Low-Temperature Co-Sintering of Li-Glass Solid Electrolytes and Li-Glass/Graphite Composite Anodes via Hot Press Processing
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological, Compositional, and Thermal Properties of LCBA
2.2. Ionic Transport Properties and Graphite/Solid Electrolyte Interfacial Adhesion
3. Materials and Methods
3.1. Sintering and Characterization of LCBA
3.2. Co-Sintering and Characterization of the LCBA Solid Electrolytes and Graphite Anodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Turcheniuk, K.; Bondarev, D.; Amatucci, G.G.; Yushin, G. Battery materials for low-cost electric transportation. Mater. Today 2021, 42, 57–72. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H.R.; Goodenough, J.B.; Yu, G. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996. [Google Scholar] [CrossRef]
- Roth, E.P.; Orendorff, C.J. How electrolytes influence battery safety. Electrochem. Soc. Interface 2012, 21, 45–49. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Sustainable battery materials for next-generation electrical energy storage. Adv. Energy Sustain. Res. 2021, 2, 2000102. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/aesr.202000102 (accessed on 2 February 2025). [CrossRef]
- Kim, S.; Tanim, T.R.; Dufek, E.J.; Scoffield, D.; Pennington, T.D.; Gering, K.L.; Colclasure, A.M.; Mai, W.; Meintz, A.; Bennett, J. Projecting recent advancements in battery technology to next-generation electric vehicles. Energy Technol. 2022, 10, 2200303. [Google Scholar] [CrossRef]
- Qian, Y.; Hu, S.; Zou, X.; Deng, Z.; Xu, Y.; Cao, Z.; Kang, Y.; Deng, Y.; Shi, Q.; Xu, K.; et al. How electrolyte additives work in Li-ion batteries. Energy Storage Mater. 2019, 20, 208–215. [Google Scholar] [CrossRef]
- Peljo, P.; Girault, H.H. Electrochemical potential window of battery electrolytes: The HOMO–LUMO misconception. Energy Environ. Sci. 2018, 11, 2306–2309. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Campion, C.L.; Li, W.; Lucht, B.L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2327–A2334. [Google Scholar] [CrossRef]
- Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396–A404. [Google Scholar] [CrossRef]
- Hu, X.; Deng, Z.; Lin, X.; Xie, Y.; Teodorescu, R. Research directions for next-generation battery management solutions in automotive applications. Renew. Sustain. Energy Rev. 2021, 152, 111695. [Google Scholar] [CrossRef]
- Iriyama, Y.; Wadaguchi, M.; Yoshida, K.; Yamamoto, Y.; Motoyama, M.; Yamamoto, T. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition. J. Power Sources 2018, 385, 55–61. [Google Scholar] [CrossRef]
- Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.; Kang, F.; Li, B. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power Sources 2018, 389, 120–134. [Google Scholar] [CrossRef]
- Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Lau, J.; DeBlock, R.H.; Butts, D.M.; Ashby, D.S.; Choi, C.S.; Dunn, B.S. Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 2018, 8, 1800933. [Google Scholar] [CrossRef]
- Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 2013, 3, 2261. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, e1901131. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 2007, 46, 7778–7781. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.-S.; Miara, L.; Wang, Y.; Jung, S.-K.; Park, S.Y.; Song, Z.; Kim, H.; Badding, M.; Chang, J.; et al. High energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nat. Commun. 2022, 13, 1883. [Google Scholar] [CrossRef]
- Takada, K.; Aotani, N.; Iwamoto, K.; Kondo, S. Solid state lithium battery with oxysulfide glass. Solid State Ion. 1996, 86–88, 877–882. [Google Scholar] [CrossRef]
