Coupling Advanced Oxidation and Anaerobic Treatment for Landfill Leachate: Magnetite-Catalyzed Ozone and USAB Reactor Efficiency
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Inoculum Sludge
2.2. Performance of the UASB Reactor
2.3. Performance Evaluation of Individual Treatment Processes
2.4. Performance of the Coupled Treatments
2.5. Experimental Coupling of Microalgal Biomass
3. Discussion
4. Materials and Methods
4.1. Leachate Sampling and Characterization
4.2. Characterization of the Inoculum Sludge
4.3. Design and Operation of the UASB Reactor
4.4. Catalytic Ozonation with Magnetite
4.5. Cultivation and Application of Halochlorella sp. for Effluent Post-Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babaei, S.; Sabour, M.R.; Moftakhari Anasori Movahed, S. Combined Landfill Leachate Treatment Methods: An Overview. Environ. Sci. Pollut. Res. 2021, 28, 59594–59607. [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.; Sun, Y.; Feng, P.; Li, J. Advanced Treatment of Landfill Leachate by a New Combination Process in a Full-Scale Plant. J. Hazard. Mater. 2009, 172, 408–415. [Google Scholar] [CrossRef]
- Yao, S.; Hu, J.; Shen, D. Simulation of Landfill Leachate Treatment Systems Involving Self-Designed Disk Tube Reverse Osmosis (DTRO) Model Integrated with Mechanical Vapor Recompression (MVR). J. Water Process Eng. 2024, 60, 105124. [Google Scholar] [CrossRef]
- Liu, C.; Li, D.; Li, J.; Zhao, C.; Liu, X.; Huang, X.; Yin, F.; Shi, W.; Yu, J.; Wu, J.; et al. Treatment of Landfill Leachate by Two-Stage Electrochemical Combination Technology. J. Env. Chem. Eng. 2025, 13, 115355. [Google Scholar] [CrossRef]
- Hui, H.; Wang, Y.; Huang, C.; Wang, C.; Yang, T.; Mo, J.; Li, X.; Wang, Y.; Pei, H.; Zhang, L.; et al. Treatment of Landfill Leachate Concentrate Using an Integrated Coagulation–Fixed-Bed Electrocatalytic Reactor–Nanofiltration System. Sep. Purif. Technol. 2025, 366, 132814. [Google Scholar] [CrossRef]
- Lei, Y.; Hou, J.; Fang, C.; Tian, Y.; Naidu, R.; Zhang, J.; Zhang, X.; Zeng, Z.; Cheng, Z.; He, J.; et al. Ultrasound-Based Advanced Oxidation Processes for Landfill Leachate Treatment: Energy Consumption, Influences, Mechanisms and Perspectives. Ecotoxicol. Env. Saf. 2023, 263, 115366. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, A.; Zhang, G.; Zhang, G. Combined Coagulation-Adsorption-VUV (Persulfate)-Electrochemical Oxidation Processes for Efficient Treatment of Aged Landfill Leachate. J. Water Process Eng. 2025, 71, 107281. [Google Scholar] [CrossRef]
- Jiang, B.-C.; Tian, Y.-C.; Li, A.-M.; Han, Y.-Z.; Wu, Z.-T.; Lu, C.; Song, H.-O.; Ji, R.; Li, W.-T.; Korshin, G.V. Changes of Dissolved Organic Matter Fractions and Formation of Oxidation Byproducts during Electrochemical Treatment of Landfill Leachates: Development of Spectroscopic Indicators for Process Optimization. Water Res. 2023, 232, 119702. [Google Scholar] [CrossRef] [PubMed]
- Gripa, E.; Daflon, S.D.A.; de Almeida, R.; da Fonseca, F.V.; Campos, J.C. Landfill Leachate Treatment by High-Pressure Membranes and Advanced Oxidation Techniques with a Focus on Ecotoxicity and by-Products Management: A Review. Process Saf. Environ. Prot. 2023, 173, 747–764. [Google Scholar] [CrossRef]
- Ibrahim, I. Water treatment using perovskite materials and their applications: A comprehensive review. J. Ind. Eng. Chem. 2025, 145, 20–32. [Google Scholar] [CrossRef]
- Mohamad, N.A.; Rasid, N.A.A.A.; Rasit, N.; Rahman Azmi, A.A.A.; Harun, M.H.C.; Yussof, W.M.H.W.; Hairom, N.H.H.; Jusoh, H.H.W.; Juahir, H.; Hamzah, S. Study of Landfill Leachate Coagulation Using Hybrid Coagulant of Copperas/Lime. Desalination Water Treat. 2023, 304, 181–189. [Google Scholar] [CrossRef]
