Recent Progress of β-Ga2O3 Power Diodes: A Comprehensive Review
Abstract
1. Introduction
2. Ga2O3 Materials
3. The Interface Between Ga2O3 and Other Materials
3.1. Ohmic Contact
3.2. Schottky Contact
4. Approaches to β-Ga2O3 Power Diodes
4.1. Schottky Barrier Diode (SBD)

4.1.1. Field Plate (FP) Technique
4.1.2. Edge Terminal (ET) Technique
4.1.3. Trench MOS Technique
4.1.4. Mesa Termination Technique
4.2. PN Heterojunction Diode (HJD)
4.3. Heterojunction Barrier Schottky (HJBS) Diodes
4.4. Lateral Structure Diodes
4.5. Other Representative SBDs
5. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, Y.; Sadek, M.; Chu, R. Recent advances in GaN-based power devices, and integration. Semicond. Sci. Technol. 2025, 40, 033002. [Google Scholar] [CrossRef]
- Buffolo, M.; Favero, D.; Marcuzzi, A.; De Santi, C.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives. IEEE Trans. Electron Devices 2024, 71, 1344–1355. [Google Scholar] [CrossRef]
- Nielsen, M.R.; Deng, S.; Mirza, A.B.; Kjærsgaard, B.F.; Jørgensen, A.B.; Zhao, H.; Li, Y.; Munk-Nielsen, S.; Luo, F. High-Power Electronic Applications Enabled by Medium Voltage Silicon-Carbide Technology: An Overview. IEEE Trans. Power Electron. 2024, 40, 987–1011. [Google Scholar] [CrossRef]
- Herath Mudiyanselage, D.; Da, B.; Adivarahan, J.; Wang, D.; He, Z.; Fu, K.; Zhao, Y.; Fu, H. β-Ga2O3-based heterostructures and heterojunctions for power electronics: A review of the recent advances. Electronics 2024, 13, 1234. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Zhang, C.; Wang, C.; Cheng, H.; Ye, J.; Zhang, Y.; Sheng, K. Junction-based deep mesa termination for multi-kilovolt vertical β-Ga2O3 power devices. Appl. Phys. Lett. 2025, 126, 032106. [Google Scholar] [CrossRef]
- Wu, F.; Wen, J.; Liu, J.; Li, Q.; Han, Z.; Hao, W.; Zhou, X.; Xu, G.; Long, S. Reliability of 1.5 × 1.5 mm2 β-Ga2O3 Power Diodes and Application in DC-DC Converter. Phys. Status Solidi B 2025, 262, 2400438. [Google Scholar] [CrossRef]
- Sun, S.; Wang, C.; Alghamdi, S.; Zhou, H.; Hao, Y.; Zhang, J. Recent advanced ultra-wide bandgap β-Ga2O3 material and device technologies. Adv. Electron. Mater. 2025, 11, 2300844. [Google Scholar] [CrossRef]
- Reddy, M.N.; Panda, D.K. Next Generation High-Power Material Ga2O3: Its Properties, Applications, and Challenges. In Nanoelectronic Devices and Applications; Bentham Books: Sharjah, United Arab Emirates, 2024; pp. 160–188. [Google Scholar]
- Taboada Vasquez, J.M.; Li, X. A Review of Vertical Ga2O3 Diodes: From Fabrication to Performance Optimization and Future Outlooks. Phys. Status Solidi B 2025, 262, 2400635. [Google Scholar] [CrossRef]
- Higashiwaki, M. Gallium Oxide Power Electronics: The Key Semiconductor for Realizing Energy Sustainable Future. IEEE Electron. Devices Mag. 2025, 2, 42–48. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Murakami, H.; Kumagai, Y.; Kuramata, A. Current status of Ga2O3 power devices. Jpn. J. Appl. Phys. 2016, 55, 1202A1. [Google Scholar] [CrossRef]
- Galazka, Z.; Uecker, R.; Klimm, D.; Irmscher, K.; Naumann, M.; Pietsch, M.; Kwasniewski, A.; Bertram, R.; Ganschow, S.; Bickermann, M. Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method. ECS J. Solid State Sci. Technol. 2016, 6, 3007–3011. [Google Scholar] [CrossRef]
- Kuramata, A.; Koshi, K.; Watanabe, S.; Yamaoka, Y.; Masui, T.; Yamakoshi, S. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 2016, 55, 1202A2. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Ohba, E.; Kobayashi, T.; Yanagisawa, J.; Miyagawa, C.; Nakamura, Y. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 2016, 447, 36–41. [Google Scholar] [CrossRef]
- Nikolaev, V.I.; Maslov, V.; Stepanov, S.I.; Pechnikov, A.I.; Krymov, V.; Nikitina, I.P.; Guzilova, L.I.; Bougrov, V.E.; Romanov, A.E. Growth and characterization of β-Ga2O3 crystals. J. Cryst. Growth 2017, 457, 132–136. [Google Scholar] [CrossRef]
- Víllora, E.G.; Shimamura, K.; Yoshikawa, Y.; Aoki, K.; Ichinose, N. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 2004, 270, 420–426. [Google Scholar] [CrossRef]
- Aida, H.; Nishiguchi, K.; Takeda, H.; Aota, N.; Sunakawa, K.; Yaguchi, Y. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys. 2008, 47, 8506. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Xia, C.; Pei, G.; Deng, Q.; Yang, Z.; Xu, W.; Shi, H.; Wu, F.; Wu, Y.; et al. Growth and spectral characterization of β-Ga2O3 single crystals. J. Phys. Chem. Solids 2006, 67, 2448–2451. [Google Scholar] [CrossRef]
- Ohba, E.; Kobayashi, T.; Taishi, T.; Hoshikawa, K. Growth of (100), (010) and (001) β-Ga2O3 single crystals by vertical Bridgman method. J. Cryst. Growth 2021, 556, 125990. [Google Scholar] [CrossRef]
- Fu, B.; Jian, G.; Mu, W.; Li, Y.; Wang, H.; Jia, Z.; Li, Y.; Long, S.; Shi, Y.; Tao, X. Crystal growth and design of Sn-doped β-Ga2O3: Morphology, defect and property studies of cylindrical crystal by EFG. J. Alloys Compd. 2022, 896, 162830. [Google Scholar] [CrossRef]
- Galazka, Z. Growth of bulk β-Ga2O3 single crystals by the Czochralski method. J. Appl. Phys. 2022, 131, 031103. [Google Scholar] [CrossRef]
- Meng, L.; Feng, Z.; Bhuiyan, A.A.U.; Zhao, H. High-mobility MOCVD β-Ga2O3 epitaxy with fast growth rate using trimethylgallium. Cryst. Growth Des. 2022, 22, 3896–3904. [Google Scholar] [CrossRef]
- Leach, J.H.; Udwary, K.; Rumsey, J.; Dodson, G.; Splawn, H.; Evans, K.R. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films. APL Mater. 2019, 7, 022504. [Google Scholar] [CrossRef]
- Blumenschein, N.; Paskova, T.; Muth, J. Effect of Growth Pressure on PLD-Deposited Gallium Oxide Thin Films for Deep-UV Photodetectors. Phys. Status Solidi A 2019, 216, 1900098. [Google Scholar] [CrossRef]
- Garten, L.M.; Zakutayev, A.; Perkins, J.D.; Gorman, B.P.; Ndione, P.F.; Ginley, D.S. Structure property relationships in gallium oxide thin films grown by pulsed laser deposition. MRS Commun. 2016, 6, 348–353. [Google Scholar] [CrossRef]
- Xiu, X.; Zhang, L.; Li, Y.; Xiong, Z.; Zhang, R.; Zheng, Y. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond. 2019, 40, 011805. [Google Scholar] [CrossRef]
- Khartsev, S.; Nordell, N.; Hammar, M.; Purans, J.; Hallén, A. High-Quality Si-Doped β-Ga2O3 Films on Sapphire Fabricated by Pulsed Laser Deposition. Phys. Status Solidi B 2021, 258, 2000362. [Google Scholar] [CrossRef]
- Gogova, D.; Wagner, G.; Baldini, M.; Schmidbauer, M.; Irmscher, K.; Schewski, R.; Galazka, Z.; Albrecht, M.; Fornari, R. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J. Cryst. Growth 2014, 401, 665–669. [Google Scholar] [CrossRef]
- Sood, A.; Wuu, D.S.; Tarntair, F.G.; Sao, N.T.; Wu, T.L.; Tumilty, N.; Kuo, H.C.; Pratap, S.J.; Horng, R.H. Electrical performance study of Schottky barrier diodes using ion implanted β-Ga2O3 epilayers grown on sapphire substrates. Mater. Today Adv. 2023, 17, 100346. [Google Scholar] [CrossRef]
