Towards 99mTc- and Re-Based Multifunctional Silica Platforms for Theranostic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Mesoporous Silica Particles
2.2. Synthesis of Chelators for Surface Modifications
2.3. Reactions of Bisquinoline Molecules with the {M(CO)3}+ Moiety (M = Re, 99mTc)
2.4. Synthesis and Labeling of a Bifunctional SBA-15 Construct with Re and 99mTc
3. Materials and Methods
3.1. Synthesis of 1d
3.2. Synthesis of 2
3.3. Synthesis of 3
3.4. General Procedure for the Synthesis of {Re(CO)3}+ Complexes
3.4.1. Analytical Data for [(1a)Re(CO)3](PF6)
3.4.2. Analytical Data for [(1b)Re(CO)3](PF6)
3.4.3. Analytical Data for [(1e)Re(CO)3](PF6)
3.4.4. Analytical Data for [3-Re](PF6)
3.5. Synthesis of 3@SBA-15
3.6. Synthesis of 3-Re@SBA-15
3.6.1. Method A: Grafting of 3-Re onto SBA15
3.6.2. Method B: Reaction of (NEt4)2[Re(H2O)3(CO)3] with 3@SBA-15
3.7. Synthesis of Bifunctionalized Mesoporous Silica Particles (EOITC/3@SiP)
3.8. Reaction of Bifunctionalized Mesoporous Silica Particles (SiP) with [Re(H2O)3(CO)3]+
3.9. Labeling of Bifunctionalized Mesoporous Silica Particles (SiP) with [99mTc(H2O)3(CO)3]+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arano, Y. Recent advances in 99mTc radiopharmaceuticals. Ann. Nucl. Med. 2002, 16, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Arano, Y. Recent advances in 99mTc radiopharmacenticals. J. Nucl. Radiochem. Sci. 2005, 6, 177–181. [Google Scholar] [CrossRef]
- Bartholomä, M.D.; Louie, A.S.; Valliant, J.F.; Zubieta, J. Technetium and gallium derived radiopharmaceuticals: Comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem. Rev. 2010, 110, 2903–2920. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chakraborty, S. 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans. 2011, 40, 6077–6086. [Google Scholar] [CrossRef]
- Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. J. Label. Compd. Radiopharm. 2017, 60, 502–520. [Google Scholar] [CrossRef]
- Lepareur, N.; Lacœuille, F.; Bouvry, C.; Hindré, F.; Garcion, E.; Chérel, M.; Noiret, N.; Garin, E.; Knapp, F.F.R. Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Front. Med. 2019, 6, 132. [Google Scholar] [CrossRef]
- Meola, G.; Braband, H.; Jordi, S.; Fox, T.; Blacque, O.; Spingler, B.; Alberto, R. Structure and reactivities of rhenium and technetium bis-arene sandwich complexes [M(η6-arene)2]+. Dalton Trans. 2017, 46, 14631–14637. [Google Scholar] [CrossRef]
- Stephenson, K.A.; Banerjee, S.R.; Besanger, T.; Sogbein, O.O.; Levadala, M.K.; McFarlane, N.; Lemon, J.A.; Boreham, D.R.; Maresca, K.P.; Brennan, J.D.; et al. Bridging the Gap between In Vitro and In Vivo imaging: Isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies. J. Am. Chem. Soc. 2004, 126, 8598–8599. [Google Scholar] [CrossRef]
- Agrawal, U.; Gupta, M.; Jadon, R.S.; Sharma, R.; Vyas, S.P. Multifunctional nanomedicines: Potentials and prospects. Drug Deliv. Transl. Res. 2013, 3, 479–497. [Google Scholar] [CrossRef]
- Longmire, M.R.; Ogawa, M.; Choyke, P.L.; Kobayashi, H. Biologically optimized nanosized molecules and particles: More than just size. Bioconjugate Chem. 2011, 22, 993–1000. [Google Scholar] [CrossRef]
- He, J.; Liu, G.; Gupta, S.; Zhang, Y.; Rusckowski, M.; Hnatowich, D.J. Amplification targeting: A modified pretargeting approach with potential for signal amplification—Proof of a concept. J. Nucl. Med. 2004, 45, 1087–1095. [Google Scholar] [PubMed]