- Ahn, W.-Y.; Kang, M.-S.; Yim, S.-K.; Choi, K.-H. Advanced Landfill Leachate Treatment Using an Integrated Membrane Process. Desalination 2002, 149, 109–114. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Lau, I.W.C.; Wang, P. Anaerobic Treatment of Hong Kong Leachate Followed by Chemical Oxidation. Water Sci. Technol. 2005, 52, 41–49. [Google Scholar] [CrossRef]
- Ismail, S.; Nasr, M.; Abdelrazek, E.; Awad, H.M.; Zhaof, S.; Meng, F.; Tawfik, A. Techno-Economic Feasibility of Energy-Saving Self-Aerated Sponge Tower Combined with up-Flow Anaerobic Sludge Blanket Reactor for Treatment of Hazardous Landfill Leachate. J. Water Process Eng. 2020, 37, 101415. [Google Scholar] [CrossRef]
- Braga, W.L.M.; de Melo, D.H.A.; de Morais, D.; Samanamud, G.R.L.; França, A.B.; Finzi Quintão, C.M.; Loures, C.C.A.; de Urzedo, A.P.F.M.; Naves, L.L.R.; de Freitas Gomes, J.H.; et al. Optimization of the Treatment of Sanitary Landfill by the Ozonization Catalyzed by Modified Nanovermiculite in a Rotating Packed Bed. J. Clean. Prod. 2020, 249, 119395. [Google Scholar] [CrossRef]
- Khen, C.; Ilmasari, D.; Yuzir, A. Development of Microalgae-Bacteria Aerobic Granular Sludge for Landfill Leachate Treatment. IOP Conf. Ser. Earth Env. Sci. 2022, 1091, 012050. [Google Scholar] [CrossRef]
- Liu, X.; Novak, J.T.; He, Z. Synergistically Coupling Membrane Electrochemical Reactor with Fenton Process to Enhance Landfill Leachate Treatment. Chemosphere 2020, 247, 125954. [Google Scholar] [CrossRef]
- Yenis Septiariva, I.; Padmi, T.; Damanhuri, E.; Helmy, Q. A Study on Municipal Leachate Treatment through a Combination of Biological Processes and Ozonation. Matec. Web Conf. 2019, 276, 06030. [Google Scholar] [CrossRef]
- Jamrah, A.; AL-Zghoul, T.M.; Al-Qodah, Z. An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water 2024, 16, 1640. [Google Scholar] [CrossRef]
- Kanmani, S.; Dileepan, A.G.B. Treatment of Landfill Leachate Using Photocatalytic Based Advanced Oxidation Process—A Critical Review. J. Env. Manag. 2023, 345, 118794. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Gu, X.; Wang, K. Pilot Study on the Advanced Treatment of Landfill Leachate Using a Combined Coagulation, Fenton Oxidation and Biological Aerated Filter Process. Waste Manag. 2009, 29, 1354–1358. [Google Scholar] [CrossRef]
- Feng, H.; Mao, W.; Li, Y.; Wang, X.; Chen, S. Characterization of Dissolved Organic Matter during the O3-Based Advanced Oxidation of Mature Landfill Leachate with and without Biological Pre-Treatment and Operating Cost Analysis. Chemosphere 2021, 271, 129810. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.A.; Mohd, Z.; Mohd, S.; Adlan, M.N.; Hung, Y.-T. Physicochemical Treatment Processes Of Landfill Leachate. In Handbook of Environment and Waste Management; World Scientific: Singapore, 2012; pp. 819–888. [Google Scholar]
- Tan, B.; He, L.; Dai, Z.; Sun, R.; Jiang, S.; Lu, Z.; Liang, Y.; Ren, L.; Sun, S.; Zhang, Y.; et al. Review on Recent Progress of Bioremediation Strategies in Landfill Leachate—A Green Approach. J. Water Process Eng. 2022, 50, 103229. [Google Scholar] [CrossRef]
- Cardeña, R.; Buitrón, G.; Valdez-Vazquez, I.; Contreras, M. Biohydrogen Production from Cheese Whey in UASB and Packed Bed Reactors: Impact of Microbial Interactions on Productivity. Int. J. Hydrog. Energy 2025, 141, 1061–1069. [Google Scholar] [CrossRef]
- Lima, V.D.O.; Barros, V.G.D.; Duda, R.M.; Oliveira, R.A. de Anaerobic Digestion of Vinasse and Water Treatment Plant Sludge Increases Methane Production and Stability of UASB Reactors. J. Env. Manag. 2023, 327, 116451. [Google Scholar] [CrossRef]
- Jiraprasertwong, A.; Seneesrisakul, K.; Pornmai, K.; Chavadej, S. High Methanogenic Activity of a Three-Stage UASB in Relation to the Granular Sludge Formation. Sci. Total Environ. 2020, 724, 138145. [Google Scholar] [CrossRef] [PubMed]
