Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayne, S.C.; Ferracane, J.L.; Marshall, G.W.; Marshall, S.J.; Van Noort, R. The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond. J. Dent. Res. 2019, 98, 257–265. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F. Resin-modified glass-ionomers. Biomaterials. 1998, 19, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Admira Fusion-Ormocer. Available online: www.voco.dental/in/products/direct-restoration/ormocer/admira-fusion.aspx (accessed on 18 June 2023).
- Rusnac, M.E.; Prodan, D.; Moldovan, M.; Cuc, S.; Filip, M.; Prejmerean, C.; Dudea, D. Research on the Mechanical Properties, Fluoride and Monomer Release of a New Experimental Flowable Giomer in Comparison to Three Commercial Flowable Giomers. Appl. Sci. 2021, 24, 8921. [Google Scholar] [CrossRef]
- Equia Forte: Bulk Fill Glass Hybrid Restorative. Available online: https://www.gc.dental/america/products/operatory/glass-hybrid-restoratives/equia-forte (accessed on 18 June 2023).
- Moszner, N.; Gianasmidis, A.; Klapdohr, S.; Fischer, U.K.; Rheinberger, V. Sol–gel materials. Dent. Mat. 2008, 24, 851–856. [Google Scholar] [CrossRef]
- Wolter, H.; Glaubitt, W.; Rose, K. Multifunctional (meth) acrylate alkoxysilanes a new type of reactive compounds. MRS Online Proc. Lib. 1992, 271, 719–724. [Google Scholar] [CrossRef]
- Wolter, H.; Storch, W.; Ott, H. New inorganic/organic copolymers (Ormocer®s) for dental applications. MRS Online Proc. Lib. Arch. 1994, 346, 143–149. [Google Scholar] [CrossRef]
- Sivakumar, A.; Valiathan, A. Dental ceramics and ormocer technology–navigating the future. Trends Biomat. Art. Org. 2006, 20, 40–43. [Google Scholar]
- Universal Nano-Hybrid ORMOCER Restorative Material. Available online: https://www.voco.dental/en/products/direct-restoration/ormocer/admira-fusion.aspx (accessed on 29 January 2021).
- Admira Fusion Scientific Compendium. Available online: https://www.voco.dental/us/portaldata/1/resources/products/scientific-reports/us/Admira_Fusion_Scientific_Compendium.pdf (accessed on 29 January 2021).
- Teranaka, T.; Okada, S.; Hanaoka, K. Diffusion of fluoride ion from GIOMER products into dentin. In Proceedings of the 2nd GIOMER International Meeting, Tokyo, Japan, 1 July 2001. [Google Scholar]
- Gordan, V.V.; Mondragon, E.; Watson, R.E.; Garvan, C.; Mjor, I.A. A clinical evaluation of a self-etching primer and a giomer restorative material—Results at eight years. J. Amer. Dent. Assoc. 2007, 138, 621–627. [Google Scholar] [CrossRef]
- Sunico, M.C.; Shinkai, K.; Katoh, Y. Two-year clinical performance of occlusal and cervical giomer restorations. Oper. Dent. 2005, 30, 282–289. [Google Scholar]
- Colceriu Burtea, L.; Prejmerean, C.; Prodan, D.; Baldea, I.; Vlassa, M.; Filip, M.; Moldovan, M.; Lazar, M.-A.; Antoniac, A.; Prejmerean, V. New Pre-reacted Glass Containing Dental Composites (giomers) with Improved Fluoride Release and Biocompatibility. Materials 2019, 12, 4021. [Google Scholar] [CrossRef]
- Cheetham, J.J. The future of glass-ionomers. Glass-Ion. Dent. 2016, 125–148. Available online: https://link.springer.com/chapter/10.1007/978-3-319-22626-2_7 (accessed on 18 June 2023).