- Rousseau, V.; Denizot, B.; Pouliquen, D.; Jallet, P.; Le Jeune, J.J. Investigation of blood-brain barrier permeability to magnetite-dextran nanoparticles (MD3) after osmotic disruption in rats. Magn. Reson. Mater. Phys. Biol. Med. 1997, 5, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Chao-Ming, F.; Yuh-Feng, W.; Yu-Chiang, C.; Shih-Hung, H.; Ming-Da, Y. Directly labeling ferrite nanoparticles with Tc-99m radioisotope for diagnostic applications. IEEE Trans. Magn. 2004, 40, 3003–3005. [Google Scholar] [CrossRef]
- Chao-Ming, F.; Yuh-Feng, W.; Yu-Feng, G.; Tang-Yi, L.; Jainn-Shiun, C. In Vivo bio-distribution of intravenously injected Tc-99m labeled ferrite nanoparticles bounded with biocompatible medicals. IEEE Trans. Magn. 2005, 41, 4120–4122. [Google Scholar] [CrossRef]
- Chan, H.B.S.; Ellis, B.L.; Sharma, H.L.; Frost, W.; Caps, V.; Shields, R.A.; Tsang, S.C. Carbon-encapsulated radioactive 99mTc nanoparticles. Adv. Mater. 2004, 16, 144–149. [Google Scholar] [CrossRef]
- Park, S.H.; Gwon, H.J.; Shin, J. Synthesis of 99mTc-labeled organo-germanium nanoparticles and their in vivo study as a spleen imaging agent. J. Label. Compd. Radiopharm. 2006, 49, 1163–1170. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Li, Q.; Li, W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 2007, 34, 579–583. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Li, Q.-N.; Li, J.-G.; Ran, T.-C.; Wu, S.-W.; Song, W.-M.; Chen, S.-L.; Li, W.-X. Biodistribution of 99mTc-C60(OH)x in Sprague–Dawley rats after intratracheal instillation. Carbon 2007, 45, 1865–1870. [Google Scholar] [CrossRef]
- Douglas, S.J.; Davis, S.S.; Illum, L. Biodistribution of poly(butyl 2-cyanoacrylate) nanoparticles in rabbits. Int. J. Pharm. 1986, 34, 145–152. [Google Scholar] [CrossRef]
- Park, K.-H.; Song, H.-C.; Na, K.; Bom, H.-S.; Lee, K.H.; Kim, S.; Kang, D.; Lee, D.H. Ionic strength-sensitive pullulan acetate nanoparticles (PAN) for intratumoral administration of radioisotope: Ionic strength-dependent aggregation behavior and 99mTechnetium retention property. Colloids Surf. B 2007, 59, 16–23. [Google Scholar] [CrossRef]
- Banerjee, T.; Mitra, S.; Kumar Singh, A.; Kumar Sharma, R.; Maitra, A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. 2002, 243, 93–105. [Google Scholar] [CrossRef]
- Banerjee, T.; Singh, A.K.; Sharma, R.K.; Maitra, A.N. Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: Interference by colloidal tin oxide particles. Int. J. Pharm. 2005, 289, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.H.; Sharma, R.K.; Chuttani, K.; Mishra, A.K.; Murthy, R.R. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. AAPS J. 2004, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.C.; Chan, W.C.W. Nanotoxicity: The growing need for in vivo study. Curr. Opin. Biotechnol. 2007, 18, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-H.; Hung, Y.; Mou, C.-Y. Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. 2011, 47, 9972–9985. [Google Scholar] [CrossRef] [PubMed]
- Gartmann, N.; Brühwiler, D. Controlling and imaging the functional-group distribution on mesoporous silica. Angew. Chem. Int. Ed. 2009, 48, 6354–6356. [Google Scholar] [CrossRef]
- Ramm, J.H.; Gartmann, N.; Brühwiler, D. Direct synthesis and fluorescent imaging of bifunctionalized mesoporous iodopropyl-silica. J. Colloid Interface Sci. 2010, 345, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Schlipf, D.M.; Rankin, S.E.; Knutson, B.L. Selective external surface functionalization of large-pore silica materials capable of protein loading. Microporous Mesoporous Mat. 2017, 244, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Zucchetto, N.; Brühwiler, D. Strategies for localizing multiple functional groups in mesoporous silica particles through a one-pot synthesis. Chem. Mater. 2018, 30, 7280–7286. [Google Scholar] [CrossRef]
