New Trends in Nanoclay-Modified Sensors
Abstract
:1. Introduction
1.1. Nanoclays: Definition and Classification
- Neutral nanoclays do not possess any charge in their layers. Commonly, their layers are formed by two tetrahedral sheets that sandwich one octahedral sheet (2:1 nanoclay, pyrophyllite, and talc group) or by a tetrahedral sheet confronted with an octahedral sheet (1:1 nanoclays, kaolinite, and serpentine group). Tetrahedral sheets are formed by [SiO4]−4 ions while octahedral sheets are formed by Mg+2 or Al+3 complex.
- Cationic nanoclays have negatively charged layers. Two main groups can be found into this category, 2:1 and 2:1:1 nanoclays. The first one is formed by the same sheet configuration previously described for neutral 2:1 nanoclays. The most common minerals on the Earth’s surface can be found in this group: smectites, vermiculites, micas, and brittle micas. The second group is formed by stacking an octahedral sheet between a 2:1-layer configuration, forming the chlorite group. Negative layer charge is originated by the isomorphous substitutions that occur either in the tetrahedral (Si+4 by Al+3) or octahedral sheet (Al+3/Mg+2 by Mg+2/Li+, respectively, for example). Electrical neutrality is ensured by inorganic or organic ions in the interlayer space balancing the charge generated. When organic cations are introduced in the interlayer space, organo-nanoclays are created.
- Anionic clays are positively charged hydroxide layers, also known as layered double hydroxides (LDHs). Their layer structure (Figure 1) is based in divalent metal ions (such as Mg+2), forming an octahedral sheet. Commonly, these divalent cations are substituted by trivalent cations (such as Al+3), creating a positive charge for each aluminum substituted by magnesium ion. To maintain the electrical neutrality, anions such as CO3−2, NO3−, and Cl− are located in the interlayer galleries.
1.2. Sensors
2. Nanoclay-Based Sensors for Environmental Applications
3. Nanoclay-Based Sensors for Biomedical Applications
3.1. Nanoclay-Based Electrochemical Sensors
3.1.1. Glucose Determination
3.1.2. H2O2 Detection
3.1.3. Other Organic Biomedical Compounds’ Detection
3.2. Nanoclay-Based Optical Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-ATP | 4-aminothiophenol |
AChE | acetylcholinesterase |
Bent | Bentonite |
BSA | bovine serum albumin |
Calix | calixarene |
CH-Mt | Chitosan- montmorillonite |
CLDH | Cu-Mg-Al calcined layered double hydroxide |
CLME | Nanoclay modified electrodes |
CMC | carboxymethyl chitosan |
CTAB | cetyltrimethylammonium bromide |
CV | Cyclic voltammetry |
DDA | didodecyldimethyl ammonium |
DDAX | dioctadecyl dimethyl ammonium chloride |
DM | dimethylamine |
DPA | Pyridine-2, 6-dicarboxylic acid |
DPV | differential pulse voltammetry |
EIS | electrochemical impedance spectroscopy |
FcMe | ferrocenemethanol |
FIA | flow injection analysis |
GCE | Glassy carbon electrode |
Glu | glutamic acid |
Gly | glycine |
GOx | Glucose oxidase |
Hb | hemoglobin |
HNTs | Hallosyte nanotubes |
ITO | indium tin oxide |
Kaol | Kaolinite |
Lap | Laponite |
LDH | Layered double hydroxides |
LOD | Limit of detection |
Lys | lysine |
M | Methylamine |
MB | methylene blue. |
Mt | Montmorillonite |
MTMA | 2-(methacryloyloxy) ethyltrimethylammonium chloride |
MV | methyl viologen |
NCs | Nanoclays |
NPs | Nanoparticles |
Pal | Palygorskite |
PAMAM | Poly(amidoamine) |
PAN | polyacrylonitrile |
PAN | polyacrylonitrile |
PGA | polyglycolide |
PHEMA | poly(2-hydroxyethyl methacrylate) |
PMMA | polymethylmethacrylate |
PoPD | Poly (o-phenyledediamine) |
PVA | poly(vinyl) alcohol |
PyOx | pyranose oxidase |
SaCTA | cetyltrimethylammonium |
SaDDA | didodecyldimethyl ammonium |
Sep | Sepiolite |
SWV: | Square wave voltammetry |
VBA | vinylbenzyl triethylammonium chloride |
VBT | vinylbenzyl thymine |
References
- Official Journal of the European Union. Commission Recommendations; The European Commission: Brussels, Belgium, 2011; Volume 2011/696/E. [Google Scholar]
- Bergaya, F.; Lagaly, G. Chapter 1—General Introduction: Clays, Clay Minerals, and Clay Science. In Handbook of Clay Science; Bergaya, F., Lagaly, G.B.T.-D., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 1–19. ISBN 1572-4352. [Google Scholar]