- Kyrtsos, A.; Matsubara, M.; Bellotti, E. On the feasibility of p-type Ga2O3. Appl. Phys. Lett. 2018, 112, 032108. [Google Scholar] [CrossRef]
- Lyons, J.L. A survey of acceptor dopants for β-Ga2O3. Semicond. Sci. Technol. 2018, 33, 05LT02. [Google Scholar] [CrossRef]
- Wong, M.H.; Lin, C.H.; Kuramata, A.; Yamakoshi, S.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl. Phys. Lett. 2018, 113, 102103. [Google Scholar] [CrossRef]
- Su, Y.; Guo, D.; Ye, J.; Zhao, H.; Wang, Z.; Wang, S.; Li, P.; Tang, W. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity. J. Alloys Compd. 2019, 782, 299–303. [Google Scholar] [CrossRef]
- Li, L.; Liao, F.; Hu, X. The possibility of N-P codoping to realize P type β-Ga2O3. Superlattices Microstruct. 2020, 141, 106502. [Google Scholar] [CrossRef]
- Kananen, B.E.; Giles, N.C.; Halliburton, L.E.; Foundos, G.K.; Chang, K.B.; Stevens, K.T. Self-trapped holes in β-Ga2O3 crystals. J. Appl. Phys. 2017, 122, 215703. [Google Scholar] [CrossRef]
- Gake, T.; Kumagai, Y.; Oba, F. First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs. Phys. Rev. Mater. 2019, 3, 044603. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, T.; Tian, H.; Lai, J.; Wang, C.; Chen, C.; Luo, M. Epitaxial Growth of p-Type Cu-Doped Ga2O3 Nanoarrays on MgO Substrates. Cryst. Growth Des. 2024, 24, 4443–4450. [Google Scholar] [CrossRef]
- Zeng, K.; Bian, Z.; Sinha, N.; Chowdhury, S. Simultaneous drive-in of Mg and disassociation of Mg-H complex in Ga2O3 by oxygen annealing achieving remarkable current blocking. Appl. Phys. Lett. 2024, 124, 212102. [Google Scholar] [CrossRef]
- Saha, S.; Meng, L.; Bhuiyan, A.F.M.A.U.; Sharma, A.; Saha, C.N.; Zhao, H.; Singisetti, U. Electrical characteristics of in situ Mg-doped β-Ga2O3 current-blocking layer for vertical devices. Appl. Phys. Lett. 2023, 123, 132105. [Google Scholar] [CrossRef]
- Labed, M.; Park, B.I.; Kim, J.; Park, J.H.; Min, J.Y.; Hwang, H.J.; Kim, J.; Rim, Y.S. Ultrahigh photoresponsivity of W/Graphene/β-Ga2O3 Schottky barrier deep ultraviolet photodiodes. ACS Nano 2024, 18, 6558–6569. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z.; Lin, Z.; Zhu, S.; Cai, W.; Zhang, L.; Zhang, X.; Rong, M.; Zhang, X.; Chen, D.; et al. β-Ga2O3 extreme ultraviolet photodetectors. Eur. Phys. J. Spec. Top. 2025, 234, 303–309. [Google Scholar] [CrossRef]
- Fang, C.; Li, T.; Shao, Y.; Wang, Y.; Hu, H.; Yang, J.; Zeng, X.; Li, X.; Wang, D.; Ding, Y.; et al. High-performance solar-blind ultraviolet photodetectors based on a Ni/β-Ga2O3 vertical Schottky barrier diode. Nano Lett. 2025, 25, 914–921. [Google Scholar] [CrossRef]
- Furthmüller, J.; Bechstedt, F. Quasiparticle bands and spectra of Ga2O3 polymorphs. Phys. Rev. B 2016, 93, 115204. [Google Scholar] [CrossRef]
- Cora, I.; Mezzadri, F.; Boschi, F.; Bosi, M.; Čaplovičová, M.; Calestani, G.; Dódony, I.; Pécz, B.; Fornari, R. The real structure of ε-Ga2O3 and its relation to κ-phase. CrystEngComm 2017, 19, 1509–1516. [Google Scholar] [CrossRef]
- Qin, Y.; Li, L.; Zhao, X.; Tompa, G.S.; Dong, H.; Jian, G.; He, Q.; Tan, P.; Hou, X.; Zhang, Z.; et al. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics 2020, 7, 812–820. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Chen, T.; Ma, Y.; Tang, W.; Huang, Z.; Li, B.; Xu, K.; Mudiyanselage, D.H.; Fu, H.; et al. High-performance ε-Ga2O3 solar-blind ultraviolet photodetectors on Si (100) substrate with molybdenum buffer layer. Vacuum 2023, 213, 112130. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, X.; Ma, Y.; Zhang, L.; Chen, T.; Wei, X.; Tang, W.; Zhou, X.; Feng, B.; Fan, Y.; et al. Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition. Vacuum 2022, 200, 111019. [Google Scholar] [CrossRef]
- Fei, Z.; Chen, Z.; Chen, W.; Luo, T.; Chen, S.; Liang, J.; Wang, X.; Lu, X.; Wang, G.; Pei, Y. High-performance ε-Ga2O3 solar-blind photodetectors grown by MOCVD with post-thermal annealing. Coatings 2023, 13, 1987. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Li, H.; Zhang, C.; Jiang, W.; Guo, D.; Wu, Z.; Li, P.; Tang, W. Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector. Vacuum 2020, 177, 109425. [Google Scholar] [CrossRef]
- Zhou, S.; Zheng, Q.; Yu, C.; Huang, Z.; Chen, L.; Zhang, H.; Li, H.; Xiong, Y.; Kong, C.; Ye, L.; et al. A high-performance ε-Ga2O3 -based deep-ultraviolet photodetector array for solar-blind imaging. Materials 2022, 16, 295. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Zhang, J.; Zhang, T.; Chen, L.; Wang, L.; Zhang, Y.; Cao, Y.; Ji, L.; Ye, J. Directional carrier transport in micrometer-thick gallium oxide films for high-performance deep-ultraviolet photodetection. ACS Appl. Mater. Interfaces 2023, 15, 10868–10876. [Google Scholar] [CrossRef]
- Yang, Y.; Han, D.; Wu, S.; Lin, H.; Zhang, J.; Zhang, W.; Ye, J. High-performance solar-blind ultraviolet photodetector arrays based on two-inch ε-Ga2O3 films for imaging applications. J. Phys. D Appl. Phys. 2025, 58, 105108. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, X.; Tu, Y.; Chen, W.; Zhang, Z.; Cheng, S.; Chen, S.; Luo, H.; He, Z.; Pei, Y.; et al. ε-Ga2O3: An emerging wide bandgap piezoelectric semiconductor for application in radio frequency resonators. Adv. Sci. 2022, 9, 2203927. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, N.; Chen, L.; Yang, X.; Guo, H.; Wang, Z.; Yuan, M.Q.; Yan, X.J.; Yang, J.; Li, X.; et al. Ultrawide bandgap diamond/ε-Ga2O3 heterojunction Pn diodes with breakdown voltages over 3 kV. Nano Lett. 2024, 25, 537–544. [Google Scholar] [CrossRef]
- Hidouri, T.; Parisini, A.; Dadgostar, S.; Jimenez, J.; Fornari, R. Point defect localization and cathodoluminescence emission in undoped ε-Ga2O3. J. Phys. D Appl. Phys. 2022, 55, 295103. [Google Scholar] [CrossRef]
- Huang, H.; Xing, H.; Zhang, W.; Qian, Z.; Wang, L.; Wang, L.; Tang, K.; Huang, J.; Wang, L. Hetero-interface boosted high-performance a-Ga2O3 thin-film phototransistors. Appl. Surf. Sci. 2025, 679, 161179. [Google Scholar] [CrossRef]
- Xue, D.; Peng, K.; Chen, C.; Lv, P. Flexible a-Ga2O3 solar-blind photodetectors with comprehensive optoelectronic and mechanical properties for imaging sensor arrays and spatial light source detection. J. Alloys Compd. 2025, 1022, 179836. [Google Scholar] [CrossRef]
- Huang, H.; Shen, J.; Liu, X.; Zhong, Y.; Zhang, Z.; Wang, X. Self-assembly of Ni2P/γ-Ga2O3 nanosheets for efficient photocatalytic water splitting hydrogen production. Dalton Trans. 2022, 51, 17836–17843. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, Y.; Li, M.; Zhang, Y.; Li, X.; Fan, L.; Li, Y. Wet chemical synthesis of ultrathin γ-Ga2O3 quantum wires enabling far-UVC photodetection with ultrahigh selectivity and sensitivity. J. Phys. Chem. Lett. 2024, 15, 4301–4310. [Google Scholar] [CrossRef]
