1.53 ± 0.16 a |
TP3-25 °C | 25 | 23.87 ± 1.12 | 4.65 ± 1.15 | 6.00 ± 1.09 | 1.30 ± 0.11 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, L.; Urrutia, P.; Olivares, A.; Flores, A.; Bhandari, B.; Almonacid, S. Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins. Foods 2021, 10, 39. https://doi.org/10.3390/foods10010039
Alvarez L, Urrutia P, Olivares A, Flores A, Bhandari B, Almonacid S. Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins. Foods. 2021; 10(1):39. https://doi.org/10.3390/foods10010039
Chicago/Turabian StyleAlvarez, Lorena, Paulina Urrutia, Araceli Olivares, Agustín Flores, Bhesh Bhandari, and Sergio Almonacid. 2021. "Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins" Foods 10, no. 1: 39. https://doi.org/10.3390/foods10010039
APA StyleAlvarez, L., Urrutia, P., Olivares, A., Flores, A., Bhandari, B., & Almonacid, S. (2021). Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins. Foods, 10(1), 39. https://doi.org/10.3390/foods10010039