Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Details
4. Experimental Details
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schiermeier, Q.; Tollefson, J.; Scully, T.; Witze, A.; Morton, O. Energy alternatives: Electricity without carbon. Nature 2008, 454, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Esswein, A.J.; Nocera, D.G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Hambourger, M.; Moore, G.F.; Kramer, D.M.; Gust, D.; Moore, A.L.; Moore, T.A. Biology and technology for photochemical fuel production. Chem. Soc. Rev. 2009, 38, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Bahnemann, D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Ener. Mat. Sol. Cells 2014, 128, 85–101. [Google Scholar] [CrossRef]
- Wang, M.; Na, Y.; Gorlov, M.; Sun, L. Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Trans. 2009, 33, 6458–6467. [Google Scholar] [CrossRef] [PubMed]
- Teets, T.S.; Nocera, D.G. Photocatalytic hydrogen production. Chem. Comm. 2011, 47, 9268–9274. [Google Scholar] [CrossRef] [PubMed]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Eckenhoff, W.T.; Eisenberg, R. Molecular systems for light driven hydrogen production. Dalton Trans. 2012, 41, 13004–13021. [Google Scholar] [CrossRef] [PubMed]
- Bokarev, S.I.; Bokareva, O.S.; Kühn, O. A theoretical perspective on charge transfer in photocatalysis. The example of Ir-based systems. Coord. Chem. Rev. 2015, 304–305, 133–145. [Google Scholar] [CrossRef]
- Junge, H.; Rockstroh, N.; Fischer, S.; Brückner, A.; Ludwig, R.; Lochbrunner, S.; Kühn, O.; Beller, M. Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. Inorganics 2017, 5, 14. [Google Scholar] [CrossRef]
- You, Y.; Nam, W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: Beyond electroluminescence. Chem. Soc. Rev. 2012, 41, 7061–7084. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, J.I.; Hudson, W.R.; Lowry, M.S.; Anderson, T.H.; Bernhard, S. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 2005, 127, 7502–7510. [Google Scholar] [CrossRef] [PubMed]
- Lowry, M.S.; Goldsmith, J.I.; Slinker, J.D.; Rohl, R.; Pascal, R.A.; Malliaras, G.G.; Bernhard, S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chem. Mater. 2005, 17, 5712–5719. [Google Scholar] [CrossRef]
- Tinker, L.L.; McDaniel, N.D.; Curtin, P.N.; Smith, C.K.; Ireland, M.J.; Bernhard, S. Visible light induced catalytic water reduction without an electron relay. Chem. Eur. J. 2007, 13, 8726–8732. [Google Scholar] [CrossRef] [PubMed]
- Cline, E.D.; Adamson, S.E.; Bernhard, S. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 2008, 47, 10378–10388. [Google Scholar] [CrossRef] [PubMed]
- Tinker, L.L.; Bernhard, S. Photon-driven catalytic proton reduction with a robust homoleptic iridium(III) 6-phenyl-2,2′-bipyridine complex ([Ir(C–N–N)2)]+). Inorg. Chem. 2009, 48, 10507–10511. [Google Scholar] [CrossRef] [PubMed]
- Curtin, P.N.; Tinker, L.L.; Burgess, C.M.; Cline, E.D.; Bernhard, S. Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Inorg. Chem. 2009, 48, 10498–10506. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, F.; Sundararaju, B.; Surkus, A.E.; Boddien, A.; Loges, B.; Junge, H.; Dixneuf, P.H.; Beller, M. Light-driven hydrogen generation: Efficient iron-based water reduction catalysts. Angew. Chem. Int. Ed. 2009, 48, 9962–9965. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, F.; Cozzula, D.; Losse, S.; Boddien, A.; Anilkumar, G.; Junge, H.; Schulz, T.; Marquet, N.; Spannenberg, A.; Gladiali, S.; et al. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Chem. Eur. J. 2011, 17, 6998–7006. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, F.; Boddien, A.; Barsch, E.; Fumino, K.; Losse, S.; Junge, H.; Hollmann, D.; Brückner, A.; Ludwig, R.; Beller, M. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: Improved water reduction catalysts and mechanistic insights. Chemistry 2011, 17, 6425–6436. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, D.; Gärtner, F.; Ludwig, R.; Barsch, E.; Junge, H.; Blug, M.; Hoch, S.; Beller, M.; Brückner, A. Insights into the mechanism of photocatalytic water reduction by DFT-supported in situ EPR/Raman spectroscopy. Angew. Chem. Int. Ed. 2011, 50, 10246–10250. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, F.; Denurra, S.; Losse, S.; Neubauer, A.; Boddien, A.; Gopinathan, A.; Spannenberg, A.; Junge, H.; Lochbrunner, S.; Blug, M.; et al. Synthesis and characterization of new iridium photosensitizers for catalytic hydrogen generation from water. Chem. Eur. J. 2012, 18, 3220–3225. [Google Scholar] [CrossRef] [PubMed]
- Bokarev, S.I.; Bokareva, O.S.; Kühn, O. Electronic excitation spectrum of the photosensitizer [Ir(ppy)2(bpy)]+. J. Chem. Phys. 2012, 136, 214305. [Google Scholar] [CrossRef] [PubMed]
- Bokareva, O.S.; Bokarev, S.I.; Kühn, O. Electronic excitation spectra of the [Ir(ppy)2(bpy)]+ photosensitizer bound to small silver clusters Agn (n = 1–6). Phys. Chem. Chem. Phys. 2012, 14, 4977–4984. [Google Scholar] [CrossRef] [PubMed]
- Bokarev, S.I.; Hollmann, D.; Pazidis, A.; Neubauer, A.; Radnik, J.; Kühn, O.; Lochbrunner, S.; Junge, H.; Beller, M.; Brückner, A. Spin density distribution after electron transfer from triethylamine to an [Ir(ppy)2(bpy)]+ photosensitizer during photocatalytic water reduction. Phys. Chem. Chem. Phys. 2014, 16, 4789–4796. [Google Scholar] [CrossRef] [PubMed]
- Bokareva, O.S.; Kühn, O. DFT-D investigation of the interaction between Ir (III) based photosensitizers and small silver clusters Agn (n = 2–20, 92). Chem. Phys. 2014, 435, 40–48. [Google Scholar] [CrossRef]
- Neubauer, A.; Grell, G.; Friedrich, A.; Bokarev, S.I.; Schwarzbach, P.; Gärtner, F.; Surkus, A.E.; Junge, H.; Beller, M.; Kühn, O.; et al. Electron- and Energy-Transfer Processes in a Photocatalytic System Based on an Ir(III)-Photosensitizer and an Iron Catalyst. J. Phys. Chem. Lett. 2014, 5, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Hollmann, D.; Tschierlei, S.; Karnahl, M.; Rockstroh, N.; Barsch, E.; Schwarzbach, P.; Luo, S.P.; Junge, H.; Beller, M.; et al. Death and Rebirth: Photocatalytic Hydrogen Production by a Self-Organizing Copper–Iron System. ACS Catal. 2014, 4, 1845–1849. [Google Scholar] [CrossRef]
- Bokareva, O.S.; Grell, G.; Bokarev, S.I.; Kühn, O. Tuning Range-Separated Density Functional Theory for Photocatalytic Water Splitting Systems. J. Chem. Theor. Comp. 2015, 11, 1700–1709. [Google Scholar] [CrossRef] [PubMed]
- Bokareva, O.S.; Kühn, O. Quantum chemical study of the electronic properties of an Iridium-based photosensitizer bound to medium-sized silver clusters. Chem. Phys. 2015, 457, 1–6. [Google Scholar] [CrossRef]
- Tschierlei, S.; Neubauer, A.; Rockstroh, N.; Karnahl, M.; Schwarzbach, P.; Junge, H.; Beller, M.; Lochbrunner, S. Ultrafast excited state dynamics of iridiumIII complexes and their changes upon immobilisation onto titanium dioxide layers. Phys. Chem. Chem. Phys. 2016, 18, 10682–10687. [Google Scholar] [CrossRef] [PubMed]
- Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 2004, 120, 8425–8433. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Hirosawa, T.; Tsuneda, T.; Hirao, K. Long-range corrected density functional calculations of chemical reactions: Redetermination of parameter. J. Chem. Phys. 2007, 126, 154105. [Google Scholar] [CrossRef] [PubMed]
- Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. Fundamental Gaps in Finite Systems from Eigenvalues of a Generalized Kohn-Sham Method. Phys. Rev. Lett. 2010, 105, 266802. [Google Scholar] [CrossRef] [PubMed]
- Refaely-Abramson, S.; Baer, R.; Kronik, L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 2011, 84, 075144. [Google Scholar] [CrossRef]
- Körzdörfer, T.; Sears, J.S.; Sutton, C.; Brédas, J.L. Long-range corrected hybrid functionals for π-conjugated systems: Dependence of the range-separation parameter on conjugation length. J. Chem. Phys. 2011, 135, 204107. [Google Scholar] [CrossRef] [PubMed]
- Salzner, U.; Baer, R. Koopmans’ springs to life. J. Chem. Phys. 2009, 131, 231101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Minaev, B.; Ågren, H.; Tian, H. Theoretical Study of Phosphorescence of Iridium Complexes with Fluorine-Substituted Phenylpyridine Ligands. Eur. J. Inorg. Chem. 2011, 2011, 2517–2524. [Google Scholar] [CrossRef]
- Minaev, B.; Baryshnikov, G.; Agren, H. Principles of phosphorescent organic light emitting devices. Phys. Chem. Chem. Phys. 2014, 16, 1719–1758. [Google Scholar] [CrossRef] [PubMed]
- Brahim, H.; Daniel, C. Structural and spectroscopic properties of Ir(III) complexes with phenylpyridine ligands: Absorption spectra without and with spin–orbit-coupling. Comp. Theor. Chem. 2014, 1040–1041, 219–229. [Google Scholar] [CrossRef]
- Colombo, M.; Hauser, A.; Güdel, H. Competition between ligand centered and charge transfer lowest excited states in bis cyclometalated Rh3+ and Ir3+ complexes. In Electronic and Vibronic Spectra of Transition Metal Complexes I Topics in Current Chemistry; Springer: Heidelberg, Germany, 1994; Volume 171, pp. 143–171. [Google Scholar]
- Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient- approximation exchange functionals. J. Chem. Phys. 2001, 115, 3540–3544. [Google Scholar] [CrossRef]
- Chiba, M.; Tsuneda, T.; Hirao, K. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory. J. Chem. Phys. 2006, 124, 144106. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.F.; Fernandes, P.A.; Ramos, M.J.A. General performance of density functionals. J. Phys. Chem. A 2007, 111, 10439–10452. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.D.; Jacquemin, D. TD-DFT benchmarks: A review. Int. J. Quant. Chem. 2013, 113, 2019–2039. [Google Scholar] [CrossRef]
- Dreuw, A.; Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 2005, 105, 4009–4037. [Google Scholar] [CrossRef] [PubMed]
- Peach, M.J.G.; Helgaker, T.; Salek, P.; Keal, T.W.; Lutnaes, O.B.; Tozer, D.J.; Handy, N.C. Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys. Chem. Chem. Phys. 2006, 8, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Gerber, I.C.; Ángyán, J.G. Hybrid functional with separated range. Chem. Phys. Lett. 2005, 415, 100–105. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126–13130. [Google Scholar] [CrossRef] [PubMed]
- Peach, M.J.G.; Benfield, P.; Helgaker, T.; Tozer, D.J. Excitation energies in density functional theory: An evaluation and a diagnostic test. J. Chem. Phys. 2008, 128, 44118. [Google Scholar] [CrossRef] [PubMed]
- Livshits, E.; Baer, R. A well-tempered density functional theory of electrons in molecules. Phys. Chem. Chem. Phys. 2007, 9, 2932–2941. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Phys. Chem. 2008, 128, 084106. [Google Scholar] [CrossRef] [PubMed]
- Mori-Sánchez, P.; Cohen, A.J.; Yang, W. Self-interaction-free exchange-correlation functional for thermochemistry and kinetics. J. Chem. Phys. 2006, 124, 91102. [Google Scholar] [CrossRef] [PubMed]