- Kato, T.; Nishinaka, H.; Shimazoe, K.; Kanegae, K.; Yoshimoto, M. Demonstration of bixbyite-structured δ-Ga2O3 thin films using β-Fe2O3 buffer layers by mist chemical vapor deposition. ACS Appl. Electron. Mater. 2023, 5, 1715–1720. [Google Scholar] [CrossRef]
- Kato, T.; Shimazoe, K.; Nishinaka, H. Stabilization and Semiconductor Functionality of Metastable δ-Ga2O3: Buffer Layer Engineering for Deep UV Photodetection. ACS Appl. Electron. Mater. 2025, 7, 1432–1438. [Google Scholar] [CrossRef]
- Yao, Y.; Gangireddy, R.; Kim, J.; Das, K.K.; Davis, R.F.; Porter, L.M. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J. Vac. Sci. Technol. B 2017, 35, 03D113. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Miao, W.Q.; Wu, X.L.; Ding, J.Y.; Qin, S.Y.; Liu, J.J.; Tian, Y.T.; Wu, Z.Y.; Zhang, Y.; Xing, Q.; et al. Recent progress in source/drain ohmic contact with β-Ga2O3. Inorganics 2023, 11, 397. [Google Scholar] [CrossRef]
- Xue, H.; He, Q.; Jian, G.; Long, S.; Pang, T.; Liu, M. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application. Nanoscale Res. Lett. 2018, 13, 290. [Google Scholar] [CrossRef]
- Fang, P.; Rao, C.; Liao, C.; Chen, S.; Wu, Z.; Lu, X.; Chen, Z.; Wang, G.; Liang, J.; Pei, Y. Effects of microwave plasma treatment on β-Ga2O3 Schottky barrier diodes. Semicond. Sci. Technol. 2022, 37, 115007. [Google Scholar] [CrossRef]
- Ahn, S.; Ren, F.; Yuan, L.; Pearton, S.J.; Kuramata, A. Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, 68. [Google Scholar] [CrossRef]
- Yang, T.H.; Fu, H.; Chen, H.; Huang, X.; Montes, J.; Baranowski, I.; Fu, K.; Zhao, Y. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J. Semicond. 2019, 40, 012801. [Google Scholar] [CrossRef]
- Lee, M.H.; Peterson, R.L. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Mater. 2019, 7, 022524. [Google Scholar] [CrossRef]
- Zhou, H.; Si, M.; Alghamdi, S.; Qiu, G.; Yang, L.; Ye, P.D. High-Performance Depletion/Enhancement-mode β-Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm. IEEE Electron Device Lett. 2016, 38, 103–106. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, A.; Liu, Q.; Shen, C.; Wu, F.; Xu, C.; Chen, M.; Fu, H.; Zhou, C. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies. Nano Res. 2019, 12, 143–148. [Google Scholar] [CrossRef]
- Spencer, J.A.; Tadjer, M.J.; Jacobs, A.G.; Mastro, M.A.; Lyons, J.L.; Freitas, J.A.; Gallagher, J.C.; Thieu, Q.T.; Sasaki, K.; Kuramata, A.; et al. Activation of implanted Si, Ge, and Sn donors in high-resistivity halide vapor phase epitaxial β-Ga2O3 with high mobility. Appl. Phys. Lett. 2022, 121, 192102. [Google Scholar] [CrossRef]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl. Phys. Express 2013, 6, 086502. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Roy, S.; Ranga, P.; Shoemaker, D.; Song, Y.; Lundh, J.S.; Choi, S.; Krishnamoorthy, S. 130 mA mm−1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metal organic vapor phase epitaxy-regrown ohmic contacts. Appl. Phys. Express 2021, 14, 076502. [Google Scholar] [CrossRef]
- Alema, F.; Peterson, C.; Bhattacharyya, A.; Roy, S.; Krishnamoorthy, S.; Osinsky, A. Low resistance ohmic contact on epitaxial MOVPE grown β-Ga2O3 and β-(AlxGa1−x)2O3 films. IEEE Electron Device Lett. 2022, 43, 1649–1652. [Google Scholar] [CrossRef]
- Oshima, T.; Wakabayashi, R.; Hattori, M.; Hashiguchi, A.; Kawano, N.; Sasaki, K.; Masui, T.; Kuramata, A.; Yamakoshi, S.; Yoshimatsu, K.; et al. Formation of indium-tin oxide ohmic contacts for β-Ga2O3. Jpn. J. Appl. Phys. 2016, 55, 1202B7. [Google Scholar] [CrossRef]
- Carey, P.H.; Yang, J.; Ren, F.; Hays, D.C.; Pearton, S.J.; Jang, S.; Kuramata, A.; Kravchenko, I.I. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au. AIP Adv. 2017, 7, 095313. [Google Scholar] [CrossRef]
- Yao, Y.; Davis, R.F.; Porter, L.M. Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties. J. Electron. Mater. 2017, 46, 2053–2060. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium oxide (Ga2O3 metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012, 100, 013504. [Google Scholar] [CrossRef]
- Qi, X.; Shen, Y.; Zuo, Y.; Gu, L.; Zhang, Q.C.; Ma, H.P. Low Resistance Ohmic Contact on (100) β-Ga2O3 Substrate with Laser Annealing Using Ti/Au. In Proceedings of the 2024 21st China International Forum on Solid State Lighting & 2024 10th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), Suzhou, China, 18–21 November 2024; pp. 365–368. [Google Scholar]
- Farzana, E.; Zhang, Z.; Paul, P.K.; Arehart, A.R.; Ringel, S.A. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 2017, 110, 202102. [Google Scholar] [CrossRef]
- Jiang, K.; Lyle, L.A.M.; Favela, E.; Moody, D.; Lin, T.; Das, K.K.; Popp, A.; Galazka, Z.; Wagner, G.; Porter, L.M. Electrical properties of (100) β-Ga2O3 Schottky diodes with four different metals. ECS Trans. 2017, 92, 71. [Google Scholar] [CrossRef]
- Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717–727. [Google Scholar] [CrossRef]
- Lingaparthi, R.; Thieu, Q.T.; Sasaki, K.; Takatsuka, A.; Otsuka, F.; Yamakoshi, S.; Kuramata, A. Effects of Oxygen Annealing of β-Ga2O3 Epilayers on the Properties of Vertical Schottky Barrier Diodes. ECS J. Solid State Sci. Technol. 2020, 9, 024004. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Wang, C.; Sheng, K. Low Specific On-Resistance and Low Leakage Current β-Ga2O3 (001) Schottky Barrier Diode through Contact Pre-Treatment. In Proceedings of the 34th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vancouver, BC, Canada, 22–25 May 2022; pp. 145–148. [Google Scholar]
- Deng, Y.; Chen, D.; Li, T.; Zhu, M.; Xu, X.; Zhang, H.; Lu, X. Surface quality improvement mechanism of ICP etching for Ga2O3 Schottky barrier diode. Micro Nanostructures 2025, 199, 208073. [Google Scholar] [CrossRef]
- Chatterjee, B.; Jayawardena, A.; Heller, E.; Snyder, D.W.; Dhar, S.; Choi, S. Thermal characterization of gallium oxide Schottky barrier diodes. Rev. Sci. Instrum. 2018, 89, 114903. [Google Scholar] [CrossRef]
- Du, L.; Xin, Q.; Xu, M.; Liu, Y.; Liang, G.; Mu, W.; Jia, Z.; Wang, X.; Xin, G.; Tao, X.T.; et al. Achieving high performance Ga2O3 diodes by adjusting chemical composition of tin oxide Schottky electrode. Semicond. Sci. Technol. 2019, 34, 075001. [Google Scholar] [CrossRef]
- Taube, A.; Borysiewicz, M.A.; Sadowski, O.; Wójcicka, A.; Tarenko, J.; Piskorski, K.; Wzorek, M. Investigation of amorphous (Ir,Ru)-Si and (Ir,Ru)-Si-O Schottky contacts to (001) β-Ga2O3. Mater. Sci. Semicond. Process. 2023, 154, 107218. [Google Scholar] [CrossRef]
- Farzana, E.; Roy, S.; Hendricks, N.S.; Krishnamoorthy, S.; Speck, J.S. Vertical PtOx/Pt/β-Ga2O3 Schottky diodes with high permittivity dielectric field plate for low leakage and high breakdown voltage. Appl. Phys. Lett. 2023, 123, 192102. [Google Scholar] [CrossRef]