- Mousty, C. Sensors and biosensors based on clay-modified electrodes—New trends. Appl. Clay Sci. 2004, 27, 159–177. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, M.A.; Sannino, F.; Saccomandi, F.; Violante, A. Enzymes in soil: Properties, behavior and potential applications. In Soil Mineral-Organic Matter-Microorganism Interactions and Ecosystem Health; Violante, A., Huang, P.M., Bollag, J.-M., Gianfreda, L.B.T.-D., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 28, pp. 301–327. ISBN 0166-2481. [Google Scholar]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Karunakaran, C.; Madasamy, T.; Sethy, N.K. Chapter 3—Enzymatic Biosensors. In Biosensors and Bioelectronics; Karunakaran, C., Bhargava, K., Benjamin, R.B.T.-B., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 133–204. ISBN 978-0-12-803100-1. [Google Scholar]
- Suhito, I.R.; Koo, K.M.; Kim, T.H. Recent advances in electrochemical sensors for the detection of biomolecules and whole cells. Biomedicines 2021, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.L.; Gao, E.Q. Metal–organic frameworks for electrochemical sensors of neurotransmitters. Coord. Chem. Rev. 2021, 434, 213784. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Y.; Ramasamy, R. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron. 2008, 24, 632–637. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. TrAC Trends Anal. Chem. 2016, 76, 15–29. [Google Scholar] [CrossRef]
- Calò, S.; Curulli, A.; Zane, D.; Caschera, D.; Ingo, G.M.; Padeletti, G. Single Walled Carbon Nanotubes (SWCNTs)/Gold Nanoparticles (AuNps) Nanocomposites for Enhancing Electrochemical Response to Detect Neurotransmitters. ECS Trans. 2019, 25, 33–41. [Google Scholar] [CrossRef]
- Zestos, A.G.; Jacobs, C.B.; Trikantzopoulos, E.; Ross, A.E.; Venton, B.J. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters. Anal. Chem. 2014, 86, 8568–8575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchta, D.; Izaoumen, N.; Zejli, H.; El Kaoutit, M.; Temsamani, K.R. Electroanalytical properties of a novel PPY/γcyclodextrin coated electrode. Anal. Lett. 2005, 38, 1019–1036. [Google Scholar] [CrossRef]
- Kaur, B.; Srivastava, R. Synthesis of ionic liquids coated nanocrystalline zeolite materials and their application in the simultaneous determination of adenine, cytosine, guanine, and thymine. Electrochim. Acta 2014, 133, 428–439. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Zhao, H.; Chang, Y.; Liu, R.; Li, B.; Li, F.; Zhang, F.; Shi, M.; Zhou, L.; Li, X. Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem. 2021, 343, 128484. [Google Scholar] [CrossRef]
- de Mello Ferreira Guimarães, A.; Ciminelli, V.S.T.; Vasconcelos, W.L. Surface modification of synthetic clay aimed at biomolecule adsorption: Synthesis and characterization. Mater. Res. 2007, 10, 37–41. [Google Scholar] [CrossRef] [Green Version]
- El Kasmi, S.; Lahrich, S.; Farahi, A.; Zriouil, M.; Ahmamou, M.; Bakasse, M.; El Mhammedi, M.A. Electrochemical determination of paraquat in potato, lemon, orange and natural water samples using sensitive-rich clay carbon electrode. J. Taiwan Inst. Chem. Eng. 2016, 58, 165–172. [Google Scholar] [CrossRef]
- Wagheu, J.K.; Forano, C.; Besse-Hoggan, P.; Tonle, I.K.; Ngameni, E.; Mousty, C. Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes. Talanta 2013, 103, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Manisankar, P.; Selvanathan, G.; Vedhi, C. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 2006, 68, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Goda, E.S.; Gab-Allah, M.A.; Singu, B.S.; Yoon, K.R. Halloysite nanotubes based electrochemical sensors: A review. Microchem. J. 2019, 147, 1083–1096. [Google Scholar] [CrossRef]
- An, N.; Zhou, C.H.; Zhuang, X.Y.; Tong, D.S.; Yu, W.H. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 2015, 114, 283–296. [Google Scholar] [CrossRef]
- Zoumpanioti, M.; Stamatis, H.; Xenakis, A. Microemulsion-based organogels as matrices for lipase immobilization. Biotechnol. Adv. 2010, 28, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Hartmann, M. Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem. Soc. Rev. 2013, 42, 3894–3912. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Carbon nanotube/enzyme biofuel cells. Electrochim. Acta 2012, 82, 179–190. [Google Scholar] [CrossRef]
