Integrated Effects of NiCo2O4 and Reduced Graphene Oxide in High-Performance Supercapacitor Systems
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Work
3.1. Synthesis of NiCo2O4/rGO Composite
3.2. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaseen, S.; Wattoo, A.G.; Abbas, S.M.; Arfan, M.; Song, Z. Synthesis of Zn-Cu-Mn ternary metal oxide nanosheets via an integrated approach for high performance hybrid supercapacitors. Chem. Eng. J. 2025, 507, 160337. [Google Scholar] [CrossRef]
- Govindarajan, D.; Sanni, A.; Limphirat, W.; Kirubaharan, K.; Murugadoss, G.; Mohamad, A.A.; Yonezawa, T.; Kheawhom, S. Atomic-level synergy in multi-valent metal oxide-graphene composites for ultra-high-performance supercapacitors. J. Alloys Compd. 2025, 1039, 183022. [Google Scholar] [CrossRef]
- Shoukat, W.; Iqbal, M.Z.; Murtaza, I.; Kanjariya, P.; Rajiv, A.; Shit, D.; Albert, H.M.; Samal, S.K.; Kumar, A.; Wabaidur, S.M. Optimizing hybrid supercapacitor performance through synergistic integration of metal–organic frameworks and metal oxides. RSC Adv. 2025, 15, 25221–25232. [Google Scholar] [CrossRef]
- Asghar, A.; Khan, K.; Hakami, O.; Alamier, W.M.; Ali, S.K.; Zelai, T.; Rashid, M.S.; Tareen, A.K.; Al-Harthi, E.A. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors. Front. Chem. 2024, 12, 1402563. [Google Scholar] [CrossRef]
- Ramesh, J.K.; Rostami, S.; Rajesh, J.; Princess, R.M.B.; Govindaraju, R.; Kim, J.; Adelung, R.; Rajkumar, P.; Abdollahifar, M. ZnMn2O4 applications in batteries and supercapacitors: A comprehensive review. J. Mater. Chem. A 2025, 13, 14540–14579. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Li, D.; Hong, X.; Wang, X. Electrochemical activation of Zn doped NiCoO for improving the electrochemical performance. J. Alloys Compd. 2025, 1026, 180500. [Google Scholar] [CrossRef]
- Guo, M.; Che, S.; Huang, Z.; Jing, W.; Gao, S. Fe2O3@ Mn2O3 hierarchical core-shell structure: Optimizing energy density for flexible symmetric supercapacitor. J. Energy Storage 2025, 132, 117703. [Google Scholar] [CrossRef]
- You, X.Y.; Lee, P.Y.; Wang, S.C.; Kongvarhodom, C.; Saukani, M.; Yougbaré, S.; Chen, H.M.; Ho, K.C.; Wu, Y.F.; Lin, L.Y. Comparative studies of cobalt hydroxide and nickel hydroxide designed using novel metal tetrafluoroborate as active materials of battery supercapacitor hybrids. J. Energy Storage 2024, 100, 113678. [Google Scholar] [CrossRef]
- Gong, J.; Wang, S.; Yang, F.; Zhao, Y.; Wang, J.; Wu, S.; He, J.; Ma, L.; Dai, Y. Synergistic interface engineering of ZnCo2O4/NiMnCo-layered double hydroxides for boosted reactivity in advanced supercapacitor electrodes. J. Energy Storage 2024, 101, 113817. [Google Scholar]
- Kanimozhi, S.N.; Vasudevan, B.; Al Souwaileh, A.; Subbiah, J.; Anandan, S. Cu-Zn layered double hydroxides as high-performance electrode for supercapacitor applications. Electrochim. Acta 2024, 507, 145106. [Google Scholar] [CrossRef]
- Öztürk, O.; Gür, E. Layered transition metal sulfides for supercapacitor applications. ChemElectroChem 2024, 11, e202300575. [Google Scholar] [CrossRef]
- Wang, S.; Ji, Y.; Zhang, B.; Zhang, S.; Zhang, P.; Zhou, P. Walnut-like high-entropy sulfides via facile route for enhanced supercapacitor performance. J. Energy Storage 2025, 110, 115336. [Google Scholar]
- Naveenkumar, P.; Rajkumar, P.; Maniyazagan, M.; Nithyanandam, K.P.; Yang, H.W.; Kim, J.; Kim, S.J. Nitrogen-doped carbon-coated ZnS-NiS2 nanoparticles as battery-type electrode materials for high-performance supercapacitor applications. J. Electroanal. Chem. 2025, 996, 119328. [Google Scholar] [CrossRef]
- Askari, M.B.; Salarizadeh, P.; Moghadam, M.T.T. Recent progress and perspectives on NiCo2O4-based electrode materials for supercapacitors. J. Energy Storage 2025, 130, 117348. [Google Scholar] [CrossRef]
- Li, Q.; Lu, C.; Chen, C.; Xie, L.; Liu, Y.; Li, Y.; Kong, Q.; Wang, H. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Mater. 2017, 8, 59–67. [Google Scholar] [CrossRef]
- Kaur, M.; Chand, P.; Anand, H. Fabrication of asymmetric supercapacitor device with NiCo2O4@ reduced graphene oxide nanocomposites. Electrochim. Acta 2024, 507, 145118. [Google Scholar] [CrossRef]
- Vamsikrishna, K.; Usha, P.; Venkatesh, D.; Ramesh, T. Structural, morphological, optical, and magnetic properties of NiO-added NiCo2O4 electrode materials synthesized by sol-gel, Co-precipitation and ultrasonication methods and their electrochemical supercapacitor response. Ceram. Int. 2024, 50, 30869–30878. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, Y.; Yan, D.; Bai, L.; Kang, H.; Wang, C. Morphology evolution of spinel NiCo2O4 catalyst and its crystal plane effect in oxygen evolution reaction. J. Hydrogen Energy 2025, 120, 120–128. [Google Scholar] [CrossRef]