- Sharma, K.K.; Anan, A.; Buckley, R.P.; Ouellette, W.; Asefa, T. Toward efficient nanoporous catalysts: Controlling site-isolation and concentration of grafted catalytic sites on nanoporous materials with solvents and colorimetric elucidation of their site-isolation. J. Am. Chem. Soc. 2008, 130, 218–228. [Google Scholar] [CrossRef]
- Sharma, K.K.; Asefa, T. Efficient bifunctional nanocatalysts by simple postgrafting of spatially isolated catalytic groups on mesoporous materials. Angew. Chem. Int. Ed. 2007, 46, 2879–2882. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, K.S.K.; Chan, J.C.C.; Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005, 109, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Brunel, D. Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals. Microporous Mesoporous Mat. 1999, 27, 329–344. [Google Scholar] [CrossRef]
- Macquarrie, D.J.; Jackson, D.B. Aminopropylated MCMs as base catalysts: A comparison with aminopropylated silica. Chem. Commun. 1997, 18, 1781–1782. [Google Scholar] [CrossRef]
- Cauvel, A.; Renard, G.; Brunel, D. Monoglyceride synthesis by heterogeneous catalysis using MCM-41 type silicas functionalized with amino groups. J. Org. Chem. 1997, 62, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.M.; Hidajat, K.; Kawi, S.; Zhao, D.Y. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun. 2000, 1145–1146. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46, 7548–7558. [Google Scholar] [CrossRef]
- Angelos, S.; Johansson, E.; Stoddart, J.F.; Zink, J.I. Mesostructured silica supports for functional materials and molecular machines. Adv. Funct. Mater. 2007, 17, 2261–2271. [Google Scholar] [CrossRef]
- Mal, N.K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003, 421, 350–353. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S.Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125, 4451–4459. [Google Scholar] [CrossRef]
- Muñoz, B.; Rámila, A.; Pérez-Pariente, J.; Díaz, I.; Vallet-Regí, M. MCM-41 organic modification as drug delivery rate regulator. Chem. Mater. 2002, 15, 500–503. [Google Scholar] [CrossRef]
- Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 2014, 26, 435–451. [Google Scholar] [CrossRef]
- Giret, S.; Wong Chi Man, M.; Carcel, C. Mesoporous-silica-functionalized nanoparticles for drug delivery. Chem. Eur. J. 2015, 21, 13850–13865. [Google Scholar] [CrossRef] [PubMed]
- Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine—Challenge and perspectives. Angew. Chem. Int. Ed. 2009, 48, 872–897. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kievsky, Y.; Sokolov, I. Self-assembly of uniform nanoporous silica fibers. IEEE TNANO 2005, 4, 490–494. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Braband, H.; Tooyama, Y.; Fox, T.; Alberto, R. Syntheses of high-valent fac-[99mTcO3]+ complexes and [3+2] cycloadditions with alkenes in water as a direct labelling strategy. Chem. Eur. J. 2009, 15, 633–638. [Google Scholar] [CrossRef]
- Braband, H.; Tooyama, Y.; Fox, T.; Simms, R.; Forbes, J.; Valliant, J.F.; Alberto, R. fac-[TcO3(tacn)]+: A versatile precursor for the labelling of pharmacophores, amino acids and carbohydrates through a new ligand-centred labelling strategy. Chem. Eur. J. 2011, 17, 12967–12974. [Google Scholar] [CrossRef]
- Wuillemin, M.A.; Stuber, W.T.; Fox, T.; Reber, M.J.; Brühwiler, D.; Alberto, R.; Braband, H. A novel 99mTc labelling strategy for the development of silica based particles for medical applications. Dalton Trans. 2014, 43, 4260–4263. [Google Scholar] [CrossRef]
