Synthesis of Multiwalled Carbon Nanotubes on Different Cobalt Nanoparticle-Based Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis with Cobalt Nanoparticles Supported on Si/SiO2
2.1.1. The Role of the Initial Pressure of Acetylene Injected into the Reactor with Co/SiO2/Si
2.1.2. The Role of the Initial Temperature of Acetylene Injected into the Reactor in Presence of Co/SiO2/Si
2.1.3. The Role of Reaction Temperatures on the Morphology of Obtained Products in Presence of Co/SiO2/Si
2.1.4. Influence of Catalyst Thickness on Co/SiO2/Si
2.1.5. Influence of the SiO2 Characteristics of the Co/SiO2/Si Catalyst Support
2.2. Co/C Nanoparticles
2.2.1. Influence of the Initial Temperature of Acetylene in Presence of Co/C
2.2.2. Influence of Synthesis Temperatures in the Presence of Co/C
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Substrates
4. Conclusions
- -
- For synthesizing CNTs through CVD using acetylene as the carbon source, the hydrocarbon must be injected into the reactor at the reaction temperature. Otherwise, the Co nanoparticles are deactivated, and a layer of amorphous carbon surrounds the particle.
- -
- The optimal temperature for CNT synthesis on Co/SiO2/Si is 800 °C. For the Co/C support, the optimal temperature is 450 °C.
- -
- The optimal thickness of the Co layer is between 20 and 30 Å. For thinner layers, the CNTs density is very weak, while for thicker layers, short and deformed nanotubes and encapsulated nanoparticles are formed.
- -
- The CNTs synthesized on Co/SiO2/Si are well formed and aesthetically pleasing, while those formed on Co/C have a bamboo-like appearance.
- -
- The growth of CNTs occurs from the bottom on Co/SiO2/Si and from the top on the Co/C system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iijima, S. Synthesis of carbon nanotubes. Nature 1991, 354, 56–58. [Google Scholar]
- Amelinckx, S.; Zhang, X.B.; Bernaerts, D.; Zhang, X.F.; Ivanov, V.; Nagy, J.B.; Lucas, A.A.; Lambin, P. A formation mechanism of catalytically grown helix shaped graphite nanotubes. Science 1994, 265, 635–639. [Google Scholar] [PubMed]
- Shoukat, R.; Khan, M.I. Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst Technol. 2021, 27, 4183–4192. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon 1995, 33, 883–891. [Google Scholar]
- De Luca, P.; Nappo, G.; Siciliano, C.; Nagy, J.B. The role of carbon nanotubes and cobalt in the synthesis of pellets of titanium silicates. J. Porous Mater. 2018, 25, 283–296. [Google Scholar]
- Yahyazadeh, A.; Nanda, S.; Dalai, A.K. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions 2024, 5, 429–451. [Google Scholar] [CrossRef]
- Tao, Z.; Zhao, Y.; Wang, Y.; Zhang, G. Recent Advances in Carbon Nanotube Technology: Bridging the Gap from Fundamental Science to Wide Applications. C 2024, 10, 69. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 2021, 21, 5763–5770. [Google Scholar] [CrossRef]
- Fonseca, A.; Pierard, N.; Tollis, S.; Bister, G.; Konya, Z.; Nagaraju, N.; Nagy, J.B. Hydrogen storage in carbon nanotubes produced by CVD. J. Phys. IV France 2002, 12, 129–137. [Google Scholar]
- Policicchio, A.; Vuono, D.; Rugiero, T.; De Luca, P.; Nagy, J.B. Study of MWCNTs adsorption performances in gas processes. J. CO2 Util. 2015, 10, 30–39. [Google Scholar]
- De Luca, P.; Siciliano, C.; Nagy, J.B.; Macario, A. The role of carbon nanotubes in the reactions of heterogeneous catalysis. Chem. Eng. Res. Des. 2023, 197, 74–84. [Google Scholar] [CrossRef]