- Dela Cruz, Z.; Hou, C.; Martinez-Gazoni, R.F.; Reeves, R.J.; Allen, M.W. Performance of in situ oxidized platinum/iridium alloy Schottky contacts on (001), (201), and (010) β-Ga2O3. Appl. Phys. Lett. 2022, 120, 083503. [Google Scholar] [CrossRef]
- Hou, C.; Makin, R.A.; York, K.R.; Durbin, S.M.; Scott, J.I.; Gazoni, R.M.; Reeves, R.J.; Allen, M.W. High-temperature (350 °C) oxidized iridium Schottky contacts on β-Ga2O3. Appl. Phys. Lett. 2019, 114, 233503. [Google Scholar] [CrossRef]
- Watson, J.; Castro, G. A review of high-temperature electronics technology and applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9226–9235. [Google Scholar] [CrossRef]
- Guo, X.; Xun, Q.; Li, Z.; Du, S. Silicon carbide converters and MEMS devices for high-temperature power electronics: A critical review. Micromachines 2019, 10, 406. [Google Scholar] [CrossRef]
- Heinselman, K.; Walker, P.; Norman, A.; Parilla, P.; Ginley, D.; Zakutayev, A. Performance and reliability of β-Ga2O3 Schottky barrier diodes at high temperature. J. Vac. Sci. Technol. A 2021, 39, 040402. [Google Scholar] [CrossRef]
- Hou, C.; Gazoni, R.M.; Reeves, R.J.; Allen, M.W. Dramatic Improvement in the Rectifying Properties of Pd Schottky Contacts on β-Ga2O3 During Their High-Temperature Operation. IEEE Trans. Electron Devices 2021, 68, 1791–1797. [Google Scholar] [CrossRef]
- Sohel, S.H.; Kotecha, R.; Khan, I.S.; Heinselman, K.N.; Narumanchi, S.; Tellekamp, M.B.; Zakutayev, A. Gallium oxide heterojunction diodes for 400 °C high-temperature applications. Phys. Status Solidi A 2023, 220, 2300535. [Google Scholar] [CrossRef]
- Al-Mamun, N.S.; Li, J.S.; Haque, A.; Wolfe, D.E.; Ren, F.; Pearton, S. High temperature operation and failure of Ga2O3 Schottky barrier diodes: An in situ TEM study. APL Electron. Devices 2025, 1, 016103. [Google Scholar] [CrossRef]
- Wang, A.-F.; Ma, H.-P.; Huang, Q.-M.; Gu, L.; Shen, Y.; Ding, C.; Liu, Y.-C.; Xu, K.; Zhucheng, L.; Zhang, L.; et al. Band alignment, thermal transport property, and electrical performance of high-quality β-Ga2O3/AlN schottky barrier diode grown via MOCVD. ACS Appl. Mater. Interfaces 2025, 17, 27517–27529. [Google Scholar] [CrossRef]
- Qu, Z.; Xie, Y.; Zhao, T.; Xu, W.; He, Y.; Xu, Y.; Sun, H.; You, T.; Han, G.; Hao, Y.; et al. Extremely low thermal resistance of β-Ga2O3 MOSFETs by co-integrated design of substrate engineering and device packaging. ACS Appl. Mater. Interfaces 2024, 16, 57816–57823. [Google Scholar] [CrossRef]
- Peterson, C.; Alema, F.; Bhattacharyya, A.; Ling, Z.; Roy, S.; Osinsky, A.; Krishnamoorthy, S. Kilovolt-class β-Ga2O3 MOSFETs on 1-in. bulk substrates. Appl. Phys. Lett. 2024, 124, 082104. [Google Scholar] [CrossRef]
- Su, C.; Zhou, H.; Zhang, K.; Wang, C.; Sun, S.; Gong, H.; Ye, J.; Liu, Z.; Dang, K.; Hu, Z.; et al. Low turn-on voltage and 2.3 kV β-Ga2O3 heterojunction barrier Schottky diodes with Mo anode. Appl. Phys. Lett. 2024, 124, 173506. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Lin, W.; Yang, Z.; Gong, M.; Huang, M.; Ma, Y. Enhanced Performance of Vertical β-Ga2O3 Schottky Barrier Diodes Through 212-MeV Low-Fluence Ge Ion Irradiation. IEEE Trans. Electron Devices 2024, 71, 7366–7371. [Google Scholar] [CrossRef]
- Hong, Z.; Zhang, C.; Lin, J.; Dai, J.; Zhang, J.; Huang, H.; Yang, W. Low Turn-On Voltage and Reverse Leakage Current β-Ga2O3 MIS Schottky Barrier Diodes With an AlN Interfacial Layer. IEEE Trans. Electron Devices 2024, 71, 6934–6941. [Google Scholar] [CrossRef]
- Su, C.; Zhou, H.; Hu, Z.; Wang, C.; Hao, Y.; Zhang, J. 1.96 kV p-Cr2O3/β-Ga2O3 heterojunction diodes with an ideality factor of 1.07. Appl. Phys. Lett. 2025, 126, 132104. [Google Scholar]
- Feng, Y.; Zhou, H.; Alghamdi, S.; Wasly, S.; Hao, Y.; Zhang, J. 1.5 kV β-Ga2O3 vertical Schottky diodes with 58 A surge current and off-state stressing study. Appl. Phys. Lett. 2025, 126, 182101. [Google Scholar] [CrossRef]
- Tetzner, K.; Halhoul, H.; Cuallo, M.D.; Hilt, O. 4 A/300 V switching of lateral β-Ga2O3 MOSFET devices. IEEE Electron Device Lett. 2025, preprint. [Google Scholar] [CrossRef]
- Ma, H.; Yang, D.; Zhu, M.; Xu, X.; Li, T.; Zhang, H.; Lu, X. Theoretical Analysis of Vertical β-Ga2O3 Schottky Barrier Diodes With p-NiO Field Limiting Rings for High P-FOM Performance. IEEE J. Electron Devices Soc. 2025, preprint. [Google Scholar] [CrossRef]
- Cai, Y.; Feng, Z.; Wang, Z.; Song, X.; Hu, Z.; Tian, X.; Zhang, C.; Liu, Z.; Feng, Q.; Zhou, H.; et al. Demonstration of the normally off β-Ga2O3 MOSFET with high threshold voltage and high current density. Appl. Phys. Lett. 2023, 123, 193501. [Google Scholar]
- Chen, H.; Li, Z.; Zhang, Z.; Liu, D.; Zeng, L.; Yan, Y.; Chen, D.; Feng, Q.; Zhang, J.; Hao, Y.; et al. Review of β-Ga2O3 solar-blind ultraviolet photodetector: Growth, device, and application. Semicond. Sci. Technol. 2024, 39, 063001. [Google Scholar]
- Zhang, Z.; Liu, D.; Yan, Y.; Zeng, L.; Chen, H.; Song, Q.; Chen, D.; Zhu, C.; Zhang, C.; Zhang, Y.; et al. β-Ga2O3 Photodetectors with High-Performance Enhanced by Field Control via p-Type NiO Interlayer. J. Alloys Compd. 2025, 1031, 181097. [Google Scholar]
- Xu, Y.; Cheng, Y.; Li, Z.; Chen, D.; Xu, S.; Feng, Q.; Zhu, W.; Zhang, Y.; Zhang, J.; Zhang, C.; et al. Ultra high-performance solar-blind photodetectors based on high quality heteroepitaxial single crystalline β-Ga2O3 film grown by vacuum free, low-cost mist chemical vapor deposition. Adv. Mater. Technol. 2021, 6, 2001296. [Google Scholar] [CrossRef]
- Sun, Q.; Wei, J.; Han, W.; Sang, K.; Wu, D.; Zeng, L.; Pei, K.; Wang, B.; Shen, L.; Yuan, J.; et al. Solar-blind β-Ga2O3 photodetectors with high detectivity via semimetal Bi contacts. Surf. Interfaces 2025, 60, 106052. [Google Scholar] [CrossRef]
- Chang, Q.; Hou, B.; Yang, L.; Jia, M.; Zhu, Y.; Wu, M.; Zhang, M.; Zhu, Q.; Lu, H.; Xu, J.; et al. 3 kV fully vertical β-Ga2O3 junction termination extension Schottky barrier diode with sputtered p-GaN. Appl. Phys. Lett. 2025, 126, 062102. [Google Scholar] [CrossRef]
- Wang, C.; Sun, S.; Su, C.; Zhou, H.; Zhang, J.; Hao, Y. Breakdown voltage over 10 kV β-Ga2O3 heterojunction FETs with RESURF structure. Sci. China Inf. Sci. 2025, 68, 169401. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar]
- Yang, J.; Ren, F.; Tadjer, M.; Pearton, S.J.; Kuramata, A. 2300V reverse breakdown voltage Ga2O3 Schottky rectifiers. ECS J. Solid State Sci. Technol. 2018, 7, Q92. [Google Scholar]
- Gao, X.; Xie, T.; Wu, J.; Fu, J.; Gao, X.; Xie, M.; Zhao, H.; Wang, Y.; Shi, Z. Ultraviolet communication system utilizing effective performance β-Ga2O3 photodetector. Appl. Phys. Lett. 2024, 125, 172103. [Google Scholar]