- Makanjuola, J.; Deb, S. Chemically activated glass-ionomer cements as bioactive materials in dentistry: A review. Prosthesis 2023, 5, 327–345. [Google Scholar] [CrossRef]
- Gaintantzopoulou, M.D.; Gopinath, V.K.; Zinelis, S. Evaluation of Cavity Wall Adaptation of Bulk Esthetic Materials to Restore Class II Cavities in Primary Molars. Clin. Oral. Investig. 2017, 21, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Alqasabi, S.Y.; Sulimany, A.M.; Almohareb, T.; Alayad, A.S.; Bawazir, O.A. The Effect of Different Coating Agents on the Microhardness, Water Sorption, and Solubility of EQUIA Forte® HT. Coatings 2024, 14, 751. [Google Scholar] [CrossRef]
- Gurgan, S.; Kutuk, Z.B.; Yalcin Cakir, F.; Ergin, E. A Randomized Controlled 10 Years Follow up of a Glass Ionomer Restorative Material in Class I and Class II Cavities. J. Dent. 2020, 94, 103175. [Google Scholar] [CrossRef]
- Gok Baba, M.; Kirzioglu, Z.; Ceyhan, D. One-year Clinical Evaluation of Two High-viscosity Glass-ionomer Cements in Class II Restorations of Primary Molars. Aust. Dent. J. 2021, 66, 32–40. [Google Scholar] [CrossRef]
- Miletić, I.; Baraba, A.; Basso, M.; Pulcini, M.G.; Marković, D.; Perić, T.; Ozkaya, C.A.; Turkun, L.S. Clinical Performance of a Glass-Hybrid System Compared with a Resin Composite in the Posterior Region: Results of a 2-Year Multicenter Study. J. Adhes. Dent. 2020, 22, 235–247. [Google Scholar]
- Heck, K.; Frasheri, I.; Diegritz, C.; Manhart, J.; Hickel, R.; Fotiadou, C. Six-Year Results of a Randomized Controlled Clinical Trial of Two Glass Ionomer Cements in Class II Cavities. J. Dent. 2020, 97, 103333. [Google Scholar] [CrossRef]
- Available online: https://www.gc.dental/europe/sites/europe.gc.dental/files/products/downloads/equiaforteht/manual/MAN_Comprehensive_Guide_EQUIA_Forte_HT.pdf (accessed on 18 June 2023).
- Moshaverinia, M.; de Almeida Queiroz Ferreira, L.; Smidt, G.; Shah, K.C.; Ansari, S.; Moshaverinia, A. Evaluation of mechanical, optical, and fluoride-releasing properties of a translucent bulk fill glass hybrid restorative dental material. J. Esthet. Restor. Dent. 2024, 36, 503–510. [Google Scholar] [CrossRef]
- Balkaya, H.; Arslan, S. A Two-year Clinical Comparison of Three Different Restorative Materials in Class II Cavities. Op. Dent. 2020, 45, E32–E42. [Google Scholar] [CrossRef]
- Quirynen, M.; Bollen, C.M. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Perio. 1995, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, H.Y. Post-irradiation Vickers microhardness development of novel resin composites. Mat. Res. 2010, 13, 81–87. [Google Scholar] [CrossRef]
- Mair, L.H.; Stolarski, T.A.; Vowles, R.W.; Lloyd, C.H. Wear: Mechanisms, manifestations and measurement. Report of a workshop. J. Dent. 1996, 24, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Delaviz, Y.; Finer, Y.; Santerre, J.P. Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mat. 2014, 30, 16–32. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V.J. Short and long term effects of additional post curing and polishing systems on the color change of dental nano-composites. Dent. Mater. J. 2013, 32, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Alkhadim, Y.; Hulbah, M.; Nassar, H. Color shift, color stability, and post-polishing surface roughness of esthetic resin composites. Materials. 2020, 13, 1376. [Google Scholar] [CrossRef]
- Pettini, F.; Corsalini, M.; Savino, M.G.; Stefanachi, G.; Di Venere, D.; Pappalettere, C.; Monno, G.; Boccaccio, A. Roughness analysis on composite materials (microfilled, nanofilled and silorane) after different finishing and polishing procedures. Open Dent. J. 2015, 9, 357–367. [Google Scholar] [CrossRef]
- Dos Santos, P.; Catelan, A.; Albuquerque Guedes, A.; Umeda Suzuki, T.; de Lima Godas, A.; Fraga Briso, A.; BedranRusso, A. Effect of thermocycling on roughness of nanofill, microfill and microhybrid composites. Acta Odontol. Scand. 2015, 73, 176–181. [Google Scholar] [CrossRef]
- Morresi, A.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behave. Biomed. Mat. 2014, 29, 295–308. [Google Scholar] [CrossRef]
- Minoni, U.; Cavalli, F. Surface quality control device for on-line applications. Measurement 2008, 41, 774–782. [Google Scholar] [CrossRef]
- Fu, S.; Cheng, F.; Tjahjowidodo, T.; Zhou, Y.; Butler, D. A non-contact measuring system for in-situ surface characterization based on laser confocal microscopy. Sensors 2018, 18, 2657. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.S.; Billington, R.W.; Pearson, G.J. The in vivo perception of roughness of restorations. Brit. Dent. J. 2004, 196, 42–45. [Google Scholar] [CrossRef]