- Thorat, J.P.; Lokhande, V.C.; Patil, U.M.; Lokhande, C.D. NiCo2O4 anchored reduced graphene oxide nanocomposite for energy storage: Impact of rGO thickness. J. Energy Storage 2024, 101, 113729. [Google Scholar] [CrossRef]
- Hussain, M.J.; Ghanem, M.A.; Reddy, Y.V.M.; Madhavi, G.; Joo, S.W.; Reddy, G.R. Dumbbell-shaped nanorod assembly of a NiO/CuO composite for high-performance redox-active battery-type supercapacitor electrodes. CrystEngComm 2025, 27, 4360–4377. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Soliman, S.A.; Abdellah, S.E. Role of Cadmium Addition in Promoting the Direct N2O Decomposition of Co3O4 Spinel. Curr. Catal. 2020, 9, 152–162. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, X.; Wu, Z.; Song, W.; Hou, H.; Wu, Z.; He, X.; Chen, Q.; Banks, C.E. Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. J. Power Sources 2014, 267, 888–900. [Google Scholar] [CrossRef]
- Rajkumar, P.; Thirumal, V.; Rana, M.M.; Xiao, W.; Shim, J.; Yoo, K.; Kim, J. High-performance supercapacitors: Electrochemical insights into CoP/MXene nanomaterial performance. New J. Chem. 2024, 48, 6071–6075. [Google Scholar] [CrossRef]
- Iyer, M.S.; Rajkumar, P.; Aravinth, K.; Asaithambi, S.; Alshgari, R.A.; Mohammad, S.; Sangaraju, S.; Kim, J. Tailoring Bismuth Antimonate nanocomposites with barium and calcium for superior electrochemical properties in supercapacitors. Adv. Powder Technol. 2025, 36, 104917. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, Y.; Hou, Z.; Jiang, M.; He, W.; Su, D.; Wang, M.; Wang, J.G. Lignocellulosic oxidation bridging to modulate pseudographitic domain of hard carbon toward boosted sodium storage. J. Energy Storage 2025, 130, 117496. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Priyadharshini, T.; Ravi, G.; Ganesh, V.; Sakunthala, A.; Yuvakkumar, R. Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J. Sol-Gel Sci. Technol. 2017, 84, 297–305. [Google Scholar] [CrossRef]
- Zhu, Y.; Pu, X.; Song, W.; Wu, Z.; Zhou, Z.; He, X.; Lu, F.; Jing, M.; Tang, B.; Ji, X. High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J. Alloys Compd. 2014, 617, 988–993. [Google Scholar] [CrossRef]
- Meng, F.; Zhao, L.; Zhang, Y.; Zhai, J.; Li, Y.; Zhang, W. Facile synthesis of NiCo2O4/rGO microspheres with high-performance for supercapacitor. Ceram. Int. 2019, 45, 23701–23706. [Google Scholar] [CrossRef]
- Yuan, B.; Su, Z.; Chen, K.; Wang, J.; Chen, B.; Jiang, S.; Yan, J.; Zhang, C.; Xie, A.; Luo, S. Design of NiCo2O4 nanoparticles in-situ grown on lignin-derived porous carbon and MWCNTS composites for supercapacitors. Diam. Relat. Mater. 2023, 136, 110079. [Google Scholar] [CrossRef]
- Franklin, J.B.; Priyadharshini, V.; Sundaram, S.J.; Pandi, S.M.; Raj, A.D. Intrinsic pseudocapacitive enhancement of NiCo2O4/activated carbon composites for high-performance supercapacitors. Inorg. Chem. Commun. 2024, 163, 112402. [Google Scholar] [CrossRef]
- Kharangarh, P.R.; Ravindra, N.M.; Rawal, R.; Singh, A.; Gupta, V. Graphene quantum dots decorated on spinel nickel cobaltite nanocomposites for boosting supercapacitor electrode material performance. J. Alloys Compd. 2021, 876, 159990. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Govindaraju, R.; Balakrishnan, A.; Chidambaram, N.M.; Thirumal, V.; Rajkumar, P.; Kim, J. Integrated Effects of NiCo2O4 and Reduced Graphene Oxide in High-Performance Supercapacitor Systems. Inorganics 2026, 14, 33. https://doi.org/10.3390/inorganics14020033
Govindaraju R, Balakrishnan A, Chidambaram NM, Thirumal V, Rajkumar P, Kim J. Integrated Effects of NiCo2O4 and Reduced Graphene Oxide in High-Performance Supercapacitor Systems. Inorganics. 2026; 14(2):33. https://doi.org/10.3390/inorganics14020033
Chicago/Turabian StyleGovindaraju, Radhika, Ananthi Balakrishnan, Neela Mohan Chidambaram, Vediyappan Thirumal, Palanisamy Rajkumar, and Jinho Kim. 2026. "Integrated Effects of NiCo2O4 and Reduced Graphene Oxide in High-Performance Supercapacitor Systems" Inorganics 14, no. 2: 33. https://doi.org/10.3390/inorganics14020033
APA StyleGovindaraju, R., Balakrishnan, A., Chidambaram, N. M., Thirumal, V., Rajkumar, P., & Kim, J. (2026). Integrated Effects of NiCo2O4 and Reduced Graphene Oxide in High-Performance Supercapacitor Systems. Inorganics, 14(2), 33. https://doi.org/10.3390/inorganics14020033