- Lee, J.; Lee, T.; Char, K.; Kim, K.J.; Choi, J.W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 2021, 54, 3390–3402. [Google Scholar] [CrossRef]
- Tan, D.H.S.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B.; et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499. [Google Scholar] [CrossRef]
- Kang, S.-G.; Kim, D.-H.; Kim, B.-J.; Yoon, C.-B. Sn-substituted argyrodite Li6PS5Cl solid electrolyte for improving interfacial and atmospheric stability. Materials 2023, 16, 2751. [Google Scholar] [CrossRef]
- Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural change of Li2S−P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 2011, 182, 116–119. [Google Scholar] [CrossRef]
- Sakuda, A.; Hayashi, A.; Takigawa, Y.; Higashi, K.; Tatsumisago, M. Evaluation of elastic modulus of Li2S−P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J. Ceram. Soc. Jpn. 2013, 121, 946–949. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J.T.; Nam, K.-W.; Jung, H.-G.; Chung, K.Y. A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Mater. 2020, 25, 224–250. [Google Scholar] [CrossRef]
- Yamada, H.; Morimoto, N.; Mukohara, H.; Tojo, T.; Yano, S.; Magome, E.; Morimura, T.; Bekarevich, R.; Mitsuishi, K. Concerted influence of microstructure and adsorbed water on lithium-ion conduction of Li1.3Al0.3Ti1.7(PO4)3. J. Power Sources 2021, 511, 230422. [Google Scholar] [CrossRef]
- López-Aranguren, P.; Reynaud, M.; Głuchowski, P.; Bustinza, A.; Galceran, M.; López del Amo, J.M.; Armand, M.; Casas-Cabanas, M. Crystalline LiPON as a bulk-type solid electrolyte. ACS Energy Lett. 2021, 6, 445–450. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y. Perovskite-type Li-ion solid electrolytes: A review. J. Mater. Sci. Mater. Electron. 2021, 32, 9736–9754. [Google Scholar] [CrossRef]
- Merrill, L.C.; Chen, X.C.; Zhang, Y.; Ford, H.O.; Lou, K.; Zhang, Y.; Yang, G.; Wang, Y.; Wang, Y.; Schaefer, J.L.; et al. Polymer–ceramic composite electrolytes for lithium batteries: A comparison between the single-ion-conducting polymer matrix and its counterpart. ACS Appl. Energy Mater. 2020, 3, 8871–8881. [Google Scholar] [CrossRef]
- DeWees, R.; Wang, H. Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes. ChemSusChem 2019, 12, 3713–3725. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308. [Google Scholar] [CrossRef]
- Ping, W.; Yang, C.; Bao, Y.; Wang, C.; Xie, H.; Hitz, E.; Cheng, J.; Li, T.; Hu, L. A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics. Energy Storage Mater. 2019, 21, 246–252. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, S.G.; Kim, B.J.; Lee, H.; Kim, J.; Yoon, C.-B. Effect of the annealing temperature of Lithiophilic Ag–Cu co-deposition on the cycling performance of Li-metal anodes. Inorganics 2023, 11, 440. [Google Scholar] [CrossRef]
- Song, G.; Kim, B.; Hwang, I.; Kim, J.; Kim, J.; Yoon, C.-B. Controlling the all-solid surface reaction Between an Li1.3Al0.3Ti1.7(PO4)3 Electrolyte and Anode Through the Insertion of Ag and Al2O3 Nano-Interfacial Layers. Materials 2025, 18, 609. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Joo, K.H.; Kim, J.H.; Woo, S.G.; Sohn, H.-J.; Kang, T.; Park, Y.; Oh, J.Y. Characterizations of a new lithium ion conducting Li2O−SeO2−B2O3 glass electrolyte. Solid State Ion. 2002, 149, 59–65. [Google Scholar] [CrossRef]
- Lee, R.-H.; Lee, D.-W.; Lee, J.-K.; Kim, K.-N.; Yoon, J.-R.; Lee, S.-H. Electrical and ionic conductivity of Li2O-B2O3-Al2O3 glass electrolyte for solid-state batteries. J. Energy Storage 2024, 77, 110018. [Google Scholar] [CrossRef]
- Cho, K.I.; Lee, S.H.; Cho, K.H.; Shin, D.W.; Sun, Y.K. Li2O−B2O3−P2O5 solid electrolyte for thin film batteries. J. Power Sources 2006, 163, 223–228. [Google Scholar] [CrossRef]
