Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayne, S.C.; Ferracane, J.L.; Marshall, G.W.; Marshall, S.J.; Van Noort, R. The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond. J. Dent. Res. 2019, 98, 257–265. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F. Resin-modified glass-ionomers. Biomaterials. 1998, 19, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Admira Fusion-Ormocer. Available online: www.voco.dental/in/products/direct-restoration/ormocer/admira-fusion.aspx (accessed on 18 June 2023).
- Rusnac, M.E.; Prodan, D.; Moldovan, M.; Cuc, S.; Filip, M.; Prejmerean, C.; Dudea, D. Research on the Mechanical Properties, Fluoride and Monomer Release of a New Experimental Flowable Giomer in Comparison to Three Commercial Flowable Giomers. Appl. Sci. 2021, 24, 8921. [Google Scholar] [CrossRef]
- Equia Forte: Bulk Fill Glass Hybrid Restorative. Available online: https://www.gc.dental/america/products/operatory/glass-hybrid-restoratives/equia-forte (accessed on 18 June 2023).
- Moszner, N.; Gianasmidis, A.; Klapdohr, S.; Fischer, U.K.; Rheinberger, V. Sol–gel materials. Dent. Mat. 2008, 24, 851–856. [Google Scholar] [CrossRef]
- Wolter, H.; Glaubitt, W.; Rose, K. Multifunctional (meth) acrylate alkoxysilanes a new type of reactive compounds. MRS Online Proc. Lib. 1992, 271, 719–724. [Google Scholar] [CrossRef]
- Wolter, H.; Storch, W.; Ott, H. New inorganic/organic copolymers (Ormocer®s) for dental applications. MRS Online Proc. Lib. Arch. 1994, 346, 143–149. [Google Scholar] [CrossRef]
- Sivakumar, A.; Valiathan, A. Dental ceramics and ormocer technology–navigating the future. Trends Biomat. Art. Org. 2006, 20, 40–43. [Google Scholar]
- Universal Nano-Hybrid ORMOCER Restorative Material. Available online: https://www.voco.dental/en/products/direct-restoration/ormocer/admira-fusion.aspx (accessed on 29 January 2021).
- Admira Fusion Scientific Compendium. Available online: https://www.voco.dental/us/portaldata/1/resources/products/scientific-reports/us/Admira_Fusion_Scientific_Compendium.pdf (accessed on 29 January 2021).
- Teranaka, T.; Okada, S.; Hanaoka, K. Diffusion of fluoride ion from GIOMER products into dentin. In Proceedings of the 2nd GIOMER International Meeting, Tokyo, Japan, 1 July 2001. [Google Scholar]
- Gordan, V.V.; Mondragon, E.; Watson, R.E.; Garvan, C.; Mjor, I.A. A clinical evaluation of a self-etching primer and a giomer restorative material—Results at eight years. J. Amer. Dent. Assoc. 2007, 138, 621–627. [Google Scholar] [CrossRef]
- Sunico, M.C.; Shinkai, K.; Katoh, Y. Two-year clinical performance of occlusal and cervical giomer restorations. Oper. Dent. 2005, 30, 282–289. [Google Scholar]
- Colceriu Burtea, L.; Prejmerean, C.; Prodan, D.; Baldea, I.; Vlassa, M.; Filip, M.; Moldovan, M.; Lazar, M.-A.; Antoniac, A.; Prejmerean, V. New Pre-reacted Glass Containing Dental Composites (giomers) with Improved Fluoride Release and Biocompatibility. Materials 2019, 12, 4021. [Google Scholar] [CrossRef]
- Cheetham, J.J. The future of glass-ionomers. Glass-Ion. Dent. 2016, 125–148. Available online: https://link.springer.com/chapter/10.1007/978-3-319-22626-2_7 (accessed on 18 June 2023).