- Birch, M.E.; Ruda-Eterenz, T.A.; Chai, M.; Andrews, R.; Hatfield, R.L. Properties that influence the specific surface areas of carbon nanotubes and nanofibers. Ann. Occup. Hyg. 2013, 57, 1148–1166. [Google Scholar] [PubMed]
- Morais, R.G.; Rey-Raap, N.; Costa, R.S.; Pereira, C.; Guedes, A.; Figueiredo, J.L.; Pereira, M.F.R. Hydrothermal carbon/carbon nanotube composites as electrocatalysts for the oxygen reduction. J. Compos. Sci. 2020, 4, 20. [Google Scholar] [CrossRef]
- Shah, K.A.; Tali, B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82. [Google Scholar] [CrossRef]
- Nánai, L.; Németh, Z.; Kaptay, G.; Hernadi, K. Experimental and theoretical aspects of the growth of vertically aligned CNTs by CCVD on AZO substrate. Sci. Rep. 2024, 14, 7307. [Google Scholar] [CrossRef]
- Pant, M.; Singh, R.; Negi, P.; Tiwari, K.; Singh, Y. A comprehensive review on carbon nano-tube synthesis using chemical vapor deposition. Mater. Today Proc. 2021, 46, 11250–11253. [Google Scholar] [CrossRef]
- Lobo, L.S.; Carabineiro, S.A.C. Mechanisms of carbon nanotubes and graphene growth: Kinetics versus thermodynamics. C 2020, 6, 67. [Google Scholar] [CrossRef]
- Ürk, D.; Cebeci, F.Ç.; Öveçoğlu, M.L.; Cebeci, H. Structure-controlled growth of vertically-aligned carbon nanotube forests using iron–nickel bimetallic catalysts. Mater. Adv. 2021, 2, 2021–2030. [Google Scholar] [CrossRef]
- Moreau, N.; Fonseca, A.; Vuono, D.; Delhalle, J.; Mekhalif, Z.; De Luca, P.; Nagy, J.B. Physical Methods for the Preparation of Cobalt Nanoparticles for Use in the Synthesis of Multiwalled Carbon Nanotubes. Inorganics 2025, 13, 7. [Google Scholar] [CrossRef]
- Mendiara, T.; Domene, M.P.; Millera, A.; Bilbao, R.; Alzueta, M.U. An experimental study of the soot formed in the pyrolysis of acetylene. J. Anal. Appl. Pyrolysis 2005, 74, 486. [Google Scholar]
- Doi, I.; Haga, M.S.; Nagai, Y.E. Properties of DLC films deposited by an oxyacetylene flame. Diam. Relat. Mater. 1999, 8, 1682. [Google Scholar]
- Porwal, D.; Mukhopadhyay, K.; Ram, K.; Mathur, G.N. Investigation of the synthesis strategy of CNTs from CCVD by thermal analysis. Thermochim. Acta 2007, 463, 53. [Google Scholar]
- Escobar, M.; Moreno, M.S.; Candal, R.J.; Marchi, M.C.; Caso, A.; Polosecki, P.I.; Rubiolo, G.H.; Goyanes, S. Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 2007, 254, 251–256. [Google Scholar]
- Hsu, C.M.; Lin, C.H.; Lai, H.J.; Kuo, C.T. Root growth of multi-wall carbon nanotubes by MPCVD. Thin Solid Films 2005, 471, 140. [Google Scholar]
- Joensson, C.T.; Maximov, I.A.; Whitlow, H.J.; Shutthanandan, V.; Saraf, L.; McCready, D.E.; Arey, B.W.; Zhang, Y.; Thevuthasan, S. Synthesis and characterization of cobalt silicide films on silicon. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 249, 532. [Google Scholar]
- Lee, K.H.; Baik, K.; Bang, J.S.; Lee, S.W.; Sigmund, W. Silicon enhanced carbon nanotube growth on nickel films by chemical vapor deposition. Solid State Commun. 2004, 129, 583–587. [Google Scholar]
- Yang, D.J.; Zhang, Q.; Yoon, S.F.; Ahn, J.; Wang, S.G.; Zhou, Q.; Wang, Q.; Li, J.Q. Effects of oxygen and nitrogen on carbon nanotube growth using a microwave plasma chemical vapor deposition technique. Surf. Coat. Technol. 2003, 167, 288–291. [Google Scholar]
- Minea, T.M.; Point, S.; Gohier, A.; Granier, A.; Godon, C.; Alvarez, F. Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth. Surf. Coat. Technol. 2005, 200, 1101. [Google Scholar]