- Serefoglou, E.; Litina, K.; Gournis, D.; Kalogeris, E.; Tzialla, A.A.; Pavlidis, I.V.; Stamatis, H.; Maccallini, E.; Lubomska, M.; Rudolf, P. Smectite clays as solid supports for immobilization of β-glucosidase: Synthesis, characterization, and biochemical properties. Chem. Mater. 2008, 20, 4106–4115. [Google Scholar] [CrossRef] [Green Version]
- Tzialla, A.A.; Pavlidis, I.V.; Felicissimo, M.P.; Rudolf, P.; Gournis, D.; Stamatis, H. Lipase immobilization on smectite nanoclays: Characterization and application to the epoxidation of α-pinene. Bioresour. Technol. 2010, 101, 1587–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askim, J.R.; Suslick, K.S. Colorimetric and Fluorometric Sensor Arrays for Molecular Recognition. In Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 8, pp. 37–88. ISBN 9780128031988. [Google Scholar]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.J.; Yan, B. Dual-emissive ratiometric fluorescent probe based on Eu3+/C-dots@MOF hybrids for the biomarker diaminotoluene sensing. Sens. Actuators B Chem. 2018, 272, 510–517. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, J.; Yi, S.; Wan, X.; Tang, J. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens. Actuators B Chem. 2020, 309, 127735. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jing, X.; Liu, T.; Han, G.; Li, H.; Duan, C. Dual-functional gadolinium-based copper(II) probe for selective magnetic resonance imaging and fluorescence sensing. Inorg. Chem. 2012, 51, 2325–2331. [Google Scholar] [CrossRef]
- Barbosa, P.F.P.; Vieira, E.G.; Cumba, L.R.; Paim, L.L.; Nakamura, A.P.R.; Andrade, R.D.A.; do Carmo, D.R. Voltammetric techniques for pesticides and herbicides detection- an overview. Int. J. Electrochem. Sci. 2019, 14, 3418–3433. [Google Scholar] [CrossRef]
- Van Der Werf, H.M.G. Assessing the impact of pesticides on the environment. Agric. Ecosyst. Environ. 1996, 60, 81–96. [Google Scholar] [CrossRef]
- Du, D.; Chen, S.; Cai, J.; Zhang, A. Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta 2008, 74, 766–772. [Google Scholar] [CrossRef]
- Tchoumene, R.; Kenne Dedzo, G.; Ngameni, E. Preparation of Methyl Viologen-Kaolinite Intercalation Compound: Controlled Release and Electrochemical Applications. ACS Appl. Mater. Interfaces 2018, 10, 34534–34542. [Google Scholar] [CrossRef] [PubMed]
- Mbokana, J.G.Y.; Dedzo, G.K.; Ngameni, E. Grafting of organophilic silane in the interlayer space of acid-treated smectite: Application to the direct electrochemical detection of glyphosate. Appl. Clay Sci. 2020, 188, 105513. [Google Scholar] [CrossRef]
- Tcheumi, H.L.; Kameni Wendji, A.P.; Tonle, I.K.; Ngameni, E. A Low-Cost Layered Double Hydroxide (LDH) Based Amperometric Sensor for the Detection of Isoproturon in Water Using Carbon Paste Modified Electrode. J. Anal. Methods Chem. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Laghrib, F.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Electrochemical sensors for improved detection of paraquat in food samples: A review. Mater. Sci. Eng. C 2020, 107, 110349. [Google Scholar] [CrossRef] [PubMed]
- Abbaci, A.; Azzouz, N.; Bouznit, Y. A new copper doped montmorillonite modified carbon paste electrode for propineb detection. Appl. Clay Sci. 2014, 90, 130–134. [Google Scholar] [CrossRef]
- Zhai, C.; Guo, Y.; Sun, X.; Zheng, Y.; Wang, X. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide. Enzyme Microb. Technol. 2014, 58–59, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Yanke, J.G.M.; Dedzo, G.K.; Ngameni, E. Solvent Effect on the Grafting of an Organophilic Silane Onto Smectite-type Clay: Application as Electrode Modifiers for Pesticide Detection. Electroanalysis 2017, 29, 1894–1902. [Google Scholar] [CrossRef]
- Manisankar, P.; Selvanathan, G.; Vedhi, C. Utilization of sodium montmorillonite clay-modified electrode for the determination of isoproturon and carbendazim in soil and water samples. Appl. Clay Sci. 2005, 29, 249–257. [Google Scholar] [CrossRef]