- López-Gutiérrez, I.; Montiel-Corona, V.; Calderón-Soto, L.F.; Palomo-Briones, R.; Méndez-Acosta, H.O.; Razo-Flores, E.; Ontiveros-Valencia, A.; Alatriste-Mondragón, F. Evaluation of the Continuous Methane Production from an Enzymatic Agave Bagasse Hydrolysate in Suspended (CSTR) and Granular Biomass Systems (UASB). Fuel 2021, 304, 121406. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Yi, X.; Zhao, Y.; Jin, F.; Chen, L.; Hua, D. Study of Two-Phase Anaerobic Digestion of Corn Stover: Focusing on the Conversion of Volatile Fatty Acids and Microbial Characteristics in UASB Reactor. Ind. Crops Prod. 2021, 160, 113097. [Google Scholar] [CrossRef]
- Yang, Y.-Z.; Zhang, Y.; Zhan, Y.; Liu, J.-Q.; Yan, C.-C.; Zhang, Y.; Zhang, H.-L. Synergistic Enhancement of UASB Reactor for Leachate Treatment Using Fe2O3 Nanomodified Pumice and Ozone Oxidation. Chem. Eng. J. 2024, 497, 154891. [Google Scholar] [CrossRef]
- Fulazzaky, M.A.; Yuzir, A.; Messer, T.; Sofyan, A. Methanogenesis Kinetics of Organic Matter of the Leachate in an Up-Flow Anaerobic Sludge Blanket Reactor. Waste Manage Bull. 2024, 2, 1–10. [Google Scholar] [CrossRef]
- Clemente, E.; Domingues, E.; Quinta-Ferreira, R.M.; Leitão, A.; Martins, R.C. European and African Landfilling Practices: An Overview on MSW Management, Leachate Characterization and Treatment Technologies. J. Water Process Eng. 2024, 66, 105931. [Google Scholar] [CrossRef]
- Asaithambi, P.; Govindarajan, R.; Busier Yesuf, M.; Selvakumar, P.; Alemayehu, E. Enhanced Treatment of Landfill Leachate Wastewater Using Sono(US)-Ozone(O3)–Electrocoagulation(EC) Process: Role of Process Parameters on Color, COD and Electrical Energy Consumption. Process Saf. Environ. Prot. 2020, 142, 212–218. [Google Scholar] [CrossRef]
- Ricky, R.; Shanthakumar, S.; Gothandam, K.M. A Pilot-Scale Study of the Integrated Phycoremediation-Photolytic Ozonation Based Municipal Solid Waste Leachate Treatment Process. J. Env. Manag. 2022, 323, 116237. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, J.; Gao, B.; Sillanpää, M. Landfill Leachate Treatment In-Depth by Bio-Chemical Strategy: Microbial Activation and Catalytic Ozonation Mechanism. Chem. Eng. J. 2022, 444, 136464. [Google Scholar] [CrossRef]
- Gu, Z.; Yang, Z.; Song, B.; Li, Q. Treatment of Landfill Leachate MBR Effluent by Ozone Combined with a Semi-Aerobic Aged Refuse Bioreactor. J. Water Process Eng. 2025, 69, 106625. [Google Scholar] [CrossRef]
- Becerra, D.; Soto, J.; Villamizar, S.; Machuca-Martínez, F.; Ramírez, L. Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process. Top. Catal. 2020, 63, 1336–1349. [Google Scholar] [CrossRef]
- Becerra-Moreno, D.; Machuca-Martínez, F.; Ramírez-Rios, L.F.; García-Martínez, J.B.; Barajas-Solano, A.F. Synergistic Degradation of Organic Contaminants in Landfill Leachates Using Catalytic Ozonation with Magnetite. Science 2025, 7, 31. [Google Scholar] [CrossRef]
- Xiao, J.; Qaisar, M.; Zhu, X.; Li, W.; Zhang, K.; Liang, N.; Feng, H.; Cai, J. Increasing Methane Production in an Anaerobic Membrane Bioreactor for Treating Landfill Leachate: Impact of Organic Concentration and HRT. J. Env. Manag. 2024, 367, 122061. [Google Scholar] [CrossRef]
- Wang, X.; Han, M.; Li, W.; Liu, X.; Lv, L.; Gao, W.; Liu, X.; Sun, L.; Liang, J.; Zhang, G.; et al. Enhanced Anaerobic Digestion of Landfill Leachate Based on a Novel Redox Mediator: Synergistic Mechanism of Enhancing Extracellular Electron Transfer. Chem. Eng. J. 2024, 490, 151649. [Google Scholar] [CrossRef]
- Kayan, I.; Oz, N.A.; Kantar, C. Comparison of Treatability of Four Different Chlorophenol-Containing Wastewater by Pyrite-Fenton Process Combined with Aerobic Biodegradation: Role of Sludge Acclimation. J. Env. Manag. 2021, 279, 111781. [Google Scholar] [CrossRef]