- Makanjuola, J.; Deb, S. Chemically activated glass-ionomer cements as bioactive materials in dentistry: A review. Prosthesis 2023, 5, 327–345. [Google Scholar] [CrossRef]
- Gaintantzopoulou, M.D.; Gopinath, V.K.; Zinelis, S. Evaluation of Cavity Wall Adaptation of Bulk Esthetic Materials to Restore Class II Cavities in Primary Molars. Clin. Oral. Investig. 2017, 21, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Alqasabi, S.Y.; Sulimany, A.M.; Almohareb, T.; Alayad, A.S.; Bawazir, O.A. The Effect of Different Coating Agents on the Microhardness, Water Sorption, and Solubility of EQUIA Forte® HT. Coatings 2024, 14, 751. [Google Scholar] [CrossRef]
- Gurgan, S.; Kutuk, Z.B.; Yalcin Cakir, F.; Ergin, E. A Randomized Controlled 10 Years Follow up of a Glass Ionomer Restorative Material in Class I and Class II Cavities. J. Dent. 2020, 94, 103175. [Google Scholar] [CrossRef]
- Gok Baba, M.; Kirzioglu, Z.; Ceyhan, D. One-year Clinical Evaluation of Two High-viscosity Glass-ionomer Cements in Class II Restorations of Primary Molars. Aust. Dent. J. 2021, 66, 32–40. [Google Scholar] [CrossRef]
- Miletić, I.; Baraba, A.; Basso, M.; Pulcini, M.G.; Marković, D.; Perić, T.; Ozkaya, C.A.; Turkun, L.S. Clinical Performance of a Glass-Hybrid System Compared with a Resin Composite in the Posterior Region: Results of a 2-Year Multicenter Study. J. Adhes. Dent. 2020, 22, 235–247. [Google Scholar]
- Heck, K.; Frasheri, I.; Diegritz, C.; Manhart, J.; Hickel, R.; Fotiadou, C. Six-Year Results of a Randomized Controlled Clinical Trial of Two Glass Ionomer Cements in Class II Cavities. J. Dent. 2020, 97, 103333. [Google Scholar] [CrossRef]
- Available online: https://www.gc.dental/europe/sites/europe.gc.dental/files/products/downloads/equiaforteht/manual/MAN_Comprehensive_Guide_EQUIA_Forte_HT.pdf (accessed on 18 June 2023).
- Moshaverinia, M.; de Almeida Queiroz Ferreira, L.; Smidt, G.; Shah, K.C.; Ansari, S.; Moshaverinia, A. Evaluation of mechanical, optical, and fluoride-releasing properties of a translucent bulk fill glass hybrid restorative dental material. J. Esthet. Restor. Dent. 2024, 36, 503–510. [Google Scholar] [CrossRef]
- Balkaya, H.; Arslan, S. A Two-year Clinical Comparison of Three Different Restorative Materials in Class II Cavities. Op. Dent. 2020, 45, E32–E42. [Google Scholar] [CrossRef]
- Quirynen, M.; Bollen, C.M. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Perio. 1995, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, H.Y. Post-irradiation Vickers microhardness development of novel resin composites. Mat. Res. 2010, 13, 81–87. [Google Scholar] [CrossRef]
- Mair, L.H.; Stolarski, T.A.; Vowles, R.W.; Lloyd, C.H. Wear: Mechanisms, manifestations and measurement. Report of a workshop. J. Dent. 1996, 24, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Delaviz, Y.; Finer, Y.; Santerre, J.P. Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mat. 2014, 30, 16–32. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V.J. Short and long term effects of additional post curing and polishing systems on the color change of dental nano-composites. Dent. Mater. J. 2013, 32, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Alkhadim, Y.; Hulbah, M.; Nassar, H. Color shift, color stability, and post-polishing surface roughness of esthetic resin composites. Materials. 2020, 13, 1376. [Google Scholar] [CrossRef]
- Pettini, F.; Corsalini, M.; Savino, M.G.; Stefanachi, G.; Di Venere, D.; Pappalettere, C.; Monno, G.; Boccaccio, A. Roughness analysis on composite materials (microfilled, nanofilled and silorane) after different finishing and polishing procedures. Open Dent. J. 2015, 9, 357–367. [Google Scholar] [CrossRef]
- Dos Santos, P.; Catelan, A.; Albuquerque Guedes, A.; Umeda Suzuki, T.; de Lima Godas, A.; Fraga Briso, A.; BedranRusso, A. Effect of thermocycling on roughness of nanofill, microfill and microhybrid composites. Acta Odontol. Scand. 2015, 73, 176–181. [Google Scholar] [CrossRef]
- Morresi, A.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behave. Biomed. Mat. 2014, 29, 295–308. [Google Scholar] [CrossRef]
- Minoni, U.; Cavalli, F. Surface quality control device for on-line applications. Measurement 2008, 41, 774–782. [Google Scholar] [CrossRef]
- Fu, S.; Cheng, F.; Tjahjowidodo, T.; Zhou, Y.; Butler, D. A non-contact measuring system for in-situ surface characterization based on laser confocal microscopy. Sensors 2018, 18, 2657. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.S.; Billington, R.W.; Pearson, G.J. The in vivo perception of roughness of restorations. Brit. Dent. J. 2004, 196, 42–45. [Google Scholar] [CrossRef]