- Li, R.; Wang, W.; Li, Y.; Gao, S.; Yue, W.; Shen, G. Multi-modulated optoelectronic memristor based on Ga2O3/MoS2 heterojunction for bionic synapses and artificial visual system. Nano Energy 2023, 111, 108398. [Google Scholar]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. β-Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates. IEEE Electron Device Lett. 2013, 34, 493–495. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Goto, K.; Nomura, K.; Thieu, Q.T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Monemar, B.; Koukitu, A.; et al. Ga2O3 Schottky barrier diodes with n−-Ga2O3 drift layers grown by HVPE. In Proceedings of the 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2015; pp. 29–30. [Google Scholar]
- Oda, M.; Tokuda, R.; Kambara, H.; Tanikawa, T.; Sasaki, T.; Hitora, T. Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY. Appl. Phys. Express 2016, 9, 021101. [Google Scholar] [CrossRef]
- Yang, J.; Ren, F.; Pearton, S.J.; Kuramata, A. Vertical Geometry, Vertical geometry, 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans. Electron Devices 2018, 65, 2790–2796. [Google Scholar] [CrossRef]
- Yang, J.; Ahn, S.; Ren, F.; Pearton, S.J.; Jang, S.; Kuramata, A. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett. 2017, 38, 906–909. [Google Scholar]
- Fu, H.; Chen, H.; Huang, X.; Baranowski, I.; Montes, J.; Yang, T.-H.; Zhao, Y. A Comparative Study on the Electrical Properties of Vertical (−201) and (010) β-Ga2O3 Schottky Barrier Diodes on EFG Single-Crystal Substrates. IEEE Trans. Electron Devices 2018, 65, 3507–3513. [Google Scholar] [CrossRef]
- He, Q.; Hao, W.; Zhou, X.; Li, Y.; Zhou, K.; Chen, C.; Xiong, W.; Jian, G.; Xu, G.; Zhao, X.; et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett. 2021, 43, 264–267. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Xia, X.; Li, J.-S.; Ren, F.; Pearton, S.J. Selective wet and dry etching of NiO over β-Ga2O3. ECS J. Solid State Sci. Technol. 2022, 11, 104001. [Google Scholar] [CrossRef]
- Yang, J.; Sparks, Z.; Ren, F.; Pearton, S.J.; Tadjer, M. Effect of surface treatments on electrical properties of β-Ga2O3. J. Vac. Sci. Technol. B 2018, 36, 061201. [Google Scholar] [CrossRef]
- Janardhanam, V.; Kim, J.-H.; Jyothi, I.; Jung, H.-H.; Kim, S.-J.; Shim, K.-H.; Choi, C.-J. Enhancement of device performance in β-Ga2O3 Schottky barrier diodes with tetramethylammonium hydroxide treatment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134079. [Google Scholar] [CrossRef]
- Yu, C.; Hu, H.; Wang, Y.; Jia, X.; Huang, S.; Luo, Z.; Li, B.; Fang, C.; Li, X.; Liu, Y.; et al. Enhancing β-Ga2O3 Schottky Barrier Diodes’ Performance Through Low-Temperature Post-Annealing: Achieving Optimal Forward Current-Voltage Characteristics. IEEE Trans. Electron Devices 2024, 71, 5552–5558. [Google Scholar] [CrossRef]
- Liu, H.; Han, S.; Lu, X.; Wang, Y.; Dun, S.; Han, T.; Lv, Y.; Feng, Z. Demonstration of Vertical Ga2O3 Schottky Barrier Diodes Directly on Heavily Doped Single-Crystal Substrate Using Thermal Oxidation Technology. Eur. Phys. J. Spec. Top. 2025, 234, 283–290. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Zhang, J.; Liang, S.; Shen, Z.J. Theoretical analysis and experimental characterization of 1.2-kV 4H-SiC planar split-gate MOSFET with source field plate. IEEE Trans. Electron Devices 2023, 71, 1508–1512. [Google Scholar] [CrossRef]
- Tarplee, M.C.; Madangarli, V.P.; Zhang, Q.; Sudarshan, T.S. Design rules for field plate edge termination in SiC Schottky diodes. IEEE Trans. Electron Devices 2001, 48, 2659–2664. [Google Scholar] [CrossRef]
- Wu, Y.F.; Saxler, A.; Moore, M.; Smith, R.P.; Sheppard, S.; Chavarkar, P.M.; Wisleder, T.; Mishra, U.K.; Parikh, P. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 2004, 25, 117–119. [Google Scholar] [CrossRef]
- Lei, Y.; Shi, H.; Lu, H.; Chen, D.; Zhang, R.; Zheng, Y. Field plate engineering for GaN-based Schottky barrier diodes. J. Semicond. 2013, 34, 054007. [Google Scholar] [CrossRef]
- Konishi, K.; Goto, K.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017, 110, 103506. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A.; Ranga, P.; Splawn, H.; Leach, J.; Krishnamoorthy, S. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm2. IEEE Electron Device Lett. 2021, 42, 1140–1143. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A.; Peterson, C.; Krishnamoorthy, S. 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl. Phys. Lett. 2023, 122, 152101. [Google Scholar] [CrossRef]
- Hu, Z.; Li, J.; Zhao, C.; Feng, Z.; Tian, X.; Zhang, Y.; Zhang, Y.; Ning, J.; Zhou, H.; Zhang, C.; et al. Design and fabrication of vertical metal/TiO2/β-Ga2O3 dielectric heterojunction diode with reverse blocking voltage of 1010 V. IEEE Trans. Electron Devices 2020, 67, 5628–5632. [Google Scholar] [CrossRef]
- Farzana, E.; Bhattacharyya, A.; Hendricks, N.S.; Itoh, T.; Krishnamoorthy, S.; Speck, J.S. Oxidized metal Schottky contact with high-κ dielectric field plate for low-loss high-power vertical β-Ga2O3 Schottky diodes. APL Mater. 2022, 10, 111104. [Google Scholar] [CrossRef]
- Carey, P.H.; Yang, J.; Ren, F.; Sharma, R.; Law, M.; Pearton, S.J. Comparison of dual-stack dielectric field plates on β-Ga2O3 Schottky rectifiers. ECS J. Solid State Sci. Technol. 2019, 8, Q3221. [Google Scholar] [CrossRef]
- Yang, J.; Ren, F.; Chen, Y.T.; Liao, Y.T.; Chang, C.W.; Lin, J.; Tadjer, M.J.; Pearton, S.J.; Kuramata, A. Dynamic Switching Characteristics of 1 A Forward Current β-Ga2O3 Rectifiers. IEEE J. Electron Devices Soc. 2018, 7, 57–61. [Google Scholar] [CrossRef]
- Yuda, Y.; Ebihara, K.; Nanjo, T.; Furuhashi, M.; Watahiki, T.; Nishikawa, K. A simulation study of vertical Ga2O3 Schottky barrier diodes using field plate termination. Jpn. J. Appl. Phys. 2024, 63, 02SP66. [Google Scholar] [CrossRef]
- Lee, H.-K.; Janardhanam, V.; Mun, J.-K.; Jang, T.-H.; Shim, K.-H.; Yun, H.J.; Won, J.; Choi, C.-J. Enhancement of device performance in vertical Au/Ni/β-Ga2O3 Schottky barrier diodes using regularly aligned inner field plates. Mater. Sci. Semicond. Process. 2025, 191, 109371. [Google Scholar] [CrossRef]
- Gilankar, A.; Islam, A.E.; McCartney, M.R.; Katta, A.; Das, N.; Smith, D.J.; Kalarickal, N.K. Three-step field-plated β-Ga2O3 Schottky barrier diodes and heterojunction diodes with sub-1 V turn-on and kilovolt-class breakdown. Appl. Phys. Express 2024, 17, 046501. [Google Scholar]
- Bae, J.; Kim, H.W.; Kang, I.H.; Kim, J. Dual-field plated β-Ga2O3 nano-FETs with an off-state breakdown voltage exceeding 400 V. J. Mater. Chem. C 2020, 8, 2687–2692. [Google Scholar] [CrossRef]
- Han, S.; Wang, Y.; Lv, Y.; Liu, H.; Han, T.; Dun, S.; Feng, Z. High-performance Ga2O3 Schottky Barrier Diode with a Self-aligned Shallow Groove and Dual Field-plate. In Proceedings of the 8th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 20–23 October 2023; pp. 86–91. [Google Scholar]