- He, H.; Liu, L.; Ma, H. The Key Regulative Parameters in Pilot-Scale IC Reactor for Effective Incineration Landfill Leachate Treatment: Focus on the Process Performance and Microbial Community. J. Water Process Eng. 2023, 51, 103322. [Google Scholar] [CrossRef]
- Li, L.; Kong, Z.; Xue, Y.; Wang, T.; Kato, H.; Li, Y.-Y. A Comparative Long-Term Operation Using up-Flow Anaerobic Sludge Blanket (UASB) and Anaerobic Membrane Bioreactor (AnMBR) for the Upgrading of Anaerobic Treatment of N,N-Dimethylformamide-Containing Wastewater. Sci. Total Environ. 2020, 699, 134370. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Li, A.; Shim, H.; Wang, D.; Cheng, S.; Wang, Y.; Li, M. Effect of Ozone Pretreatment on Biogranulation with Partial Nitritation—Anammox Two Stages for Nitrogen Removal from Mature Landfill Leachate. J. Env. Manag. 2022, 317, 115470. [Google Scholar] [CrossRef]
- Zou, X.; Mohammed, A.; Gao, M.; Liu, Y. Mature Landfill Leachate Treatment Using Granular Sludge-Based Reactor (GSR) via Nitritation/Denitritation: Process Startup and Optimization. Sci. Total Environ. 2022, 844, 157078. [Google Scholar] [CrossRef]
- Yuan, L.; Tang, R.; Yao, H.; Hu, Z.-H.; Wang, Y.; Yuan, S.; Wang, W. Start-up of Partial Nitrification-Anammox (PN/A) Process Treating Piggery Wastewater. Desalination Water Treat. 2020, 180, 156–163. [Google Scholar] [CrossRef]
- Pinpatthanapong, K.; Puengpraput, T.; Phattarapattamawong, S.; Phalakornkule, C.; Panichnumsin, P.; Boonapatcharoen, N.; Paensiri, P.; Malila, K.; Ponata, N.; Ngamcharoen, T.; et al. Effect of Propionate-Cultured Sludge Augmentation on Methane Production from Upflow Anaerobic Sludge Blanket Systems Treating Fresh Landfill Leachate. Sci. Total Environ. 2023, 881, 163434. [Google Scholar] [CrossRef]
- Trisakti, B.; Sidabutar, R.; Irvan; Adriani, L.; Manurung, J.F.; Simbolon, D.K.; Alexander, V.; Takriff, M.S.; Daimon, H. Effect of Hydraulic Retention Time and Effluent Recycle Ratio on Biogas Production from POME Using UASB-HCPB Fermentor Assisted with Ultrafiltration Membrane at Mesophilic Condition. S. Afr. J. Chem. Eng. 2024, 50, 209–222. [Google Scholar] [CrossRef]
- Tian, Z.; Li, G.; Bai, M.; Hou, X.; Li, X.; Zhao, C.; Zhu, Q.; Du, C.; Li, M.; Liu, W.; et al. Microbial Mechanisms of Refractory Organics Degradation in Old Landfill Leachate by a Combined Process of UASB-A/O-USSB. Sci. Total Environ. 2022, 848, 157737. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Liu, T.; Wang, N.; Su, Z.; Wang, S.; Ma, X.; Wang, J.; Zhao, F. Iron-carbon Micro-Electrolysis and Anaerobic-Aerobic Activated Sludge Integrated Process for Treating Landfill Leachate: Process Optimization, Stability, and Mechanism. J. Water Process Eng. 2025, 69, 106704. [Google Scholar] [CrossRef]
- Babu Ponnusami, A.; Sinha, S.; Ashokan, H.; V Paul, M.; Hariharan, S.P.; Arun, J.; Gopinath, K.P.; Hoang Le, Q.; Pugazhendhi, A. Advanced Oxidation Process (AOP) Combined Biological Process for Wastewater Treatment: A Review on Advancements, Feasibility and Practicability of Combined Techniques. Env. Res. 2023, 237, 116944. [Google Scholar] [CrossRef]
- Zhe, J.; He, H.; Yi, Z.; Guo, Z.; Xu, H.; Huang, B.; Pan, X. Mechanism and Molecular Level Insight of Refractory Dissolved Organic Matter in Landfill Leachate Treated by Electroflocculation Coupled with Ozone. Sep. Purif. Technol. 2025, 356, 129812. [Google Scholar] [CrossRef]
- Bao, M.; Fang, F.; Luo, X.; Li, Q. Transformation Characteristics of Dissolved Organic Matter in Landfill Leachate Nanofiltrated Concentrate during Ozonation-Based Advanced Oxidation Systems. J. Env. Chem. Eng. 2024, 12, 112076. [Google Scholar] [CrossRef]