- Lee, H.; Kang, Y.S.; Lee, P.S.; Lee, J.Y. Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube. J. Alloys Compd. 2002, 330–332, 569–573. [Google Scholar]
- Lu, Y.; Zhu, Z.; Su, D.; Wang, D.; Liu, Z.; Schlögl, R. Formation of bamboo-shape carbon nanotubes by controlled rapid decomposition of picric acid. Carbon 2004, 42, 3199–3207. [Google Scholar]
- Lee, C.J.; Park, J. On the diffusion-controlled growth of multiwalled carbon nanotubes. Carbon 2001, 39, 1891. [Google Scholar]
- Yu, W.; Zhang, J.; Liu, X.; Xi, W. Spinose carbon nanotubes grown on graphitized DLC film by low frequency r.f. plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 2003, 12, 2203–2207. [Google Scholar]
- Zhu, S.; Su, C.H.; Lehoczky, S.L.; Muntele, I.; Ila, D. Carbon nanotube growth on carbon fibers. Diam. Relat. Mater. 2003, 12, 1825. [Google Scholar]
- Xia, W.; Chen, X.; Kundu, S.; Wang, X.; Grundmeier, G.; Wang, Y.; Bron, M.; Schuhmann, W.; Muhler, M. Chemical vapour synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surf. Coat. Technol. 2007, 201, 9232. [Google Scholar]
- Gong, Q.J.; Li, H.J.; Wang, X.; Fu, Q.G.; Wang, Z.W.; Li, K.Z. In situ catalytic growth of carbon nanotubes on the surface of carbon cloth. Compos. Sci. Technol. 2007, 67, 2986–2989. [Google Scholar]
- Gorbunov, A.; Jost, O.; Pompe, W.; Graff, A. Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes. Appl. Surf. Sci. 2002, 197–198, 563–567. [Google Scholar]
- Chiu, C.C.; Tsai, T.Y.; Tai, N.H.; Lee, C.Y. Synthesis of Ultra Long Vertically Aligned Carbon Nanotubes Using the Rapid Heating and Cooling System in the Thermal Chemical Vapor Deposition Process. Surf. Coat. Technol. 2006, 200, 3215–3219. [Google Scholar]
Temperature [°C] | Nanoparticles (Ø) [nm] | Nanotubes (Ø) [nm] |
---|---|---|
600 | 17 ± 6 | 17 ± 4 |
700 | 12 ± 4 | 16 ± 7 |
800 | 17 ± 3 | 47 ± 5 |
Thickness of Co Film [Å] | Nanoparticles (Ø) [nm] | Nanotubes (Ø) [nm] |
---|---|---|
20 | 7 ± 3 | 17 ± 5 |
30 | 12 ± 4 | 16 ± 7 |
40 | 16 ± 8 | 20 ± 8 |
90 | 76 ± 31 | 33 ± 3 |
60 Å | 90 Å | |
---|---|---|
Diameter of Co particles (FE-SEM) | 18 (±7.6) nm | 78 (±23) nm |
Diameter of Co particles (TEM) | 19 (±3.5) nm | 67 (±23) nm |
Diameter of CNTs (FE-SEM) | 20 (±8) nm | 33 (±3) nm |
Diameter of CNTs (TEM) | 18 (±4.0) nm | 70 (±25) nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreau, N.; Fonseca, A.; Vuono, D.; Delhalle, J.; Mekhalif, Z.; De Luca, P.; B.Nagy, J. Synthesis of Multiwalled Carbon Nanotubes on Different Cobalt Nanoparticle-Based Substrates. Inorganics 2025, 13, 113. https://doi.org/10.3390/inorganics13040113
Moreau N, Fonseca A, Vuono D, Delhalle J, Mekhalif Z, De Luca P, B.Nagy J. Synthesis of Multiwalled Carbon Nanotubes on Different Cobalt Nanoparticle-Based Substrates. Inorganics. 2025; 13(4):113. https://doi.org/10.3390/inorganics13040113
Chicago/Turabian StyleMoreau, Nicolas, Antonio Fonseca, Danilo Vuono, Joseph Delhalle, Zineb Mekhalif, Pierantonio De Luca, and Janos B.Nagy. 2025. "Synthesis of Multiwalled Carbon Nanotubes on Different Cobalt Nanoparticle-Based Substrates" Inorganics 13, no. 4: 113. https://doi.org/10.3390/inorganics13040113
APA StyleMoreau, N., Fonseca, A., Vuono, D., Delhalle, J., Mekhalif, Z., De Luca, P., & B.Nagy, J. (2025). Synthesis of Multiwalled Carbon Nanotubes on Different Cobalt Nanoparticle-Based Substrates. Inorganics, 13(4), 113. https://doi.org/10.3390/inorganics13040113