- Tcheumi, H.L.; Tonle, I.K.; Walcarius, A.; Ngameni, E. Electrocatalytic and Sensors Properties of Natural Smectite Type Clay towards the Detection of Paraquat Using a Film-Modified Electrode. Am. J. Anal. Chem. 2012, 03, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Zhao, L.; Zhu, C.S.; Shen, X.; Zhang, X.; Sha, B. Comparative study of polymer containing β-cyclodextrin and -COOH for adsorption toward aniline, 1-naphthylamine and methylene blue. J. Hazard. Mater. 2009, 171, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.C.; Moccelini, S.K.; Castilho, M.; Terezo, A.J.; Possavatz, J.; Magalhães, M.R.L.; Dores, E.F.G.C. Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta 2012, 98, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.; Narayanan, N.; Solanki, P.R. Polymer–Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection. Int. J. Environ. Res. 2017, 11, 591–601. [Google Scholar] [CrossRef]
- Phongphut, A.; Chayasombat, B.; Cass, A.E.G.; Sirisuk, A.; Phisalaphong, M.; Prichanont, S.; Thanachayanont, C. Clay/au nanoparticle composites as acetylcholinesterase carriers and modified-electrode materials: A comparative study. Appl. Clay Sci. 2020, 194. [Google Scholar] [CrossRef]
- Flampouri, K.; Mavrikou, S.; Kintzios, S.; Miliadis, G.; Aplada-Sarlis, P. Development and validation of a cellular biosensor detecting pesticide residues in tomatoes. Talanta 2010, 80, 1799–1804. [Google Scholar] [CrossRef]
- Jlassi, K.; Zavahir, S.; Kasak, P.; Krupa, I.; Mohamed, A.A.; Chehimi, M.M. Emerging clay-aryl-gold nanohybrids for efficient electrocatalytic proton reduction. Energy Convers. Manag. 2018, 168, 170–177. [Google Scholar] [CrossRef]
- Dong, S.; Dao, A.Q.; Zheng, B.; Tan, Z.; Fu, C.; Liu, H.; Xiao, F. One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel-cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim. Acta 2015, 152, 195–201. [Google Scholar] [CrossRef]
- Wang, Z.; Gui, M.; Asif, M.; Yu, Y.; Dong, S.; Wang, H.; Wang, W.; Wang, F.; Xiao, F.; Liu, H. A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale 2018, 10, 6629–6638. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, S.; Yuan, S.; Xu, J.; Wang, Y.; Luo, J.; Hu, S. A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite. Appl. Clay Sci. 2006, 33, 35–42. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Shen, H.; Jia, N. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim. Acta 2010, 56, 700–705. [Google Scholar] [CrossRef]
- Songurtekin, D.; Yalcinkaya, E.E.; Ag, D.; Seleci, M.; Demirkol, D.O.; Timur, S. Histidine modified montmorillonite: Laccase immobilization and application to flow injection analysis of phenols. Appl. Clay Sci. 2013, 86, 64–69. [Google Scholar] [CrossRef]
- Seleci, M.; Ag, D.; Yalcinkaya, E.E.; Demirkol, D.O.; Guler, C.; Timur, S. Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications. RSC Adv. 2012, 2, 2112–2118. [Google Scholar] [CrossRef]
- Han, X.; Zhu, Y.; Yang, X.; Li, C. Amperometric glucose biosensor based on platinum nanoparticle encapsulated with a clay. Microchim. Acta 2010, 171, 233–239. [Google Scholar] [CrossRef]
- Unal, B.; Yalcinkaya, E.E.; Demirkol, D.O.; Timur, S. An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite. Appl. Surf. Sci. 2018, 444, 542–551. [Google Scholar] [CrossRef]
- Sonmez, B.; Sayin, S.; Yalcinkaya, E.E.; Seleci, D.A.; Yildiz, H.B.; Demirkol, D.O.; Timur, S. Calixarene modified montmorillonite: A novel design for biosensing applications. RSC Adv. 2014, 4, 62895–62902. [Google Scholar] [CrossRef]
- Demir, B.; Seleci, M.; Ag, D.; Cevik, S.; Yalcinkaya, E.E.; Demirkol, D.O.; Anik, U.; Timur, S. Amine intercalated clay surfaces for microbial cell immobilization and biosensing applications. RSC Adv. 2013, 3, 7513–7519. [Google Scholar] [CrossRef]
- Demir, F.; Demir, B.; Yalcinkaya, E.E.; Cevik, S.; Demirkol, D.O.; Anik, U.; Timur, S. Amino acid intercalated montmorillonite: Electrochemical biosensing applications. RSC Adv. 2014, 4, 50107–50113. [Google Scholar] [CrossRef]
- Maiga, M.; Yalcinkaya, E.E.; Sonmez, B.; Puglia, D.; Yavuz, M.; Demirkol, D.O.; Kenny, J.M.; Timur, S. CTAB modified dellite: A novel support for enzyme immobilization in bio-based electrochemical detection and its in vitro antimicrobial activity. Sens. Actuators B Chem. 2016, 235, 46–55. [Google Scholar] [CrossRef]