- Yazkan, B. Surface degradation evaluation of different self-adhesive restorative materials after prolonged energy drinks exposure. J. Esth. Restor. Dent. 2020, 32, 707–714. [Google Scholar] [CrossRef]
- Karakaş, S.; Küden, C. AFM and SEM/EDS characterization of surfaces of fluorine-releasing bulk-fill restorative materials aged in common liquids. J. Oral. Sci. 2022, 64, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Birant, S.; İlisulu, C.; Üçüncü, M. Evaluation of Glass Ionomer Restorative Materials’ Surface Roughness and Microhardness In Vitro After Acidic Challenge. Ess. Dent. 2023, 2, 87–94. [Google Scholar]
- Bahammam, S.; Nathanson, D.; Fan, Y. Evaluating the mechanical properties of restorative glass ionomers cements. Int. Dent. J. 2022, 72, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Janus, J.; Fauxpoint, G.; Arntz, Y.; Pelletier, H.; Etienne, O. Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach. Dent. Mater. 2010, 26, 416–425. [Google Scholar] [CrossRef]
- Salgado, V.E.; Cavalcante, L.; Silikas, N.; Schneider, L. The influence of nanoscale inorganic content over optical and surface properties of model composites. J. Dent. 2013, 41, 45–53. [Google Scholar] [CrossRef]
- Elbishari, H.; Silikas, N.; Satterthwaite, J. Is deterioration of surface properties of resin composites affected by filler size? Int. J. Dent. 2020, 2875262. Available online: https://pubmed.ncbi.nlm.nih.gov/32377199/ (accessed on 18 June 2023). [CrossRef]
- Baseren, M. Surface roughness of nanofill and nanohybrid composite resin and ormocer-based tooth-colored restorative materials after several finishing and polishing procedures. J. Biomat. App. 2004, 19, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.K.; Nicholson, J.W. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomat. 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
Material (Group) | Type | Composition | Manufacturer | Lot |
---|---|---|---|---|
Admira Fusion x-base (Group A) | Ormocer | Ormocer, photoinitiators, pigments, barium aluminum borosilicate glass, pyrogenic silica (20–50 nm) | VOCO, Cuxhaven, Germany | 2217143 |
Beautifil II (Group B) | Giomer restorative material | Bis-GMA, TEGDMA, multifunctional glass filler and S-PRG filler based on aluminofluoro-borosilicate glass | Shofu Inc., Kyoto, Japan | 072277 |
Equia Forte HT. (Group C) | High-viscosity glass ionomer cement | Fluoro Alumino Silicate (FAS) glass, reactive silicate particle, high-molecular-weight polyacrylic acid. | GC, America Inc., Alsip, IL, USA | 2106151 |
Filtek Supreme Ultra. (Group D) | Nanoparticle composite resin | Bis-GMA and TEGDMA, along with a high percentage of inorganic fillers, including nano-sized particles and radiopaque agents | 3M, Saint Paul, MN, USA | NF27582 |
Material | Post-Restoration | 1st Year | 3rd Clinical Year | 5th Clinical Year | ||||
---|---|---|---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | Mean | ±SD | Mean | ±SD | |
1. Group A | 0.2465 | 0.1001 | 0.2835 | 0.1184 | 0.3128 | 0.1176 | 0.3356 | 0.1287 |
2. Group B | 0.3910 | 0.2092 | 0.4116 | 0.2151 | 0.4152 | 0.1622 | 0.4529 | 0.1953 |
3. Group C | 0.6280 | 0.2413 | 0.6938 | 0.2262 | 0.7217 | 0.3272 | 0.8484 | 0.3473 |
4. Group D | 0.3226 | 0.0861 | 0.3574 | 0.1387 | 0.3630 | 0.1302 | 0.4038 | 0.1648 |
p value # | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | ||||
Material A vs. B | 0.048 * | 0.122 | 0.386 | 0.358 | ||||
Material A vs. C | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | ||||
Material A vs. D | 0.508 | 0.571 | 0.862 | 0.773 | ||||
Material B vs. C | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | ||||
Material B vs. D | 0.595 | 0.779 | 0.847 | 0.901 | ||||
Material C vs. D | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galbraith, A.; Abubakr, N.H. Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials. Dent. J. 2024, 12, 390. https://doi.org/10.3390/dj12120390
Galbraith A, Abubakr NH. Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials. Dentistry Journal. 2024; 12(12):390. https://doi.org/10.3390/dj12120390
Chicago/Turabian StyleGalbraith, Austin, and Neamat Hassan Abubakr. 2024. "Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials" Dentistry Journal 12, no. 12: 390. https://doi.org/10.3390/dj12120390
APA StyleGalbraith, A., & Abubakr, N. H. (2024). Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials. Dentistry Journal, 12(12), 390. https://doi.org/10.3390/dj12120390