- Wu, L.; Yin, J.; Zhang, Y.; Luo, A.; Tian, Y.; Liu, Y.; Peng, Y. Nitrogen Removal and Carbon Reduction of Mature Landfill Leachate under Extremely Low Dissolved Oxygen Conditions by Simultaneous Partial Nitrification Anammox and Denitrification. Bioresour. Technol. 2024, 401, 130704. [Google Scholar] [CrossRef]
- Lin, X.; Xu, L.; Xiong, L.; Wang, X.; He, Y.; Chen, H.; Zhang, W.; Xue, G. Mechanistic Insight into Assimilation Capture: Implication for High-Efficiency Nitrogen Removal from Mature Landfill Leachate. Chem. Eng. J. 2024, 498, 155395. [Google Scholar] [CrossRef]
- Liu, S.; Cai, C.; Sun, F.; Ma, M.; An, T.; Chen, C. Advanced Nitrogen Removal of Landfill Leachate Treatment with Anammox Process: A Critical Review. J. Water Process Eng. 2024, 58, 104756. [Google Scholar] [CrossRef]
- Xiong, L.; Li, X.; Li, J.; Zhang, Q.; Zhang, L.; Wu, Y.; Peng, Y. Efficient Nitrogen Removal from Real Municipal Wastewater and Mature Landfill Leachate Using Partial Nitrification-Simultaneous Anammox and Partial Denitrification Process. Water Res. 2024, 251, 121088. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Z.; Zhou, S.; Fan, J.; Huang, L.; Deng, Z.; Zhang, C.; Wang, X. Improving Stability and Nitrogen Removal Performance of Pilot-Scale Autotrophic Process for Mature Landfill Leachate Treatment Utilizing in-Situ Organics. Bioresour. Technol. 2023, 381, 129118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zou, L.; Jiang, M.; Li, Y.-Y.; Liu, J. Ozone Pretreatment Combined with Partial Denitrification-Anammox Process for Efficient Nitrogen Removal from Nanofiltration Concentrate of Landfill Leachate. Chem. Eng. J. 2023, 471, 144641. [Google Scholar] [CrossRef]
- Yang, H.-R.; Li, B.; Zhang, C.-Q.; Yang, J.-C.; Zheng, Y.-M.; Younas, M.; Jiang, Y.-H.; Yuan, Z.-H. Bipolar Membrane Electrodialysis for Sustainable Utilization of Inorganic Salts from the Reverse Osmosis Concentration of Real Landfill Leachate. Sep. Purif. Technol. 2023, 308, 122898. [Google Scholar] [CrossRef]
- Jolaosho, T.L. Characterization of Potentially Toxic Elements in Leachates from Active and Closed Landfills in Nigeria and Their Effects on Groundwater Systems Using Spatial, Indexical, Chemometric and Health Risk Techniques. Chemosphere 2024, 369, 143678. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhu, P.; Ma, Y. Interaction and Coexistence Characteristics of Dissolved Organic Matter and Toxic Metals with Per- and Polyfluoroalkyl Substances in Landfill Leachate. Env. Res. 2024, 260, 119680. [Google Scholar] [CrossRef] [PubMed]
- Amancio Frutuoso, F.K.; da Silva, V.E.P.S.G.; Silva, T.F.C.V.; Vilar, V.J.P.; Bezerra dos Santos, A. Solids Retention Time (SRT) Control in the Co-Treatment of Leachate with Domestic Sewage in Aerobic Granular Sludge Systems: Impacts on System Performance, Operational Stability, and Bioresource Production. Bioresour. Technol. 2025, 415, 131664. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.A.T.; Dantas, E.R.B.; Lopes, W.D.S.; Leite, V.D.; Sousa, J.T.D.; Lopes, W.S. Toxicity Assessment of Sanitary Landfill Leachate before and after Fenton Treatment Process. Sci. Total Environ. 2023, 893, 164870. [Google Scholar] [CrossRef] [PubMed]
- Kalčíková, G.; Tratar Pirc, E.; Žgajnar Gotvajn, A. Aerobic and Anaerobic Biodegradation Potential of Leachate from Old Active Landfill. Desalin. Water Treat. 2016, 57, 8619–8625. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, V.; Ormeci, B.; Hussain, A.; Cheng, L.; Venkiteshwaran, K. Anaerobic–Aerobic Treatment of Wastewater and Leachate: A Review of Process Integration, System Design, Performance and Associated Energy Revenue. J. Env. Manag. 2023, 327, 116898. [Google Scholar] [CrossRef]
