Inorganic Electrode Materials in High-Performance Energy Storage Devices
1. Introduction
2. Core Research on Battery Electrode Materials
2.1. Lithium–Sulfur (Li-S) Batteries
2.2. Lithium-Ion Batteries (LIBs)
2.3. Aqueous Zinc-Ion Batteries (AZIBs)
2.4. Sodium-Ion Batteries (SIBs)
3. Advances in Supercapacitor and Electrocatalyst Materials
3.1. Hybrid Supercapacitors (HSCs)
3.2. Methanol-Mediated Water Splitting
4. Conclusions and Outlook
Conflicts of Interest
References
- Tan, Q.; Liu, H.; Liang, G.; Jiang, K.; Xie, H.; Si, W.; Lin, J.; Kang, X. Two Birds with One Stone: Ammonium-Induced Carbon Nanotube Structure and Low-Crystalline Cobalt Nanoparticles Enabling High Performance of Lithium-Sulfur Batteries. Inorganics 2023, 11, 305. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, J.; Lu, L.; Xia, C. Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate. Inorganics 2024, 12, 125. [Google Scholar] [CrossRef]
- Jin, C.; Wang, Y.; Dong, H.; Wei, Y.; Nan, R.; Jian, Z.; Yang, Z.; Ding, Q. A Novel Spinel High-Entropy Oxide (Cr0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as Anode Material for Lithium-Ion Batteries. Inorganics 2024, 12, 198. [Google Scholar] [CrossRef]
- Li, F.; Zhu, Y.; Ueno, H.; Deng, T. An Electrochemically Prepared Mixed Phase of Cobalt Hydroxide/Oxyhydroxide as a Cathode for Aqueous Zinc Ion Batteries. Inorganics 2023, 11, 400. [Google Scholar] [CrossRef]
- Wang, C.; Si, W.; Kang, X. Hollow-Structured Carbon-Coated CoxNiySe2 Assembled with Ultrasmall Nanoparticles for Enhanced Sodium-Ion Battery Performance. Inorganics 2025, 13, 96. [Google Scholar] [CrossRef]
- Xie, W.; An, Z.; Li, X.; Wang, Q.; Hu, C.; Ma, Y.; Liu, S.; Sun, H.; Sun, X. Encapsulating Ultrafine In2O3 Particles in Carbon Nanofiber Framework as Superior Electrode for Lithium-Ion Batteries. Inorganics 2024, 12, 336. [Google Scholar] [CrossRef]
- Gao, L.; Liu, F.; Qi, J.; Gao, W.; Xu, G. Recent Advances and Challenges in Hybrid Supercapacitors Based on Metal Oxides and Carbons. Inorganics 2025, 13, 49. [Google Scholar] [CrossRef]
- Teli, A.M.; Mane, S.M.; Mishra, R.K.; Jeon, W.; Shin, J.C. Unveiling the Electrocatalytic Performances of the Pd-MoS2 Catalyst for Methanol-Mediated Overall Water Splitting. Inorganics 2025, 13, 21. [Google Scholar] [CrossRef]
- Khan, M.H.; Lamberti, P.; Tucci, V. Multi-Dimensional Inorganic Electrode Materials for High-Performance Lithium-Ion Batteries. Inorganics 2025, 13, 62. [Google Scholar] [CrossRef]
- Wei, D.; Sun, Z.; Xu, L. Simplified Preparation of N-Doped Carbon Nanosheets Using EDTA Route. Inorganics 2025, 13, 148. [Google Scholar] [CrossRef]
- Zhang, S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162. [Google Scholar] [CrossRef]
- Chung, S.H.; Manthiram, A. Current Status and Future Prospects of Metal–Sulfur Batteries. Adv. Mater. 2019, 31, e1901125. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Adv. Mater. 2021, 33, 2003666. [Google Scholar] [CrossRef]
- Ali, T.; Yan, C. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem 2019, 13, 1447–1479. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, J.I.; Shin, M.; Park, S. Large-Scale Synthesis of Interconnected Si/SiOx Nanowire Anodes for Rechargeable Lithium-Ion Batteries. ChemSusChem 2013, 6, 1153–1157. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, S.H.; Lee, D.J.; Sung, Y.E.; Hyeon, T. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small 2015, 12, 2146–2172. [Google Scholar] [CrossRef]
- Gu, M.; Rao, A.M.; Zhou, J.; Lu, B. In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ. Sci. 2023, 16, 1166–1175. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Elia, G.A.; Armand, M.; Forsyth, M.; Komaba, S.; Rojo, T.; Passerini, S. Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives. Adv. Energy Mater. 2020, 10, 2000093. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.-H.; Joshi, R.; Yoshimura, M. Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 2020, 166, 74–90. [Google Scholar] [CrossRef]
- Li, Y.; Leung, K.; Qi, Y. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Acc. Chem. Res. 2016, 49, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Nayak, P.K.; Erickson, E.M.; Schipper, F.; Penki, T.R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries. Adv. Energy Mater. 2017, 8, 1702397. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q.; Xia, Q.; Lei, Y.; Long Huang, X.; Tebyetekerwa, M.; Song Zhao, X. Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 2023, 77, 642–659. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Yan, C.; Li, H.R.; Chen, X.; Zhang, X.Q.; Cheng, X.B.; Xu, R.; Huang, J.Q.; Zhang, Q. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429. [Google Scholar] [CrossRef]
- Lin, X.; Huang, J.; Zhang, B. Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 2019, 143, 138–146. [Google Scholar] [CrossRef]
- Han, Y.; Guo, Y.; Zhou, J.; Ding, X.; Zhang, Y.; Li, W.; Liu, Y.; Chen, Y.; Jie, Y.; Lei, Z.; et al. Riveting Nucleation Enabled Long Cycling Life Calcium Metal Anodes. Adv. Mater. 2025, 37, e2415657. [Google Scholar] [CrossRef]
- Zhao, S.; Che, H.; Chen, S.; Tao, H.; Liao, J.; Liao, X.-Z.; Ma, Z.-F. Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries. Electrochem. Energy Rev. 2024, 7, 3. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Sun, M.; Wang, W.; Chen, C.; Altunkaya, M.; Emwas, A.H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H.N. Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. Adv. Mater. 2020, 32, e2000732. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, M.; Feng, X.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. How Can the Electrode Influence the Formation of the Solid Electrolyte Interface? ACS Energy Lett. 2021, 6, 3307–3320. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S.; Zhou, T.; Mao, J.; Pang, W.K.; Guo, Z.; Li, A.; et al. Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1801149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, T. Inorganic Electrode Materials in High-Performance Energy Storage Devices. Inorganics 2025, 13, 375. https://doi.org/10.3390/inorganics13110375
Deng T. Inorganic Electrode Materials in High-Performance Energy Storage Devices. Inorganics. 2025; 13(11):375. https://doi.org/10.3390/inorganics13110375
Chicago/Turabian StyleDeng, Ting. 2025. "Inorganic Electrode Materials in High-Performance Energy Storage Devices" Inorganics 13, no. 11: 375. https://doi.org/10.3390/inorganics13110375
APA StyleDeng, T. (2025). Inorganic Electrode Materials in High-Performance Energy Storage Devices. Inorganics, 13(11), 375. https://doi.org/10.3390/inorganics13110375