- Luo, S.; Chen, Y.; Zhou, M.; Yao, C.; Xi, H.; Kong, Y.; Deng, L. Palygorskite-poly(o-phenylenediamine) nanocomposite: An enhanced electrochemical platform for glucose biosensing. Appl. Clay Sci. 2013, 86, 59–63. [Google Scholar] [CrossRef]
- Unal, B.; Yalcinkaya, E.E.; Gumustas, S.; Sonmez, B.; Ozkan, M.; Balcan, M.; Demirkol, D.O.; Timur, S. Polyglycolide-montmorillonite as a novel nanocomposite platform for biosensing applications. New J. Chem. 2017, 41, 9371–9379. [Google Scholar] [CrossRef]
- Yilmaz, Y.Y.; Yalcinkaya, E.E.; Demirkol, D.O.; Timur, S. 4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors. Sens. Actuators B Chem. 2020, 307, 127665. [Google Scholar] [CrossRef]
- Paz Zanini, V.I.; Gavilán, M.; López De Mishima, B.A.; Martino, D.M.; Borsarelli, C.D. A highly sensitive and stable glucose biosensor using thymine-based polycations into laponite hydrogel films. Talanta 2016, 150, 646–654. [Google Scholar] [CrossRef]
- Emre, F.B.; Kesik, M.; Kanik, F.E.; Akpinar, H.Z.; Aslan-Gurel, E.; Rossi, R.M.; Toppare, L. A benzimidazole-based conducting polymer and a PMMA-clay nanocomposite containing biosensor platform for glucose sensing. Synth. Met. 2015, 207, 102–109. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Camurlu, P. The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers. Electrochim. Acta 2020, 353, 136484. [Google Scholar] [CrossRef]
- Shi, Q.; Li, Q.; Shan, D.; Fan, Q.; Xue, H. Biopolymer-clay nanoparticles composite system (Chitosan-laponite) for electrochemical sensing based on glucose oxidase. Mater. Sci. Eng. C 2008, 28, 1372–1375. [Google Scholar] [CrossRef]
- Coche-Guérente, L.; Desprez, V.; Labbé, P. Characterization of organosilasesquioxane-intercalated-laponite-clay modified electrodes and (bio)electrochemical applications. J. Electroanal. Chem. 1998, 458, 73–86. [Google Scholar] [CrossRef]
- Poyard, S.; Jaffrezic-Renault, N.; Martelet, C.; Cosnier, S.; Labbe, P.; Besombes, J.L. A new method for the controlled immobilization of enzyme in inorganic gels (laponite) for amperometric glucose biosensing. Sens. Actuators B Chem. 1996, 33, 44–49. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Azeem, M.; Wang, Z.; Ashraf, G.; Xiao, F.; Chen, X.; Liu, H. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv. Colloid Interface Sci. 2018, 262, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Taviot-Guého, C.; Prévot, V.; Forano, C.; Renaudin, G.; Mousty, C.; Leroux, F. Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Adv. Funct. Mater. 2018, 28, 1–33. [Google Scholar] [CrossRef]
- Tonelli, D.; Scavetta, E.; Giorgetti, M. Layered-double-hydroxide-modified electrodes: Electroanalytical applications. Anal. Bioanal. Chem. 2013, 405, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, I.; Vlamidis, Y.; Mazzei, L.; Musella, E.; Giorgetti, M.; Christian, M.; Morandi, V.; Scavetta, E.; Tonelli, D. Ni/Al Layered Double Hydroxide and Carbon Nanomaterial Composites for Glucose Sensing. ACS Appl. Nano Mater. 2019, 2, 143–155. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, W.; Liu, L.; Tang, M.; Gao, F.; Li, M. Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selectively sensing of dopamine. Microchim. Acta 2011, 174, 41–46. [Google Scholar] [CrossRef]
- Patel, V.; Kruse, P.; Selvaganapathy, P.R. Solid State Sensors for Hydrogen Peroxide Detection. Biosensors 2020, 11, 9. [Google Scholar] [CrossRef]
- Andersen, B.M.; Rasch, M.; Hochlin, K.; Jensen, F.-H.; Wismar, P.; Fredriksen, J.-E. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J. Hosp. Infect. 2006, 62, 149–155. [Google Scholar] [CrossRef]
- Meier, J.; Hofferber, E.; Stapleton, J.A.; Iverson, N.M. Hydrogen peroxide sensors for biomedical applications. Chemosensors 2019, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zheng, X.; Zheng, J. Non-enzymatic sensor based on a glassy carbon electrode modified with Ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing. RSC Adv. 2016, 6, 58329–58335. [Google Scholar] [CrossRef]
- Zhang, S.; Sheng, Q.; Zheng, J. Synthesis of Ag-HNTs-MnO2 nanocomposites and their application for nonenzymatic hydrogen peroxide electrochemical sensing. RSC Adv. 2015, 5, 26878–26885. [Google Scholar] [CrossRef]
