Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Products Tested
2.2. Specimen Preparation of Dental Enamel
2.3. Specimen Preparation of Dental Dentin
2.4. Characterization of the Enamel and Dentin Surfaces and Cross-Sections via Scanning Electron Microscopy (SEM) Imaging Observation and Energy-Dispersive X-ray Spectroscopy (EDS)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, M.L.; Zheng, G.; Zhang, Y.D.; Yan, X.; Li, X.C.; Lin, H. Effect of desensitizing toothpastes on dentine hypersensitivity: A systematic review and meta-analysis. J. Dent. 2018, 75, 12–21. [Google Scholar] [CrossRef]
- Arnold, W.H.; Gröger, C.; Bizhang, M.; Naumova, E.A. Dentin abrasivity of various desensitizing toothpastes. Head Face Med. 2016, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Cde, A.; Lacerda, B.; Mangueira, D.F.; Charone, S.; Olympio, K.P.; Magalhaes, A.C.; Pessan, J.P.; Vilhena, F.V.; Sampaio, F.C.; Buzalaf, M.A.R. Mechanisms of action of fluoridated acidic liquid dentifrices against dental caries. Arch. Oral Biol. 2015, 60, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Kraivaphan, P.; Amornchat, C. Comparative clinical efficacy of three toothpastes in the control of supragingival calculus formation. Eur. J. Dent. 2017, 11, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Arcos, D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005, 15, 1509–1516. [Google Scholar] [CrossRef]
- Cacciotti, I. Cationic and Anionic Substitutions in Hydroxyapatite. In Handbook of Bioceramics and Biocomposites; Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–211. [Google Scholar]
- Cury, J.A.; Tenuta, L.M.A. Enamel remineralization: Controlling the caries disease or treating early caries lesions? Braz. Oral Res. 2009, 23, 23–30. [Google Scholar] [CrossRef]
- Palard, M.; Champion, E.; Foucaud, S. Synthesis of silicated hydroxyapatite Ca10(PO4)6-x(SiO4)x(OH)2-x. J. Solid State Chem. 2008, 181, 1950–1960. [Google Scholar] [CrossRef]
- Yao, F.; LeGeros, J.P.; LeGeros, R.Z. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties. Acta Biomater. 2009, 5, 2169–2177. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Ottolenghi, L.; Gaillard, C.; Bourgeois, D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials 2020, 10, 140. [Google Scholar] [CrossRef]
- Vilhena, F.V.; de Oliveira, S.M.L.; Matochek, M.H.M.; Tomaz, P.L.S.; Oliveira, T.S.; D’Alpino, P.H.P. Biomimetic Mechanism of Action of Fluoridated Toothpaste Containing Proprietary REFIX Technology on the Remineralization and Repair of Demineralized Dental Tissues: An In Vitro Study. Eur. J. Dent. 2021, 15, 236–241. [Google Scholar] [CrossRef]
- Zanatta, R.F.; Avila, D.; Maia, M.M.; Viana, I.E.L.; Scaramucci, T.; Torres, C.R.G.; Borges, A.B. Protection of calcium silicate/sodium phosphate/fluoride toothpaste with serum on enamel and dentin erosive wear. J. Appl. Oral Sci. 2021, 29, e20210081. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Buzalaf, M.A.R.; Duangthip, D.; Anttonen, V.; Ganss, C.; João-Souza, S.H.; Baumann, T.; Carvalho, T.S. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur. Arch. Paediatr. Dent. 2019, 20, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, R.F.; Caneppele, T.M.F.; Scaramucci, T.; El Dib, R.; Maia, L.C.; Ferreira, D.; Borges, A.B. Protective effect of fluorides on erosion and erosion/abrasion in enamel: A systematic review and meta-analysis of randomized in situ trials. Arch. Oral Biol. 2020, 120, 104945. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, G.; Gug, H.; Lee, J.H.; Park, S.J.; Park, J.C. Desensitizing toothpastes for dentin sealing and tertiary dentin formation in vitro and in vivo: A comparative analysis. BMC Oral Health 2022, 22, 483. [Google Scholar] [CrossRef]