- Guo, W.; Jian, G.; Hao, W.; Wu, F.; Zhou, K.; Du, J.; Zhou, X.; He, Q.; Yu, Z.; Zhao, X.; et al. β-Ga2O3 field plate schottky barrier diode with superb reverse recovery for high-efficiency DC-DC converter. IEEE J. Electron Devices Soc. 2022, 10, 933–941. [Google Scholar] [CrossRef]
- Allen, N.; Xiao, M.; Yan, X.; Sasaki, K.; Tadjer, M.J.; Ma, J.; Zhang, R.; Wang, H.; Zhang, Y. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: A Baliga’s figure-of-merit of 0.6 GW/cm2. IEEE Electron Device Lett. 2019, 40, 1399–1402. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Zhang, Z.; Chen, D.; Feng, Q.; You, H.; Zhang, J.; Zhang, C.; Hao, Y. Enhancing breakdown voltage of a Ga2O3 Schottky barrier diode with small-angle beveled and high-k oxide field plate. ECS J. Solid State Sci. Technol. 2021, 10, 125001. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Sheng, K. Vertical β-Ga2O3 Schottky barrier diodes with field plate assisted negative beveled termination and positive beveled termination. IEEE Electron Device Lett. 2022, 44, 21–24. [Google Scholar] [CrossRef]
- Joishi, C.; Rafique, S.; Xia, Z.; Han, L.; Krishnamoorthy, S.; Zhang, Y.; Lodha, S.; Zhao, H.; Rajan, S. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes. Appl. Phys. Express 2018, 11, 031101. [Google Scholar] [CrossRef]
- Sun, N.; Gong, H.H.; Hu, T.C.; Zhou, F.; Wang, Z.P.; Yu, X.X.; Ren, F.-F.; Gu, S.L.; Lu, H.; Zhang, R.; et al. Fast switching Ga2O3 Schottky barrier power diode with beveled-mesa and BaTiO3 field plate edge termination. Appl. Phys. Lett. 2024, 125, 172104. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Jian, G.; Xu, G.; Zhou, X.; Guo, W.; Du, J.; Liu, Q.; Dun, S.; Yu, Z.; et al. Superior performance β-Ga2O3 junction barrier Schottky diodes implementing p-NiO heterojunction and beveled field plate for hybrid Cockcroft-Walton voltage multiplier. IEEE Trans. Electron Devices 2023, 70, 1199–1205. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.-L.; Lin, X.-P.; Lei, S.-Q.; Yu, H.-Y. A simulation study of field plate termination in Ga2O3 Schottky barrier diodes. Chin. Phys. B 2018, 27, 127302. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, Q.; Zhang, J.; Lv, Y.; Liu, Z.; Zhang, Y.; Dang, K.; Dong, P.; Feng, Z.; Feng, Q.; et al. High-Performance Vertical β-Ga2O3 Schottky Barrier Diode with Implanted Edge Termination. IEEE Electron Device Lett. 2019, 40, 1788–1791. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Feng, Z.; Hu, Z.; Chen, J.; Dang, K.; Yan, Q.; Dong, P.; Zhou, H.; Hao, Y. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing. IEEE Trans. Electron Devices 2020, 67, 3948–3953. [Google Scholar] [CrossRef]
- Gao, Y.; Li, A.; Feng, Q.; Hu, Z.; Feng, Z.; Zhang, K.; Lu, X.; Zhang, C.; Zhou, H.; Mu, W.; et al. High-voltage β-Ga2O3 Schottky diode with argon-implanted edge termination. Nanoscale Res. Lett. 2019, 14, 8. [Google Scholar] [CrossRef]
- Hu, Z.; Lv, Y.; Zhao, C.; Feng, Q.; Feng, Z.; Dang, K.; Tian, X.; Zhang, Y.; Ning, J.; Zhou, H.; et al. Beveled Fluoride Plasma Treatment for Vertical β-Ga2O3 Schottky Barrier Diode with High Reverse Blocking Voltage and Low Turn-On Voltage. IEEE Electron Device Lett. 2020, 41, 441–444. [Google Scholar] [CrossRef]
- Luo, X.; Hao, L.; Wei, Y.; Dai, K.; Peng, X.; Jiang, Z.; Wu, Y. High breakdown voltage β-Ga2O3 Schottky barrier diode with fluorine-implanted termination. Microelectron. J. 2024, 150, 106269. [Google Scholar] [CrossRef]
- Lin, C.H.; Yuda, Y.; Wong, M.H.; Sato, M.; Takekawa, N.; Konishi, K.; Watahiki, T.; Yamamuka, M.; Murakami, H.; Kumagai, Y.; et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett. 2019, 40, 1487–1490. [Google Scholar] [CrossRef]
- Sharma, R.; Patrick, E.E.; Law, M.E.; Ren, F.; Pearton, S.J. Optimization of edge termination techniques for β-Ga2O3 Schottky rectifiers. ECS J. Solid State Sci. Technol. 2019, 8, Q234. [Google Scholar] [CrossRef]
- Wang, B.; Feng, C.; Jiang, L.; Xiao, H.; Li, W.; Wang, X. Optimization of Finite-Zone Implanted Edge Termination for β-Ga2O3 SBD. ECS J. Solid State Sci. Technol. 2022, 11, 055009. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Jiang, H.; Zou, X.; Lau, K.M. Vertical Schottky barrier diodes based on a bulk β-Ga2O3 substrate with high switching performance. In Proceedings of the 2019 Compound Semiconductor Week (CSW), Nara, Japan, 19–23 May 2019; p. 1. [Google Scholar]
- Wen, J.; Hao, W.; Han, Z.; Wu, F.; Li, Q.; Liu, J.; Liu, Q.; Zhou, X.; Xu, G.; Yang, S.; et al. Vertical β-Ga2O3 Power Diodes: From Interface Engineering to Edge Termination. IEEE Trans. Electron Devices 2024, 71, 1606–1617. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Y.; Long, S.; Zhou, X.; Song, X.; Liang, S.; Han, T.; Tan, X.; Feng, Z.; Cai, S.; et al. High-Voltage (201) β-Ga2O3 Vertical Schottky Barrier Diode with Thermally-Oxidized Termination. IEEE Electron Device Lett. 2019, 41, 131–134. [Google Scholar] [CrossRef]
- He, Q.; Zhou, X.; Li, Q.; Hao, W.; Liu, Q.; Han, Z.; Zhou, K.; Chen, C.; Peng, J.; Xu, G.; et al. Selective high-resistance zones formed by oxygen annealing for-Ga2O3 Schottky diode applications. IEEE Electron Device Lett. 2022, 43, 1933–1936. [Google Scholar]
- Oshima, T.; Kaminaga, K.; Mukai, A.; Sasaki, K.; Masui, T.; Kuramata, A.; Yamakoshi, S.; Fujita, S.; Ohtomo, A. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. Jpn. J. Appl. Phys. 2013, 52, 051101. [Google Scholar] [CrossRef]
- Jesenovec, J.; Weber, M.H.; Pansegrau, C.; McCluskey, M.D.; Lynn, K.G.; McCloy, J.S. Gallium vacancy formation in oxygen annealed β-Ga2O3. J. Appl. Phys. 2021, 129, 245701. [Google Scholar] [CrossRef]
- Sun, R.; Ooi, Y.K.; Ranga, P.; Bhattacharyya, A.; Krishnamoorthy, S.; Scarpulla, M.A. Oxygen annealing induced changes in defects within β-Ga2O3 epitaxial films measured using photoluminescence. J. Phys. D Appl. Phys. 2021, 54, 174004. [Google Scholar]
- Tadjer, M.J.; Freitas, J.A.; Culbertson, J.C.; Weber, M.H.; Glaser, E.R.; Mock, A.L.; Mahadik, N.A.; Schmieder, K.; Jackson, E.; Gallagher, J.C.; et al. Structural and electronic properties of Si-and Sn-doped (−201) β-Ga2O3 annealed in nitrogen and oxygen atmospheres. J. Phys. D Appl. Phys. 2020, 53, 504002. [Google Scholar] [CrossRef]
- Dong, P.; Zhang, J.; Yan, Q.; Liu, Z.; Ma, P.; Zhou, H.; Hao, Y. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC. IEEE Electron Device Lett. 2022, 43, 765–768. [Google Scholar] [CrossRef]
- Sasaki, K.; Wakimoto, D.; Thieu, Q.T.; Koishikawa, Y.; Kuramata, A.; Higashiwaki, M.; Yamakoshi, S. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett. 2017, 38, 783–785. [Google Scholar]
- Li, W.; Nomoto, K.; Hu, Z.; Tanen, N.; Sasaki, K.; Kuramata, A.; Jena, D.; Xing, H.G. 1.5 kV vertical Ga2O3 trench-MIS Schottky barrier diodes. In Proceedings of the 2018 76th Device Research Conference (DRC), Santa Barbara, CA, USA, 24–27 June 2018; pp. 1–2. [Google Scholar]