- Stein, T.; Kronik, L.; Baer, R. Reliable Prediction of Charge Transfer Excitations in Molecular Complexes Using Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 2009, 131, 2818–2820. [Google Scholar] [CrossRef] [PubMed]
- Stein, T.; Kronik, L.; Baer, R. Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J. Chem. Phys. 2009, 131, 244119. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revision C.1; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Compound | E, eV (Osc. str.) | Assignment | Character |
---|---|---|---|
IrPS | 2.75 (0.0009) | d*(bpy) | H–L |
3.23 (0.0719) | d*(ppy) | H–(L+1) | |
B1 | 2.81 (0.0052) | d*(bpy) | H–L |
3.14 (0.0312) | d*(ppy) | H–(L+1) | |
B2 | 2.49 (0.0005) | d*(bpy) | H–L |
3.22 (0.1051) | d/d*(bpy) | (H-2)/(H-3)–L | |
B3 | 2.72 (0.0030) | d*(bpy) | H–L |
3.14 (0.0478) | d*(ppy) | H–(L+1) | |
B4 | 2.37 (0.0003) | d*(bpy) | H–L |
3.02 (0.0864) | d(ppy) *(bpy) | (H-3)/(H-1)–L | |
B5 | 2.15 (0.0005) | d*(bpy) | H–L |
2.95 (0.1088) | d(ppy) *(bpy) | (H-3)/(H-1)–L | |
B6 | 3.25 (0.0162) | d*(bpy) | H–L |
3.33 (0.0658) | d*(ppy) | H–(L+1) | |
B7 | 2.87 (0.0018) | d*(bpy) | H–L |
3.14 (0.0632) | d*(ppy) | H–(L+1) | |
B8 | 2.59 (0.0005) | d*(bpy) | H–L |
3.21 (0.1278) | d(ppy) *(bpy) | (H-3)/(H-1)–L | |
B9 | 2.25 (0.0010) | d*(bpy) | H–L |
2.97 (0.1461) | d(ppy) *(bpy) | (H-3)/(H-1)–L | |
P1 | 2.82 (0.0008) | d*(bpy) | H–L |
3.07 (0.1123) | d*(bpy) | (H-1)–L | |
P2 | 2.78 (0.0009) | d*(bpy) | H–L |
2.94 (0.1319) | d*(ppy) | H–(L+1) | |
P3 | 2.89 (0.0017) | d*(bpy) | H–L |
3.24 (0.1433) | d*(ppy) | H–(L+1) | |
P4 | 2.87 (0.0027) | d*(bpy) | H–L |
3.27 (0.0942) | (ppy) *(bpy) | (H-1)–L | |
P5 | 2.80 (0.0012) | d*(bpy) | H–L |
3.13 (0.1200) | d*(ppy) | H–(L+1) | |
P6 | 3.10 (0.0091) | d*(bpy) | H–L |
3.32 (0.2397) | d*(ppy) | H–(L+1) |
Compound | d | d | d |
---|---|---|---|
IrPS | 0.48 (H) | 0.67 (H-2) | 0.48 (H-3) |
B1 | 0.51 (H) | 0.58 (H-2) | 0.61 (H-3) |
B2 | 0.46 (H) | 0.55 (H-2) | 0.43 (H-3) |
B3 | 0.46 (H) | 0.61 (H-2) | 0.60 (H-3) |
B4 | 0.46 (H) | 0.56 (H-2) | 0.50 (H-3) |
B5 | 0.47 (H) | 0.62 (H-2) | 0.50 (H-3) |
B6 | 0.47 (H) | 0.57 (H-2) | 0.47 (H-3) |
0.40 (H-1) | |||
B7 | 0.48 (H) | 0.55 (H-2) | 0.41 (H-3) |
0.53 (H-1) | |||
B8 | 0.47 (H) | 0.66 (H-2) | 0.49 (H-3) |
B9 | 0.47 (H) | 0.63 (H-2) | 0.51 (H-3) |
P1 | 0.53 (H) | 0.56 (H-2) | 0.51 (H-1) |
P2 | 0.46 (H) | 0.30 (H-1) | 0.48 (H-3) |
P3 | 0.46 (H) | 0.48 (H-2) | 0.30 (H-1) |
0.35 (H-4) | 0.35 (H-3) | ||
P4 | 0.36 (H) | 0.65 (H-2) | 0.53 (H-3) |
0.39 (H-1) | |||
P5 | 0.45 (H) | 0.35 (H-2) | 0.56 (H-3) |
0.55 (H-4) | |||
P6 | 0.45 (H) | 0.42 (H-2) | 0.37 (H-5) |
0.46 (H-4) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokareva, O.S.; Möhle, T.; Neubauer, A.; Bokarev, S.I.; Lochbrunner, S.; Kühn, O. Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications. Inorganics 2017, 5, 23. https://doi.org/10.3390/inorganics5020023
Bokareva OS, Möhle T, Neubauer A, Bokarev SI, Lochbrunner S, Kühn O. Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications. Inorganics. 2017; 5(2):23. https://doi.org/10.3390/inorganics5020023
Chicago/Turabian StyleBokareva, Olga S., Tobias Möhle, Antje Neubauer, Sergey I. Bokarev, Stefan Lochbrunner, and Oliver Kühn. 2017. "Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications" Inorganics 5, no. 2: 23. https://doi.org/10.3390/inorganics5020023
APA StyleBokareva, O. S., Möhle, T., Neubauer, A., Bokarev, S. I., Lochbrunner, S., & Kühn, O. (2017). Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications. Inorganics, 5(2), 23. https://doi.org/10.3390/inorganics5020023