- Cao, H.; Sun, X.; Zhang, Y.; Jia, N. Electrochemical sensing based on gold nanoparticle-decorated halloysite nanotube composites. Anal. Biochem. 2012, 430, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Zhang, D.; Wu, Q.; Zheng, J.; Tang, H. Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing. Anal. Methods 2015, 7, 6896–6903. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ganesan, V.; Gupta, R.; Yadav, M.; Sonkar, P.K.; Rastogi, P.K. Copper oxide immobilized clay nano architectures as an efficient electrochemical sensing platform for hydrogen peroxide. J. Chem. Sci. 2020, 132, 1–10. [Google Scholar] [CrossRef]
- Yadav, D.K.; Gupta, R.; Ganesan, V.; Sonkar, P.K.; Rastogi, P.K. Electrochemical sensing platform for hydrogen peroxide determination at low reduction potential using silver nanoparticle-incorporated bentonite clay. J. Appl. Electrochem. 2016, 46, 103–112. [Google Scholar] [CrossRef]
- Yan, P.; Zhong, L.; Wen, X.; Tang, A. Fabrication of Cu2O/TiO2/sepiolite electrode for effectively detecting of H2O2. J. Electroanal. Chem. 2018, 827, 1–9. [Google Scholar] [CrossRef]
- Heli, H.; Pishahang, J.; Amiri, H.B. Synthesis of hexagonal CoAl-layered double hydroxide nanoshales/carbon nanotubes composite for the non-enzymatic detection of hydrogen peroxide. J. Electroanal. Chem. 2016, 768, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Xu, S.; Zeng, H.Y.; Cao, X.; Dan Pan, A.; Xiao, G.F.; Ding, P.X. Hydrogen peroxide biosensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2. Bioelectrochemistry 2018, 123, 94–102. [Google Scholar] [CrossRef]
- Charradi, K.; Gondran, C.; Amara, A.B.H.; Prévot, V.; Mousty, C. H2O2 determination at iron-rich clay modified electrodes. Electrochim. Acta 2009, 54, 4237–4244. [Google Scholar] [CrossRef]
- Gualandi, I.; Scavetta, E.; Zappoli, S.; Tonelli, D. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode. Biosens. Bioelectron. 2011, 26, 3200–3206. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Behbahani, M.; Noghrehabadi, A. Fabrication of a novel, sensitive and selective electrochemical sensor for antibiotic cefotaxime based on sodium montmorillonite nonoclay/electroreduced graphene oxide composite modified carbon paste electrode. J. Electroanal. Chem. 2017, 801, 450–458. [Google Scholar] [CrossRef]
- Joshi, N.; Sharma, A.; Rawat, K.; Asokan, K.; Solanki, P.R.; Lakshmi, G.B.V.S.; Kanjilal, D.; Bohidar, H.B. Comparative evaluation of enzyme-free nanoclay-ionic liquid based electrodes for detection of bioanalytes. RSC Adv. 2016, 6, 66120–66129. [Google Scholar] [CrossRef]
- Felbeck, T.; Lezhnina, M.M.; Resch-Genger, U.; Kynast, U.H. Red emissive nanoclay hybrids in transparent aqueous dispersion—Towards optical applications in biophotonics. J. Lumin. 2016, 169, 728–732. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Wang, Y.; Li, H. A simple and effective luminescence sensor distinguishing cationic surfactants from other type of surfactants. Sens. Actuators B Chem. 2016, 235, 206–212. [Google Scholar] [CrossRef]
- Felbeck, T.; Behnke, T.; Hoffmann, K.; Grabolle, M.; Lezhnina, M.M.; Kynast, U.H.; Resch-Genger, U. Nile-red-nanoclay hybrids: Red emissive optical probes for use in aqueous dispersion. Langmuir 2013, 29, 11489–11497. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Chai, R.; Xu, Y.; Li, H.; Liu, B. Luminescent Lanthanide-Based Organic/Inorganic Hybrid Materials for Discrimination of Glutathione in Solution and within Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 13554–13563. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Y.; Li, H.; Liu, B. A nanoclay-based magnetic/fluorometric bimodal strategy for ascorbic acid detection. Sens. Actuators B Chem. 2017, 246, 344–351. [Google Scholar] [CrossRef]
- Robby, A.I.; Park, S.Y. Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria. Anal. Chim. Acta 2019, 1082, 152–164. [Google Scholar] [CrossRef]