- Li, W.; Hu, Z.; Nomoto, K.; Zhang, Z.; Hsu, J.Y.; Thieu, Q.T.; Sasaki, K.; Kuramata, A.; Jena, D.; Xing, H.G. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of <1 μA/cm2. Appl. Phys. Lett. 2018, 113, 202101. [Google Scholar]
- Li, W.; Hu, Z.; Nomoto, K.; Jinno, R.; Zhang, Z.; Tu, T.Q.; Sasaki, K.; Kuramata, A.; Jena, D.; Xing, H.G. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 8.5.1–8.5.4. [Google Scholar]
- Huang, X.; Liao, F.; Li, L.; Liang, X.; Liu, Q.; Zhang, C.; Hu, X. 3.4 kV breakdown voltage Ga2O3 trench Schottky diode with optimized trench corner radius. ECS J. Solid State Sci. Technol. 2020, 9, 045012. [Google Scholar]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Field-Plated Ga2O3 Trench Schottky Barrier Diodes with a BV2/Ron,sp of up to 0.95 GW/cm2. IEEE Electron Device Lett. 2019, 41, 107–110. [Google Scholar]
- Yi, B.; Xia, J.; Qiao, Y.; Zhang, Z.; Zhang, B.; Yu, G.; Qian, L.; Cheng, J.; Huang, H.; Kong, M.; et al. 1380 V β-Ga2O3 trench MIS-type Schottky barrier diode with ultra-low leakage current. Jpn. J. Appl. Phys. 2025, 64, 030906. [Google Scholar] [CrossRef]
- Kim, H.S.; Bhat, A.K.; Smith, M.D.; Kuball, M. Turn-On Voltage Instability of β-Ga2O3 Trench Schottky Barrier Diodes With Different Fin Channel Orientations. IEEE Trans. Electron Devices 2024, 71, 3609–3613. [Google Scholar] [CrossRef]
- Dhara, S.; Dheenan, A.; Rajan, S. Charge recovery by vacuum annealing in β-Ga2O3 multi-fin trench Schottky barrier diodes. APL Electron. Devices 2025, 1, 026122. [Google Scholar] [CrossRef]
- Ji, X.Q.; Yue, J.Y.; Wang, J.J.; Zheng, H.C.; Li, S.; Liu, Z.; Shu, L.; Tang, W.H.; Li, P.G. Edge-Field-Suppression for Improved Breakdown and Leakage in Vertical β-Ga2O3 Schottky Barrier Diode Through Trench Field Limiting Rings. IEEE Trans. Electron Devices 2024, 71, 7696–7701. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. ON-resistance of Ga2O3 trench-MOS Schottky barrier diodes: Role of sidewall interface trap. IEEE Trans. Electron Devices 2021, 68, 2420–2426. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, X.; He, T.; Ma, Y.; Feng, B.; Wei, X.; He, G.; Zhang, S.; Huo, X.; Cai, Y.; et al. Temperature-dependent electrical characteristics of β-Ga2O3 trench Schottky barrier diodes via self-reactive etching. J. Phys. D Appl. Phys. 2021, 54, 425104. [Google Scholar]
- Dhara, S.; Kalarickal, N.K.; Dheenan, A.; Rahman, S.I.; Joishi, C.; Rajan, S. β-Ga2O3 trench Schottky diodes by low-damage Ga-atomic beam etching. Appl. Phys. Lett. 2023, 123, 023503. [Google Scholar] [CrossRef]
- Roy, S.; Kostroun, B.; Liu, Y.; Cooke, J.; Bhattacharyya, A.; Peterson, C.; Sensale-Rodriguez, B.; Krishnamoorthy, S. Low QCVF 20A/1.4 kV β-Ga2O3 Vertical Trench High-k RESURF Schottky Barrier Diode with Turn-on Voltage of 0.5 V. IEEE Electron Device Lett. 2024, 45, 2487–2490. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl. Phys. Express 2019, 12, 061007. [Google Scholar] [CrossRef]
- Otsuka, F.; Miyamoto, H.; Takatsuka, A.; Kunori, S.; Sasaki, K.; Kuramata, A. Large-size (1.7 × 1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio. Appl. Phys. Express 2021, 15, 016501. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Guiding principles for trench Schottky barrier diodes based on ultrawide bandgap semiconductors: A case study in Ga2O3. IEEE Trans. Electron Devices 2020, 67, 3938–3947. [Google Scholar]
- Dhara, S.; Kalarickal, N.K.; Dheenan, A.; Joishi, C.; Rajan, S. β-Ga2O3 Schottky barrier diodes with 4.1 MV/cm field strength by deep plasma etching field-termination. Appl. Phys. Lett. 2022, 121, 203501. [Google Scholar]
- Han, Z.; Jian, G.; Zhou, X.; He, Q.; Hao, W.; Liu, J.; Li, B.; Huang, H.; Li, Q.; Zhao, X.; et al. 2.7 kV low leakage vertical PtOx/β-Ga2O3 Schottky barrier diodes with self-aligned mesa termination. IEEE Electron Device Lett. 2023, 44, 1680–1683. [Google Scholar] [CrossRef]
- Zhang, F.; Feng Zheng, X.; Hong Li, Y.; Jian Yuan, Z.; Zhong Yue, S.; Chen Wang, X.; Long He, Y.; Li Lu, X.; Hua Ma, X.; Hao, Y. Enhancement of positive bevel β-Ga2O3 trench MOS barrier Schottky diode by post-etching treatment. Appl. Surf. Sci. 2025, 684, 161569. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Wang, C.; Chen, H.; Zhang, C.; Zhang, L.; Li, Y.; Sheng, K. 2.5 kV/3.78 mΩ·cm2 low forward voltage vertical β-Ga2O3 Schottky rectifier with field plate assisted deep mesa termination. IEEE Electron Device Lett. 2024, 45, 778–781. [Google Scholar] [CrossRef]
- Feng, Z.; Han, S.; Wang, Y.; Guo, H.; Dun, S.; Liu, H.; Han, T.; Lv, Y. 1200-V/10-A Low Thermal Resistance Ga2O3 Schottky Barrier Diode with Composite Terminal Structure and Substrate Thinning. IEEE Trans. Electron Devices 2025, 72, 3738–3743. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, X.; Wang, Y.; Peng, X.; Hao, L.; Zhao, K.; Wei, J.; Li, X.; Jiang, Z.; Dun, S.; et al. 600V/7A Large-Size RESURF β-Ga2O3 Schottky Barrier Diode with High-Temperature Storage Test. IEEE Trans. Electron Devices 2023, 71, 1320–1324. [Google Scholar] [CrossRef]
- Wu, F.; Han, Z.; Liu, J.; Wang, Y.; Hao, W.; Zhou, X.; Xu, G.; Lv, Y.; Feng, Z.; Long, S. 8.7 A/700 V β-Ga2O3 Schottky barrier diode demonstrated by oxygen annealing combined with self-aligned mesa termination. Appl. Phys. Express 2024, 17, 036504. [Google Scholar] [CrossRef]
- Okumura, H.; Tanaka, T. Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination. Jpn. J. Appl. Phys. 2019, 58, 120902. [Google Scholar] [CrossRef]
- Hao, W.; He, Q.; Zhou, K.; Xu, G.; Xiong, W.; Zhou, X.; Jian, G.; Chen, C.; Zhao, X.; Long, S. Low defect density and small I-V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl. Phys. Lett. 2021, 118, 043501. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z.; Chai, W.; Chen, H.; Peng, G.; Zeng, L.; Wang, C.; Chen, D.; Feng, Q.; Zhou, H.; et al. Interface modification-induced high-performance vertical NiOx/β-Ga2O3 heterojunction diodes via O2 plasma treatment. Appl. Surf. Sci. 2025, 699, 163147. [Google Scholar] [CrossRef]
- Hao, J.G.; Gong, H.H.; Chen, X.H.; Xu, Y.; Ren, F.-F.; Gu, S.L.; Zhang, R.; Zheng, Y.D.; Ye, J.D. In situ heteroepitaxial construction and transport properties of lattice-matched α-Ir2O3/α-Ga2O3 pn heterojunction. Appl. Phys. Lett. 2021, 118, 261601. [Google Scholar] [CrossRef]
- Kan, S.-I.; Takemoto, S.; Kaneko, K.; Takahashi, I.; Sugimoto, M.; Shinohe, T.; Fujita, S. Electrical properties of α-Ir2O3/α-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Appl. Phys. Lett. 2018, 113, 212104. [Google Scholar] [CrossRef]
- Budde, M.; Splith, D.; Mazzolini, P.; Tahraoui, A.; Feldl, J.; Ramsteiner, M.; von Wenckstern, H.; Grundmann, M.; Bierwagen, O. SnO/β-Ga2O3 vertical pn heterojunction diodes. Appl. Phys. Lett. 2020, 117, 252106. [Google Scholar]