- Fontana, M. Enhancing fluoride: Clinical human studies of alternatives or boosters for caries management. Caries Res. 2016, 50 (Suppl. S1), 22–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Bioactive materials for caries management: A literature review. Dent. J. 2023, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, N.J.; Cai, F.; Huq, N.L.; Burrow, M.F.; Reynolds, E.C. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 2010, 89, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; Klimek, J.; Starck, C. Quantitative analysis of the impact of the organic matrix on the fluoride effect on erosion progression in human dentine using longitudinal microradiography. Arch. Oral Biol. 2004, 49, 931–935. [Google Scholar] [CrossRef]
- Philip, N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef]
- Delbem, A.C.B.; Pessan, J.P. Alternatives to enhance the anticaries effects of fluoride. In Pediatric Restorative Dentistry; Coelho Leal, S., Takeshita, E.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 75–92. [Google Scholar]
- Addy, M.; West, N.X. The role of toothpaste in the aetiology and treatment of dentine hypersensitivity. Monogr. Oral Sci. 2013, 23, 75–87. [Google Scholar]
- Moron, B.M.; Miyazaki, S.S.; Ito, N.; Wiegand, A.; Vilhena, F.; Buzalaf, M.A.; Magalhães, A.C. Impact of different fluoride concentrations and pH of dentifrices on tooth erosion/abrasion in vitro. Aust. Dent. J. 2013, 58, 106–111. [Google Scholar] [CrossRef]
- Tomaz, P.L.S.; Sousa, L.A.; Aguiar, K.F.; Oliveira, T.S.; Matochek, M.H.M.; Polassi, M.R.; D’Alpino, P.H.P. Effects of 1450-ppm fluoride-containing toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. Eur. J. Dent. 2020, 14, 161–170. [Google Scholar] [CrossRef]
- Vilhena, F.V.; Polassi, M.R.; Paloco, E.A.C.; Alonso, R.C.; Guiraldo, R.D.; D’Alpino, P.H. Effectiveness of toothpaste containing REFIX technology against dentin hypersensitivity: A randomized clinical study. J. Contemp. Dent. Pract. 2020, 21, 609–614. [Google Scholar] [CrossRef]
- Zangrando, M.S.R.; Silva, G.F.F.; Bigotto, M.L.B.; Cintra, F.M.R.N.; Damante, C.A.; Sant’Ana, A.C.P.; Vilhena, F.V. Blocking tubules technologies for dentin hypersensitivity in periodontal patients—Pilot study. Res. Soc. Dev. 2021, 10, e35101320398. [Google Scholar] [CrossRef]
- Reis, A.L.M.; dos Reis, M.C.; Mazzola, T.; Pegoraro, J.V.C.; De Lima, D.C.; Fernandes, L.A. A novel clinical protocol for dentin hypersensitivity management based on regenerative dental gel associated with calcium—A case study in a patient with periodontal disease. Int. J. Case Rep. Images 2023, 14, 70–74. [Google Scholar] [CrossRef]
- Ten Cate, J.M. Novel anticaries and remineralizing agents: Prospects for the future. J. Dent. Res. 2012, 91, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Enax, J.; Amaechi, B.T.; Farah, R.; Liu, J.A.; Schulze zur Wiesche, E.; Meyer, F. Remineralization strategies for teeth with molar incisor hypomineralization (MIH): A literature review. Dent. J. 2023, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Vilhena, F.V.; Lonni, A.A.S.G.; D’Alpino, P.H.P. Silicon-enriched hydroxyapatite formed induced by REFIX-based toothpaste on the enamel surface. Braz. Dent. Sci. 2021, 24 (Suppl. 1), e3114. [Google Scholar] [CrossRef]