- Wuillemin, M.A. 99mTc-and Re-Based Target Specific Multimodality (Nano)Particles. Ph.D. Thesis, University of Zurich, Zürich, Switzerland, 2018. [Google Scholar]
- Nielsen, A.; Bond, A.D.; McKenzie, C.J. N,N-Bis(2-pyridiniomethyl)glycine diperchlorate. Acta Crystallogr. E 2005, 61, o516–o517. [Google Scholar] [CrossRef]
- Kim, W.D.; Hrncir, D.C.; Kiefer, G.E.; Sherry, A.D. Synthesis, crystal structure, and potentiometry of pyridine-containing tetraaza macrocyclic ligands with acetate pendant arms. Inorg. Chem. 1995, 34, 2225–2232. [Google Scholar] [CrossRef]
- Farrugia, L.J. ORTEP-3 for windows-a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565. [Google Scholar] [CrossRef]
- Steiner, T. Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: Up-to-date database study. Acta Crystallogr. B 1998, 54, 456–463. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Baleizão, C.; Farinha, J.P.S. Functional group coverage and conversion quantification in nanostructured silica by 1H NMR. Anal. Chem. 2017, 89, 681–687. [Google Scholar] [CrossRef]
- Grundler, P.V.; Helm, L.; Alberto, R.; Merbach, A.E. Relevance of the ligand exchange rate and mechanism of fac-[(CO)3M(H2O)3]+ (M = Mn, Tc, Re) complexes for new radiopharmaceuticals. Inorg. Chem. 2006, 45, 10378–10390. [Google Scholar] [CrossRef]
- Alberto, R.; Ortner, K.; Wheatley, N.; Schibli, R.; Schubiger, A.P. Synthesis and properties of boranocarbonate: A convenient In Situ co source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J. Am. Chem. Soc. 2001, 123, 3135–3136. [Google Scholar] [CrossRef]
- Braband, H.; Benz, M.; Tooyama, Y.; Alberto, R. Activation of [99(m)TcO4]− by phosphonium cations. Chem. Commun. 2014, 50, 4126–4129. [Google Scholar] [CrossRef]
- Zucchetto, N.; Brühwiler, D. Tuning the aspect ratio of arrays of silica nanochannels. RSC Adv. 2015, 5, 74638–74644. [Google Scholar] [CrossRef] [Green Version]
- Ritter, H.; Brühwiler, D. Accessibility of amino groups in postsynthetically modified mesoporous silica. J. Phys. Chem. C 2009, 113, 10667–10674. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf. A 2001, 187, 11–21. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System; 171.39; Rigaku Oxford Diffraction: Oxford, UK, 2017. [Google Scholar]
- Sheldrick, G. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
Particles | Average Pore Size [nm] | Total Pore Volume [cm3/g] | BET Surface Area [m2/g] |
---|---|---|---|
SBA-15 | 7.0 | 0.75 | 570 |
3@SBA-15 | 6.8 | 0.64 | 441 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuillemin, M.A.; Reber, M.J.; Fox, T.; Spingler, B.; Brühwiler, D.; Alberto, R.; Braband, H. Towards 99mTc- and Re-Based Multifunctional Silica Platforms for Theranostic Applications. Inorganics 2019, 7, 134. https://doi.org/10.3390/inorganics7110134
Wuillemin MA, Reber MJ, Fox T, Spingler B, Brühwiler D, Alberto R, Braband H. Towards 99mTc- and Re-Based Multifunctional Silica Platforms for Theranostic Applications. Inorganics. 2019; 7(11):134. https://doi.org/10.3390/inorganics7110134
Chicago/Turabian StyleWuillemin, Michel A., Michael J. Reber, Thomas Fox, Bernhard Spingler, Dominik Brühwiler, Roger Alberto, and Henrik Braband. 2019. "Towards 99mTc- and Re-Based Multifunctional Silica Platforms for Theranostic Applications" Inorganics 7, no. 11: 134. https://doi.org/10.3390/inorganics7110134
APA StyleWuillemin, M. A., Reber, M. J., Fox, T., Spingler, B., Brühwiler, D., Alberto, R., & Braband, H. (2019). Towards 99mTc- and Re-Based Multifunctional Silica Platforms for Theranostic Applications. Inorganics, 7(11), 134. https://doi.org/10.3390/inorganics7110134