- Lin, H.C.; Lin, J.J.; Sheng, Y.J. Interaction of Novel Fluorescent Nanoscale Ionic Silicate Platelets with Biomaterials for Biosensors. ACS Appl. Mater. Interfaces 2015, 7, 10771–10778. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ding, Y.; Jiang, Y.; Liu, Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators B Chem. 2017, 239, 848–856. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.; Jiang, Y.; Chen, M.; Ding, Y.; Liu, Q. A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens. Actuators B Chem. 2017, 239, 28–35. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, L.; Jiang, Y.; Liu, S.; Chen, M.; Chen, M.; Ding, Y.; Liu, Q. A facile strategy for the preparation of ZnS nanoparticles deposited on montmorillonite and their higher catalytic activity for rapidly colorimetric detection of H2O2. Mater. Sci. Eng. C 2016, 67, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Li, W.; Zhao, S.; Chen, W.; Zhu, X.; Cui, G.; Liu, Z.; Liu, Q.; Zhang, X.; Zhang, X. Cobalt tuned copper sulfide on montmorillonite: Peroxidase-like activity, catalytic mechanism and colorimetric sensing of hydrogen peroxide. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 602, 125063. [Google Scholar] [CrossRef]
- Lian, S.; Gao, L.; Chen, M.; Liu, Z.; Qiu, J.; Zhang, X.; Luo, X.; Zeng, R.; Liu, Q. Enhanced peroxidase-like activity of MMT-supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H2O2. Appl. Organomet. Chem. 2019, 33, 1–10. [Google Scholar] [CrossRef]
- Cao, X.; Yang, H.; Wei, Q.; Yang, Y.; Liu, M.; Liu, Q.; Zhang, X. Fast colorimetric sensing of H2O2 and glutathione based on Pt deposited on NiCo layered double hydroxide with double peroxidase-/oxidase-like activity. Inorg. Chem. Commun. 2021, 123. [Google Scholar] [CrossRef]
- Hill, E.H.; Zhang, Y.; Whitten, D.G. Aggregation of cationic p-phenylene ethynylenes on Laponite clay in aqueous dispersions and solid films. J. Colloid Interface Sci. 2015, 449, 347–356. [Google Scholar] [CrossRef]
Type of Layer Charge | Group | Layer Type | Layer Charge O10(OH,F)2 Unit |
---|---|---|---|
Neutral | Kaolinite-serpentine | 1:1 | <0.01 |
Pyrophyllite-Talc | 2:1 | 0 | |
Cationic | Smectite | 2:1 | 0.2 to 0.6 |
Vermiculite | 0.6 to 0.9 | ||
Mica | ca. 1 | ||
Brittle mica | up to 2 | ||
Chlorite | 2:1:1 | variable | |
Anionic | Layered double hydroxide (LDH) | 0:1 | variable |
Clay | Modifier | Analyte | Detection Technique | Analytical Range (µM) | LOD (µM) | Ref. |
---|---|---|---|---|---|---|
Montmorillonite | Cu2+ | Propineb | SWV | 5.0–30 | 1 | [42] |
Montmorillonite | Octyltriethoxisilane | Carbendazim | CV | 1–7 | 0.03 | [44] |
Montmorillonite | - | DPV | - | 0.96 | [45] | |
Montmorillonite | Heteropolyacid | SWV | 0.052–2.615 | 0.052 | [21] | |
CLDH | AChE | Chlorpyrifos | DPV | 1.43 × 10−4–0.43 | 1.43 × 10−4 | [43] |
Clay | Modifier | Analyte | Detection Technique | Analytical Range (µM) | LOD (µM) | Ref. |
---|---|---|---|---|---|---|
Cameroonian smectite | - | Mesotrione | SWV | 5–19 | - | [20] |
Cameroonian smectite | Cetyltrimethyl ammonium | SWV | 1.25–9.80 | - | [20] | |
Cameroonian smectite | DDA | SWV | 0.25–2.24 | 0.26 | [20] | |
montmorillonite | Triethoxyoctylsilane | Glyphosate | SWV | 10–100 | 0.98 | [39] |
NiAl-LDH | - | phenyl urea herbicides | CV | 0.02–0.18 | 0.001 | [40] |
montmorillonite film | - | CV | 0.206–61.8 | 0.206 | [45] | |
montmorillonite | Organo functionalized | SWV | 5 × 10−3–1.45 | 5 × 10−3 | [21] | |
montmorillonite | K+ | Paraquat | CV | 0.03–0.4 | 0.14 × 10−3 | [38] |
Smectite film | - | SWV | 1.6–2.8 | 3.8 × 10−3 | [46] | |
clay composite film | β-cyclodextrin | DPV | 0.099–1.99 | 2.8 × 10−3 | [47] |
Clay | Enzyme | Analyte | Detection Technique | Analytical Range (mg/L) | LOD (mg/L) | Ref. |
---|---|---|---|---|---|---|
Nanoclay | Atemoya peroxidase | Glyphosate | SWV | 100–4550 | 30 | [49] |
CH-Mt | AChE | Chlorpyrifos | CV | 0.5–1000 | 0.448 | [50] |
Kaol | AChE | EIS | 0.5–200 | 0.28 | [51] | |
Mt | AChE | EIS | 0.5–100 | 0.48 | [51] | |
Bent | AChE | EIS | 2–200 | 0.65 | [51] | |
Sep | AChE | EIS | 2–200 | 0.71 | [51] |
Enzyme | Clay | Functional Molecule | Electrode | Analytical Ranges (mM) | LOD (µM) | Response Time (s) | Ref. |
---|---|---|---|---|---|---|---|
GOx | Mt | M/DM | Carbon | 0.05–1.0 | 38 | 7 | [60] |
GOx | Mt | PAMAM dendrimer | Carbon | 0.01–16 | 4 | <3 | [61] |
PyOx | Mt | PVA/PAMAM | Carbon | 0.005–0.25 | 0.7 | - | [62] |
PyOx | Mt | Calixarene | Carbon | - | 0.5 | 20 | [63] |
G. oxydans | Mt | trimethylamine | GCE | 0.1–5.0 | - | - | [64] |
GOx | Mt | Gly, Lys, Glu | Carbon | 0.1–1.0 | - | - | [65] |