- Castillo-Suárez, L.A.; Lugo-Lugo, V.; Linares-Hernández, I.; Martínez-Miranda, V.; Esparza-Soto, M.; Mier-Quiroga, M. de los Á. Biodegradability Index Enhancement of Landfill Leachates Using a Solar Galvanic-Fenton and Galvanic-Fenton System Coupled to an Anaerobic–Aerobic Bioreactor. Sol. Energy 2019, 188, 989–1001. [Google Scholar] [CrossRef]
- Lakshmi, A.A.; Raj, S.A. Natural Gum Based Polymers as Additives in Enhancing the Startup of UASB Reactor Treating Municipal Sewage—Comparative Study. Desalin. Water Treat. 2022, 252, 89–97. [Google Scholar] [CrossRef]
- Duan, Y.; Gao, B.; Liu, J.; Wang, X.; Sillanpää, M. Treatment of Landfill Leachate in the MBR and Catalytic Ozonation Coupled System Based on Mn Ni Catalyst: Efficiency and Bio/Chemical Mechanism. J. Water Process Eng. 2024, 66, 106033. [Google Scholar] [CrossRef]
- Bai, F.; Liu, S.; Zhang, Y.; Ma, J. Effective and Mechanistic Insights into Reverse Osmosis Concentrate of Landfill Leachate Treatment Using Coagulation-Catalytic Ozonation-Bioaugmentation-Based AnMBR. Chem. Eng. J. 2023, 463, 142430. [Google Scholar] [CrossRef]
- Han, S.; Wang, W.; Xu, Z.; Qi, L. Research and Perspective of Heterogeneous Catalytic Oxidation by Ozone in the Removal of Pollutants from Industrial Wastewater: A Review. J. Ind. Eng. Chem. 2025, 147, 20–38. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, H.; Wang, T.; Zhou, J.; Zhu, Y.; Hou, J. Advanced Treatment of Landfill Leachate by Catalytic Ozonation with MnCeOx/γ-Al2O3 Catalyst. Surf. Interfaces 2024, 46, 104113. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; He, X.; Yang, Y.; Yang, X.; Van Hulle, S.W.H. Comparison of Macro and Micro-Pollutants Abatement from Biotreated Landfill Leachate by Single Ozonation, O3/H2O2, and Catalytic Ozonation Processes. Chem. Eng. J. 2023, 452, 139503. [Google Scholar] [CrossRef]
- An, W.; Xiao, S.; Liu, H.; Ma, L. UV Irradiation Enhanced Removal of Ammonia Nitrogen and Mineralization of Typical Organic Pollutants of High-Chlorine Wastewater in Catalytic Ozonation. J. Env. Chem. Eng. 2025, 13, 115395. [Google Scholar] [CrossRef]
- Goli, T.; Ahmadi, K.; Pagilla, K.R.; Marchand, E.A. Dissolved Organic Nitrogen Removal from Reclaimed Water by Enhanced Coagulation, Ozonation, and Biodegradation. J. Water Process Eng. 2023, 55, 104212. [Google Scholar] [CrossRef]
- Guerrero-Brotons, M.; Gómez, R.; Álvarez-Rogel, J.; Sánchez-Monedero, M.Á.; Arce, M.I. The Effect of Leaf Leachates Addition on Denitrification in Subsurface Flow Constructed Wetlands Is Shaped by the Bed Substrate Type. J. Water Process Eng. 2024, 68, 106360. [Google Scholar] [CrossRef]
- Mu, S.; Chen, X.; Song, B.; Wu, C.; Li, Q. Enhanced Performance and Mechanism of the Combined Process of Ozonation and a Semiaerobic Aged Refuse Biofilter for Mature Landfill Leachate Treatment. Chemosphere 2022, 308, 136432. [Google Scholar] [CrossRef]
- Moussavi, G.; Khosravi, R.; Omran, N.R. Development of an Efficient Catalyst from Magnetite Ore: Characterization and Catalytic Potential in the Ozonation of Water Toxic Contaminants. Appl. Catal. A Gen. 2012, 445–446, 42–49. [Google Scholar] [CrossRef]
- Urbina-Suarez, N.A.; Salcedo-Pabón, C.J.; Contreras-Ropero, J.E.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; Machuca-Martínez, F. Biotechnological Strategy for Tannery Wastewater Treatment: Bicarbonate/H2O2 Oxidation Integrated with Microalgae Cultivation. Case Stud. Chem. Environ. Eng. 2025, 11, 101060. [Google Scholar] [CrossRef]
- Song, Q.; Kong, F.; Liu, B.-F.; Song, X.; Ren, N.-Q.; Ren, H.-Y. Ozone Oxidation of Actual Waste Leachate Coupled with Culture of Microalgae for Efficient Lipid Production under Different Temperatures. Water Res. 2025, 277, 123305. [Google Scholar] [CrossRef]