- Purk, J.H. 8—Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In Material-Tissue Interfacial Phenomena; Spencer, P., Misra, A., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 205–229. [Google Scholar]
- Ye, X.; Zhou, Y.; Sun, Y.; Chen, J.; Wang, Z. Structure and infrared emissivity of collagen/SiO2 composite. Appl. Surf. Sci. 2008, 254, 5975–5980. [Google Scholar] [CrossRef]
- Liufu, S.-C.; Xiao, H.-N.; Li, Y.-P. Adsorption of MA–Na copolymer at the ZnO-aqueous solution interface. Mater. Chem. Phys. 2006, 95, 117–121. [Google Scholar] [CrossRef]
- Febriani, M.; Amelia, H.; Alawiyah, T.; Rachmawati, E. The Potential of Hydroxyapatite Toothpaste towards the Hypersensitive Tooth. Int. J. Med. Sci. Clin. Inventig. 2021, 8, 5849–5857. [Google Scholar] [CrossRef]
- Roveri, N.; Battistella, E.; Foltran, I.; Foresti, E.; Iafisco, M.; Lelli, M.; Palazzo, B.; Rimondini, L. Synthetic Biomimetic Carbonate-Hydroxyapatite Nanocrystals for Enamel Remineralization. Adv. Mater. Res. 2008, 47–50, 821–824. [Google Scholar] [CrossRef]
Dentifrice | Composition | pH ** |
---|---|---|
Regenerador Sentitive | 1450 ppm sodium fluoride, glycerin, silica, sorbitol, sodium lauryl sulfate, aqua, aroma, PEF-12, cellulose gum, phosphoric acid, xylitol, tetrasodium pyrophosphate, sodium saccharin, triclosan, menthol, mica, sodium benzoate, REFIX Technology. | 4.7 |
Calcium Booster | Dentifrice containing 5% calcium mix (calcium carbonate, tricalcium phosphate), silica, glycerin, CPC, saccharine, water). | 7.8 |
Dentin | Enamel | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Untreated | Treated Immediate | Treated after 5 Days | Untreated | Treated Immediate | Treated after 5 Days | |||||||
Element * | W% | A% | W% | A% | W% | A% | W% | A% | W% | A% | W% | A% |
K L | - | - | 0.2 | 0.1 | - | - | - | - | 0.3 | 0.2 | 0.6 | 0.3 |
C K | 49.2 | 75.4 | 31.6 | 52.0 | 32.3 | 48.5 | - | - | 33.6 | 53.7 | 18.7 | 32.9 |
Ca L | 4.1 | 1.9 | 7.0 | 3.5 | 4.3 | 1.9 | 33.6 | 21.0 | 13.8 | 6.6 | 12.3 | 6.4 |
O K | 16.3 | 18.8 | 28.9 | 35.8 | 38.4 | 43.2 | 40.4 | 63.3 | 27.5 | 32.9 | 39.7 | 52.2 |
Na K | - | - | 0.1 | 0.1 | - | - | 0.4 | 0.5 | 0.5 | 0.4 | 1.1 | 1.0 |
Si K | - | - | 5.5 | 3.9 | 5.8 | 3.7 | - | - | 0.6 | 0.4 | 2.2 | 1.6 |
P K | 2.2 | 1.3 | 3.7 | 2.4 | 1.7 | 1.0 | 17.2 | 13.9 | 6.3 | 3.9 | 5.9 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhena, F.V.; Grecco, S.d.S.; González, A.H.M.; D’Alpino, P.H.P. Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study. Dent. J. 2023, 11, 153. https://doi.org/10.3390/dj11060153
Vilhena FV, Grecco SdS, González AHM, D’Alpino PHP. Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study. Dentistry Journal. 2023; 11(6):153. https://doi.org/10.3390/dj11060153
Chicago/Turabian StyleVilhena, Fabiano Vieira, Simone dos Santos Grecco, Alejandra Hortencia Miranda González, and Paulo Henrique Perlatti D’Alpino. 2023. "Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study" Dentistry Journal 11, no. 6: 153. https://doi.org/10.3390/dj11060153
APA StyleVilhena, F. V., Grecco, S. d. S., González, A. H. M., & D’Alpino, P. H. P. (2023). Regenerative and Protective Effects on Dental Tissues of a Fluoride–Silicon-Rich Toothpaste Associated with a Calcium Booster: An In Vitro Study. Dentistry Journal, 11(6), 153. https://doi.org/10.3390/dj11060153