PyOx | Dellite | CTAB | Carbon | 0.01–0.5 | 0.081 | - | [66] |
GOx | Pal | PoPD | Pt disk | 0.05–3.7 | 0.0624 | 6 | [67] |
PyOx | Mt | PGA | Carbon | 0.01–0.5 | - | - | [68] |
PyOx | Mt | 4-ATP | Carbon | 0.01–0.5 | - | - | [69] |
GOx | Lap | VBT/VBA | Carbon | - | - | - | [70] |
GOx | Lap | PMMA/poly(BIPE)/ | Graphite | - | - | - | [71] |
GOx | Mt | PAN/DDAC/MB | - | 0.01–2.45 2.45–15 | 2 | - | [72] |
Nanoclay | Functional Molecule | Electrode | LOD (μM) | Analytical Range (mM) | Sensitivity (μA∙mM−1∙cm−2) | Ref. |
---|---|---|---|---|---|---|
Hallosyte | AgNP-PANI | GCE | 0.3 | 5 × 10−4 to 4.7 | 74.8 | [84] |
Hallosyte | Ag-MnO2 | GCE | 0.7 | 2 × 10−3 to 4.71 | 11.9 | [85] |
Hallosyte | AuNP | GCE | 1·10−3 | 5 × 10−3 to 0.255 | 70 | [86] |
Hallosyte | GCE | 0.226 | 4 × 10−3 to 1.064 | 0.98 | [87] | |
Bentonite | CuO NP | GCE | 4.93 | 5 × 10−3 to 10 | 60 | [88] |
Bentonite | Ag NPs | GCE | 9.1 | 1 × 10−3 to 5.0 | 4.7 | [89] |
Sepiolite | Cu2O NP | GCE | 10.2 | 0.02–2.36 | 665 | [90] |
LDH | CoAl NPs | GCE | 10 | - | 118.0 | [91] |
ZnAl-LDH | carboxymethyl chitosan (CMC) | GCE | 12.4 | 0.02–6.0 | 220.4 | [92] |
Nontronite | - | GCE | 109 | 0.63–2.45 | 0.23 | [93] |
Nontronite | methyl viologen (MV+2) | GCE | 10 | 0.01–5 12–40 | 9.4 54 | [93] |
Notronite | Bovine hemoglobin (Hb) | GCE | - | 2–15 | 132 | [93] |
Montmorillonite synthetic (Fe III octahedral) | - | GCE | 246 | 0.25–1.60 | 0.10 | [93] |
Montmorillonite synthetic (Fe III octahedral) | methyl viologen (MV+2) | GCE | 10 | 0.01–4 5–40 | 53 132 | [93] |
Montmorillonite synthetic (Fe III octahedral) | Bovine hemoglobin (Hb) | GCE | - | 2–12 | 74 | [93] |
Montmorillonite synthetic- non-iron impurities) | Bovine hemoglobin (Hb) | GCE | - | 4–18 | 0.043 | [93] |
Nanoclay | Electrode | Functional Molecule | Analyte | Analytical Range (mM) | LOD (µM) | Ref. |
---|---|---|---|---|---|---|
Laponite and Montmorillonite | ITO | Ionic liquids | Organic acids, urea, glucose or cholesterol | - | - | [96] |
Co/Al based hydrotalcite | Pt | - | Salicylic acid | 0.01 to 0.5 and 5 × 10−4 to 0.1 | 6 0.2 | [94] |
HNTs | Carbon | Carbon | Niclosamide | - | - | [17] |
Montmorillonite | Carbon | Graphene oxide | Cefotaxime | 5 × 10−4 to 4 × 10−3 0.040 to 2.4 | 1 × 10−4 | [95] |
Nanoclay | Functional Molecule | Fluorophore | Analyte | Time | Detection Limit (μM) | Analytical Range (mM) | Ref. |
---|---|---|---|---|---|---|---|
Laponite | (ttfa)3(topo)2 | Eu3+ Nile Red | BSA Β-lactoglobulin | - | - | - | [97] |
Laponite | 2-thenoyltrifluoroacetone | Eu3+ | CTAB | - | 0–100 | 3.8× 10−6 | [98] |
Laponite | Nile Red | CTAB | - | - | - | [99] | |
Laponite | DPA | Eu3+ | Glutathione | - | 0.5–30 | 1.62× 10−4 | [100] |
Laponite | DPA | Eu3+ | Ascorbic acid | - | 0.5–20 | 1× 10−4 | [101] |
Montmorillonite | - | Polymer dot | E. coli and S. aureus bacteria | - | 10–107 CFU/mL | 5.09–4.62 CFU/mL | [102] |
Montmorillonite | - | 6-(1,3-dioxo-1H-benzo[de]- isoquinolin-2(3H)-yl) hexanoic acid | E. coli and S. aureus bacteria | - | - | - | [103] |
Montmorillonite | CeO2 | - | H2O2 | <30 s | 7.8 | 9 × 10−3 to 0.5 | [104] |
Montmorillonite | CuS | - | H2O2 | 30 s | 24.7 | 0.03 to 0.2 | [105] |
Montmorillonite | ZnS | - | H2O2 | <30 s | 10.48 | 0.07–06 | [106] |
Montmorillonite | CuS/Co+2 | - | H2O2 | 2.2 | 0.01–0.1 | [107] | |
Montmorillonite | CuO2-NP | - | H2O2 | 30 s | 2.395 | 3 × 10−3 to 8 × 10−3 | [108] |
LDH | Pt NP | - | H2O2 | 30 s | 760 | 10–90 | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavón, E.; Martín-Rodríguez, R.; Perdigón, A.C.; Alba, M.D. New Trends in Nanoclay-Modified Sensors. Inorganics 2021, 9, 43. https://doi.org/10.3390/inorganics9060043
Pavón E, Martín-Rodríguez R, Perdigón AC, Alba MD. New Trends in Nanoclay-Modified Sensors. Inorganics. 2021; 9(6):43. https://doi.org/10.3390/inorganics9060043
Chicago/Turabian StylePavón, Esperanza, Rosa Martín-Rodríguez, Ana C. Perdigón, and María D. Alba. 2021. "New Trends in Nanoclay-Modified Sensors" Inorganics 9, no. 6: 43. https://doi.org/10.3390/inorganics9060043
APA StylePavón, E., Martín-Rodríguez, R., Perdigón, A. C., & Alba, M. D. (2021). New Trends in Nanoclay-Modified Sensors. Inorganics, 9(6), 43. https://doi.org/10.3390/inorganics9060043