- Sari, M.M.; Septiariva, I.Y.; Prayogo, W.; Helmy, Q.; Suryawan, I.W.K. Effects of Detention Time and Ozone Dosage on Organic Content Removal and Biodegradability Index in High Salinity Leachate. Desalin. Water Treat. 2023, 284, 81–86. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, Z.; Yang, L.; Lai, L.; Xiao, H.; Ding, Y.; Luo, X. Enhancing Nitrogen Removal in Mature Landfill Leachate by Mixed Microalgae through Elimination of Inhibiting Factors. Sci. Total Environ. 2022, 828, 154530. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Wang, Z.; Liu, Z.; Xiong, Z.; Dai, H.; Yang, L.; Liu, Y.; Yang, J.; Geng, Y.; Hu, M.; et al. A New Microalgal Negative Carbon Technology for Landfill Leachate Treatment: Simultaneous Removal of Nitrogen and Phosphorus. Sci. Total Environ. 2024, 948, 174779. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Wei, H.; Zhang, J. Nitric Acid Rain Decreases Soil Bacterial Diversity and Alters Bacterial Community Structure in Farmland Soils. Agronomy 2024, 14, 971. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association. Water Environment Federation Standard Methods for the Examination of Water and Wastewater, 24th ed.; Lipps, W.C., Braun-Howland, E.B., Baxter, T.E., Eds.; APHA Press: Washington, DC, USA, 2023. [Google Scholar]
- Li, K.; Yun, J.; Zhang, H.; Yu, Z. Full-Scale Anaerobic Reactor Samples Would Be More Suitable than Lab-Scale Anaerobic Reactor and Natural Samples to Inoculate the Wheat Straw Batch Anaerobic Digesters. Bioresour. Technol. 2019, 293, 122040. [Google Scholar] [CrossRef]
- Liu, M.; Ye, Y.; Ye, J.; Gao, T.; Wang, D.; Chen, G.; Song, Z. Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry 2023, 9, 110. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Yin, J.; Xiang, Y.; Yuan, Y.; Zhang, J.; He, C.; Zhang, H.; Xiong, Z.; Lai, B. Critical Role of Oxygen Vacancies in Catalytic Ozonation: Non-Radical Pathways and Enhanced Hydroxyl Groups. Chem. Eng. J. 2024, 500, 156952. [Google Scholar] [CrossRef]
Parameter | Result |
---|---|
Chemical Oxygen Demand (COD) (mg O2/L) | 20,920 |
Sludge Volume Index (SVI) (mL/g) | 61.4 |
pH | 7.41 |
Total Suspended Solids (TSS) (mg/L) | 21,990 |
Volatile Suspended Solids (VSS) (mg/L) | 14,733 |
VSS/TSS | 0.67 |
Leachate | UASB | Ozone + Magnetite | ||||
---|---|---|---|---|---|---|
Parameter | Guayabal | Madera | Guayabal | Madera | Guayabal | Madera |
Cadmium (mg/L) | <0.050 | <0.014 | <0.050 | <0.050 | <0.050 | <0.050 |
Total Organic Carbon (TOC) (mg/L) | 2403 | 3447 | 978 | 1251 | 594 | 1303 |
Conductivity (µS/cm) | 18,740 | 1128 | 6411 | 9085 | 3535 | 1181 |
Chromium (mg/L) | 0.294 | - | <0.050 | <0.050 | <0.050 | <0.050 |
Biochemical Oxygen Demand BOD5 (mg O2/L) | 1664 | 1933 | 666 | 751 | 714 | 1098 |
Chemical Oxygen Demand COD (mg O2/L) | 6295 | 8421 | 2162 | 3016 | 1982 | 3832 |
Phosphates (mg/L) | 32.1 | 36.7 | 24.6 | 30.3 | 36.3 | 38.8 |
Mercury (mg/L) | <0.001 | 0.28 | <0.001 | <0.001 | <0.001 | <0.001 |
Nitrates (mg/L) | 70.9 | 116.1 | 42.5 | 60.9 | 87.3 | 150.9 |
Nitrites (mg/L) | 0.7 | 1.2 | 0.3 | 0.7 | 0.9 | 1.3 |
Ammoniacal Nitrogen (mg/L) | 422 | 751 | 379.8 | 688.9 | 341.6 | 600.1 |
Total Nitrogen (mg/L) | 528.5 | 890.6 | 459.2 | 751.6 | 433.5 | 753.9 |
pH | 8.5 | 7.57 | 7.3 | 6.9 | 8.8 | 8.6 |
Lead (mg/L) | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 |
Total Suspended Solids TSS (mg/L) | 8309 | 5151 | 3305 | 1906 | 3663 | 2508 |
Volatile Suspended Solids VSS (mg/L) | 5717 | 3096 | 2812 | 1158 | 1023 | 914 |
Temperature (°C) | 30.1 | 29.4 | 39.8 | 37.1 | 21.3 | 18.7 |
Turbidity (NTU) | 298 | 196 | 185 | 96 | 102 | 87 |
Aerobic Biodegradability (%) | 38 | 35 | 51 | 54 | 58 | 53 |
Aerobic Toxicity Microbial Respiration Inhibition (%) | 57 | 63 | 31 | 34 | 38 | 45 |
Specific Methanogenic Activity (g CH4-COD/(g VSS·d)) | 0.14 | 0.11 | - | - | 0.2 | 0.19 |
Ozone (Magnetite) Followed by UASB | UASB Followed by Ozone (Magnetite) | |||