- Yazkan, B. Surface degradation evaluation of different self-adhesive restorative materials after prolonged energy drinks exposure. J. Esth. Restor. Dent. 2020, 32, 707–714. [Google Scholar] [CrossRef]
- Karakaş, S.; Küden, C. AFM and SEM/EDS characterization of surfaces of fluorine-releasing bulk-fill restorative materials aged in common liquids. J. Oral. Sci. 2022, 64, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Birant, S.; İlisulu, C.; Üçüncü, M. Evaluation of Glass Ionomer Restorative Materials’ Surface Roughness and Microhardness In Vitro After Acidic Challenge. Ess. Dent. 2023, 2, 87–94. [Google Scholar]
- Bahammam, S.; Nathanson, D.; Fan, Y. Evaluating the mechanical properties of restorative glass ionomers cements. Int. Dent. J. 2022, 72, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Janus, J.; Fauxpoint, G.; Arntz, Y.; Pelletier, H.; Etienne, O. Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach. Dent. Mater. 2010, 26, 416–425. [Google Scholar] [CrossRef]
- Salgado, V.E.; Cavalcante, L.; Silikas, N.; Schneider, L. The influence of nanoscale inorganic content over optical and surface properties of model composites. J. Dent. 2013, 41, 45–53. [Google Scholar] [CrossRef]
- Elbishari, H.; Silikas, N.; Satterthwaite, J. Is deterioration of surface properties of resin composites affected by filler size? Int. J. Dent. 2020, 2875262. Available online: https://pubmed.ncbi.nlm.nih.gov/32377199/ (accessed on 18 June 2023). [CrossRef]
- Baseren, M. Surface roughness of nanofill and nanohybrid composite resin and ormocer-based tooth-colored restorative materials after several finishing and polishing procedures. J. Biomat. App. 2004, 19, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.K.; Nicholson, J.W. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomat. 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
Material (Group) | Type | Composition | Manufacturer | Lot |
---|---|---|---|---|
Admira Fusion x-base (Group A) | Ormocer | Ormocer, photoinitiators, pigments, barium aluminum borosilicate glass, pyrogenic silica (20–50 nm) | VOCO, Cuxhaven, Germany | 2217143 |
Beautifil II (Group B) | Giomer restorative material | Bis-GMA, TEGDMA, multifunctional glass filler and S-PRG filler based on aluminofluoro-borosilicate glass | Shofu Inc., Kyoto, Japan | 072277 |
Equia Forte HT. (Group C) | High-viscosity glass ionomer cement | Fluoro Alumino Silicate (FAS) glass, reactive silicate particle, high-molecular-weight polyacrylic acid. | GC, America Inc., Alsip, IL, USA | 2106151 |
Filtek Supreme Ultra. (Group D) | Nanoparticle composite resin | Bis-GMA and TEGDMA, along with a high percentage of inorganic fillers, including nano-sized particles and radiopaque agents | 3M, Saint Paul, MN, USA | NF27582 |
Material | Post-Restoration | 1st Year | 3rd Clinical Year | 5th Clinical Year | ||||
---|---|---|---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | Mean | ±SD | Mean | ±SD | |
1. Group A | 0.2465 | 0.1001 | 0.2835 | 0.1184 | 0.3128 | 0.1176 | 0.3356 | 0.1287 |
2. Group B | 0.3910 | 0.2092 | 0.4116 | 0.2151 | 0.4152 | 0.1622 | 0.4529 | 0.1953 |
3. Group C | 0.6280 | 0.2413 | 0.6938 | 0.2262 | 0.7217 | 0.3272 | 0.8484 | 0.3473 |
4. Group D | 0.3226 | 0.0861 | 0.3574 | 0.1387 | 0.3630 | 0.1302 | 0.4038 | 0.1648 |
p value # | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | ||||
Material A vs. B | 0.048 * | 0.122 | 0.386 | 0.358 | ||||
Material A vs. C | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | ||||
Material A vs. D | 0.508 | 0.571 | 0.862 | 0.773 | ||||
Material B vs. C | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | ||||
Material B vs. D | 0.595 | 0.779 | 0.847 | 0.901 | ||||
Material C vs. D | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galbraith, A.; Abubakr, N.H. Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials. Dent. J. 2024, 12, 390. https://doi.org/10.3390/dj12120390
Galbraith A, Abubakr NH. Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials. Dentistry Journal. 2024; 12(12):390. https://doi.org/10.3390/dj12120390
Chicago/Turabian StyleGalbraith, Austin, and Neamat Hassan Abubakr. 2024. "Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials" Dentistry Journal 12, no. 12: 390. https://doi.org/10.3390/dj12120390
APA StyleGalbraith, A., & Abubakr, N. H. (2024). Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials. Dentistry Journal, 12(12), 390. https://doi.org/10.3390/dj12120390