- Dantas, N.O.; Silva, V.A.; Neto, O.O.D.; Nascimento, M.L.F. Control of crystallization kinetics and study of the thermal, structural and morphological properties of an Li2O−B2O3−Al2O3 vitreous system. Braz. J. Phys. 2012, 42, 347–354. [Google Scholar] [CrossRef]
- Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N. Sol–gel synthesis, structural and ion transport studies of lithium borosilicate glasses. Solid State Ion. 2004, 166, 27–38. [Google Scholar] [CrossRef]
- Pershina, S.V.; Kuznetsova, T.A.; Vovkotrub, E.G.; Belyakov, S.A.; Kuznetsova, E.S. Solid electrolyte membranes based on Li2O−Al2O3−GeO2−SiO2−P2O5 glasses for all-solid state batteries. Membranes 2022, 12, 1245. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, K.; Sun, X. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2018, 2, 2583–2604. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Q.; Luo, Z.; Liu, P.; Lu, A. Effects of Li2O-Al2O3-SiO2 system glass on the microstructure and ionic conductivity of Li7La3Zr2O12 solid electrolyte. Mater. Lett. 2017, 193, 251–254. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Patsis, A.P.; Karakassides, M.A.; Chryssikos, G.D. Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 1990, 126, 52–67. [Google Scholar] [CrossRef]
- He, Y.; Shen, X.; Jiang, Y.; Lu, A. Effects of Li2O replacing Na2O on glass forming, structure and properties of Na2O–MgO–Al2O3–SiO2 glass and glass-ceramics. Mater. Chem. Phys. 2021, 258, 123865. [Google Scholar] [CrossRef]










| Element | Line Type | Weight % | Atomic % |
|---|---|---|---|
| O | K series | 70.97 | 81.56 |
| Al | K series | 20.76 | 14.15 |
| Cl | K series | 8.27 | 4.29 |
| Total | - | 100 | 100 |
| Sintering Temperature | 400 °C | 450 °C | 500 °C | 550 °C |
|---|---|---|---|---|
| Thickness (cm) | 0.097 | 0.080 | 0.086 | 0.086 |
| Electrode area (cm2) | 0.783 | 0.779 | 0.771 | 0.743 |
| Resistance (Ω) | 28,000 | 14,000 | 12,000 | 3000 |
| Ionic conductivity (S cm−1) | 4.42 × 10−6 | 7.34 × 10−6 | 9.30 × 10−6 | 3.86 × 10−5 |
| Property | Graphite/LCBA = 50:50 wt% | Graphite/LCBA = 60:40 wt% |
|---|---|---|
| Specimen diameter (mm) | 12 | 12 |
| Cross-sectional area (mm2) | 113 | 113 |
| Maximum force (gf) | 2600–2700 | 2700–2800 |
| Fracture displacement (mm) | 1.4–1.5 | ~0.6 |
| Maximum tensile stress (MPa) | ~0.23 | ~0.24 |
| Absorbed energy (J) | 0.020–0.022 | 0.008–0.010 |
| Interfacial fracture energy (J m−2) | 180–200 | 70–90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ko, Y.; Lee, H.; Lee, W.; Choi, J.; Ahn, J.; Seo, Y.; Yoon, C.-B. Low-Temperature Co-Sintering of Li-Glass Solid Electrolytes and Li-Glass/Graphite Composite Anodes via Hot Press Processing. Inorganics 2026, 14, 40. https://doi.org/10.3390/inorganics14020040
Ko Y, Lee H, Lee W, Choi J, Ahn J, Seo Y, Yoon C-B. Low-Temperature Co-Sintering of Li-Glass Solid Electrolytes and Li-Glass/Graphite Composite Anodes via Hot Press Processing. Inorganics. 2026; 14(2):40. https://doi.org/10.3390/inorganics14020040
Chicago/Turabian StyleKo, Youngsun, Hanbyul Lee, Wookyung Lee, Jaeseung Choi, Jungkeun Ahn, Youngsoo Seo, and Chang-Bun Yoon. 2026. "Low-Temperature Co-Sintering of Li-Glass Solid Electrolytes and Li-Glass/Graphite Composite Anodes via Hot Press Processing" Inorganics 14, no. 2: 40. https://doi.org/10.3390/inorganics14020040
APA StyleKo, Y., Lee, H., Lee, W., Choi, J., Ahn, J., Seo, Y., & Yoon, C.-B. (2026). Low-Temperature Co-Sintering of Li-Glass Solid Electrolytes and Li-Glass/Graphite Composite Anodes via Hot Press Processing. Inorganics, 14(2), 40. https://doi.org/10.3390/inorganics14020040