---|---|---|---|---|
Parameter | Guayabal | Madera | Guayabal | Madera |
Cadmium (mg/L) | <0.050 | <0.050 | <0.050 | <0.050 |
Total Organic Carbon (TOC) (mg/L) | 141.70 | 317.30 | 133.10 | 335.80 |
Conductivity (µS/cm) | 3158 | 1055 | 3564 | 1211 |
Chromium (mg/L) | <0.050 | <0.050 | <0.050 | <0.050 |
Biochemical Oxygen Demand BOD5 (mg O2/L) | 169.90 | 284.50 | 183 | 357 |
Chemical Oxygen Demand COD (mg O2/L) | 495.5 | 1034.6 | 561.4 | 1366 |
Phosphates (mg/L) | 25.4 | 23.6 | 31.4.4 | 33.4 |
Mercury (mg/L) | <0.001 | <0.001 | <0.001 | <0.001 |
Nitrates (mg/L) | 23.9 | 37.5 | 95.5 | 168.3 |
Nitrites (mg/L) | 2.5 | 7.5 | 1 | 1.3 |
Ammoniacal Nitrogen (mg/L) | 331.4 | 546.1 | 331.4 | 580.1 |
Total Nitrogen (mg/L) | 361.5 | 596.1 | 430.6 | 751.3 |
pH | 7.4 | 7.1 | 8.9 | 8.7 |
Lead (mg/L) | <0.10 | <0.10 | <0.10 | <0.10 |
Total Suspended Solids TSS (mg/L) | 989 | 602 | 836 | 512 |
Volatile Suspended Solids VSS (mg/L) | 358 | 283 | 211 | 229 |
Temperature (°C) | 39.2 | 38.3 | 20.2 | 19.8 |
Turbidity (NTU) | 65 | 52 | 35 | 22 |
Aerobic Biodegradability (%) | 61 | 66 | 66 | 68 |
Aerobic Toxicity Microbial Respiration Inhibition (%) | 28 | 25 | 32 | 30 |
Specific Methanogenic Activity (g CH4-COD/(g VSS·d)) | 0.14 | 0.16 | 0.17 | 0.19 |
Parameter | Analytical Method |
---|---|
Cadmium | SM 3030 E, SM 3111 B [85] |
Chromium | SM 3030 E, SM 3111 B [85] |
Mercury | SM 3112 B [85] |
Lead | SM 3030 E, SM 3113 B [85] |
pH | SM 4500 H⁺ B [85] |
Electrical Conductivity | SM 2510 B [85] |
Temperature | SM 2550 B [85] |
Total Suspended Solids (TSS) | SM 2540 D [85] |
Volatile Suspended Solids (VSS) | SM 2540 E [85] |
Biochemical Oxygen Demand (BOD5) | SM 5210 B Modified, ASTM D 888-18 [85] |
Chemical Oxygen Demand (COD) | SM 5220 D [85] |
Nitrates | SM 4500 NO3− B [85] |
Nitrites | SM 4500 NO2− B [85] |
Total Nitrogen | SM 4500-Norg C [85] |
Phosphates | SM 4500-P E [85] |
Stage | Time (Days) | Hydraulic Retention Time (h) | Flow Rate (L/h) | El Guayabal | La Madera | ||
---|---|---|---|---|---|---|---|
Influent COD (mg/L) | Volumetric Organic Load (kg COD/m3·d) | Influent COD (mg/L) | Volumetric Organic Load (kg COD/m3·d) | ||||
Startup | 48 | 48 | 0.244 | 500 | 0.3 | 500 | 0.3 |
27 | 42 | 0.279 | 1950 | 1.1 | 2480 | 1.4 | |
30 | 36 | 0.325 | 3400 | 2.3 | 4460 | 3 | |
30 | 30 | 0.39 | 4850 | 3.9 | 6440 | 5.2 | |
Operation | 27 | 24 | 0.487 | 6296 | 6.3 | 8421 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra-Moreno, D.; Zuorro, A.; Machuca-Martínez, F.; Ramírez-Rios, L.F.; García-Martínez, J.B.; Barajas-Solano, A.F. Coupling Advanced Oxidation and Anaerobic Treatment for Landfill Leachate: Magnetite-Catalyzed Ozone and USAB Reactor Efficiency. Inorganics 2025, 13, 218. https://doi.org/10.3390/inorganics13070218
Becerra-Moreno D, Zuorro A, Machuca-Martínez F, Ramírez-Rios LF, García-Martínez JB, Barajas-Solano AF. Coupling Advanced Oxidation and Anaerobic Treatment for Landfill Leachate: Magnetite-Catalyzed Ozone and USAB Reactor Efficiency. Inorganics. 2025; 13(7):218. https://doi.org/10.3390/inorganics13070218
Chicago/Turabian StyleBecerra-Moreno, Dorance, Antonio Zuorro, Fiderman Machuca-Martínez, Luisa F. Ramírez-Rios, Janet B. García-Martínez, and Andrés F. Barajas-Solano. 2025. "Coupling Advanced Oxidation and Anaerobic Treatment for Landfill Leachate: Magnetite-Catalyzed Ozone and USAB Reactor Efficiency" Inorganics 13, no. 7: 218. https://doi.org/10.3390/inorganics13070218
APA StyleBecerra-Moreno, D., Zuorro, A., Machuca-Martínez, F., Ramírez-Rios, L. F., García-Martínez, J. B., & Barajas-Solano, A. F. (2025). Coupling Advanced Oxidation and Anaerobic Treatment for Landfill Leachate: Magnetite-Catalyzed Ozone and USAB Reactor Efficiency. Inorganics, 13(7), 218. https://doi.org/10.3390/inorganics13070218