- Tetzner, K.; Egbo, K.; Klupsch, M.; Unger, R.-S.; Popp, A.; Chou, T.-S.; Anooz, S.B.; Galazka, Z.; Trampert, A.; Bierwagen, O.; et al. SnO/β-Ga2O3 heterojunction field-effect transistors and vertical p-n diodes. Appl. Phys. Lett. 2022, 120, 112110. [Google Scholar] [CrossRef]
- Yu, M.; Wang, H.; Wei, W.; Peng, B.; Yuan, L.; Hu, J.; Zhang, Y.; Jia, R. Analysis of electronic structure and properties of Ga2O3/CuAlO2 heterojunction. Appl. Surf. Sci. 2021, 568, 150826. [Google Scholar] [CrossRef]
- Prasad, C.V.; Park, J.H.; Min, J.Y.; Song, W.; Labed, M.; Jung, Y.; Kyoung, S.; Kim, S.; Sengouga, N.; Rim, Y.S. Interface engineering of p-type quaternary metal oxide semiconductor interlayer-embedded β-Ga2O3 Schottky barrier diode. Mater. Today Phys. 2023, 30, 100932. [Google Scholar] [CrossRef]
- Montes, J.; Yang, C.; Fu, H.; Yang, T.H.; Fu, K.; Chen, H.; Zhou, J.; Huang, X.; Zhao, Y. Demonstration of mechanically exfoliated β-Ga2O3/GaN pn heterojunction. Appl. Phys. Lett. 2019, 114, 162103. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhang, Y.; Dong, X.; Sun, X.; Hao, Z.; Luo, Y.; Sun, C.; Han, Y.; Xiong, B.; et al. Demonstration of n-Ga2O3/p-GaN diodes by wet-etching lift-off and transfer-print technique. IEEE Electron Device Lett. 2021, 42, 509–512. [Google Scholar] [CrossRef]
- Watahiki, T.; Yuda, Y.; Furukawa, A.; Yamamuka, M.; Takiguchi, Y.; Miyajima, S. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl. Phys. Lett. 2017, 111, 222104. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; He, M.; Lu, H.; Chen, C.-Z.; Jiang, Y.; Wen, K.; Du, F.; Zhang, Y.; Deng, C.; et al. Optimization of CuOx/Ga2O3 Heterojunction Diodes for High-Voltage Power Electronics. Nanomaterials 2025, 15, 87. [Google Scholar] [CrossRef]
- Ghosh, S.; Baral, M.; Kamparath, R.; Choudhary, R.J.; Phase, D.M.; Singh, S.D.; Ganguli, T. Epitaxial growth and interface band alignment studies of all oxide α-Cr2O3/β-Ga2O3 pn heterojunction. Appl. Phys. Lett. 2019, 115, 061602. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, X.; Jiang, H.; Ng, K.W.; Chen, Z.; Pei, Y.; Lau, K.M.; Wang, G. 1-kV Sputtered p-NiO/n-Ga2O3 Heterojunction Diodes with an Ultra-Low Leakage Current Below 1μ A/cm2. IEEE Electron Device Lett. 2020, 1, 449–452. [Google Scholar] [CrossRef]
- Gong, H.H.; Chen, X.H.; Xu, Y.; Ren, F.-F.; Gu, S.L.; Ye, J.D. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode. Appl. Phys. Lett. 2020, 117, 022104. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z.; Chen, H.; Tian, X.; Wang, Y.; Yan, Y.; Zeng, L.; Liu, X.; Chen, D.; Feng, Q.; et al. Performance Enhancement of NiOx/β-Ga2O3 Heterojunction Diodes by Synergistic Interface Engineering. IEEE Trans. Electron Devices 2024, 71, 4578–4583. [Google Scholar] [CrossRef]
- Zhou, F.; Gong, H.; Xu, W.; Yu, X.; Xu, Y.; Yang, Y.; Ren, F.F.; Gu, S.; Zheng, Y.; Zhang, R.; et al. 1.95-kV beveled-mesa NiO/β-Ga2O3 heterojunction diode with 98.5% conversion efficiency and over million-times overvoltage ruggedness. IEEE Trans. Power Electron. 2021, 37, 1223–1227. [Google Scholar] [CrossRef]
- Zhou, F.; Gong, H.H.; Wang, Z.P.; Xu, W.Z.; Yu, X.X.; Yang, Y.; Ren, F.F.; Gu, S.L.; Zhang, R.; Zheng, Y.D.; et al. Over 1.8 GW/cm2 beveled-mesa NiO/β-Ga2O3 heterojunction diode with 800 V/10 A nanosecond switching capability. Appl. Phys. Lett. 2021, 119, 262103. [Google Scholar] [CrossRef]
- Li, J.S.; Chiang, C.C.; Xia, X.; Yoo, T.J.; Ren, F.; Kim, H.; Pearton, S.J. Demonstration of 4.7 kV breakdown voltage in NiO/β-Ga2O3 vertical rectifiers. Appl. Phys. Lett. 2022, 121, 042105. [Google Scholar] [CrossRef]
- Liao, C.; Lu, X.; Xu, T.; Fang, P.; Deng, Y.; Luo, H.; Wu, Z.; Chen, Z.; Liang, J.; Pei, Y.; et al. Optimization of NiO/β-Ga2O3 heterojunction diodes for high-power application. IEEE Trans. Electron Devices 2022, 69, 5722–5727. [Google Scholar] [CrossRef]
- Han, T.; Wang, Y.; Lv, Y.; Dun, S.; Liu, H.; Bu, A.; Feng, Z. 2.83-kV double-layered NiO/β-Ga2O3 vertical pn heterojunction diode with a power figure-of-merit of 5.98 GW/cm2. J. Semicond. 2023, 44, 072802. [Google Scholar] [CrossRef]
- Li, J.-S.; Chiang, C.-C.; Xia, X.; Tsai, C.-T.; Ren, F.; Liao, Y.-T.; Pearton, S.J. Dynamic switching of 1.9 A/1.76 kV forward current NiO/β-Ga2O3 rectifiers. ECS J. Solid State Sci. Technol. 2022, 11, 105003. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Cheng, H.; Wang, C.; Que, Q.; Li, Y.; Zhang, C.; Sun, J.; Liu, D.; Sheng, K. 2kV Low Leakage Vertical NiO/β-Ga2O3 Hetero-Junction Diode and its Thermal/Electrical Stability. In Proceedings of the 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bremen, Germany, 2–6 June 2024; pp. 200–203. [Google Scholar]
- Han, J.; Sun, N.; Pei, X.; Wang, R.; Fan, K.; Zhu, R.; Wang, M.; Zhu, X.; Li, X.; Li, J.; et al. 3.0 kV β-Ga2O3-Based Vertical pn Heterojunction Diodes with Helium-Implanted Edge Termination. IEEE Trans. Electron Devices 2025, 72, 2879–2883. [Google Scholar]
- Li, J.-S.; Wan, H.-H.; Chiang, C.-C.; Yoo, T.J.; Ren, F.; Kim, H.; Pearton, S.J. NiO/Ga2O3 vertical rectifiers of 7 kV and 1 mm2 with 5.5 A forward conduction current. Crystals 2023, 13, 1624. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, H.; Lv, Y.; Fu, X.; Dun, S.; Han, T.; Liu, H.; Zhou, X.; Liang, S.; Ye, J.; et al. 2.41 kV vertical P-Nio/n-Ga2O3 heterojunction diodes with a record Baliga’s figure-of-merit of 5.18 GW/cm2. IEEE Trans. Power Electron. 2021, 37, 3743–3746. [Google Scholar] [CrossRef]
- Li, J.S.; Chiang, C.C.; Xia, X.; Wan, H.H.; Ren, F.; Pearton, S.J. Effect of drift layer doping and NiO parameters in achieving 8.9 kV breakdown in 100μm diameter and 4kV/4 A in 1 mm diameter NiO/β-Ga2O3 rectifiers. J. Vac. Sci. Technol. A 2023, 41, 043404. [Google Scholar] [CrossRef]
- Li, J.-S.; Chiang, C.-C.; Xia, X.; Wan, H.-H.; Ren, F.; Pearton, S.J. 1 mm2, 3.6 kV, 4.8 A NiO/Ga2O3 heterojunction rectifiers. ECS J. Solid State Sci. Technol. 2023, 12, 085001. [Google Scholar] [CrossRef]
- Li, J.-S.; Wan, H.-H.; Chiang, C.-C.; Xia, X.; Yoo, T.J.; Kim, H.; Ren, F.; Pearton, S.J. Reproducible NiO/Ga2O3 Vertical Rectifiers with Breakdown Voltage >8 kV. Crystals 2023, 13, 886. [Google Scholar] [CrossRef]
- Hendricks, N.S.; Farzana, E.; Islam, A.E.; Leedy, K.D.; Liddy, K.J.; Williams, J.; Dryden, D.M.; Adams, A.M.; Speck, J.S.; Chabak, K.D.; et al. Vertical metal-dielectric-semiconductor diode on (001) β-Ga2O3 with high-k TiO2 interlayer exhibiting reduced turn-on voltage and leakage current and improved breakdown. Appl. Phys. Express 2023, 16, 071002. [Google Scholar] [CrossRef]
- Xu, M.; Biswas, A.; Li, T.; He, Z.; Luo, S.; Mei, Z.; Zhou, J.; Chang, C.; Puthirath, A.B.; Vajtai, R.; et al. Vertical β-Ga2O3 metal-nsulator-semiconductor diodes with an ultrathin boron nitride interlayer. Appl. Phys. Lett. 2023, 123, 232107. [Google Scholar]
- Lv, Y.; Wang, Y.; Fu, X.; Dun, S.; Sun, Z.; Liu, H.; Zhou, X.; Song, X.; Dang, K.; Liang, S.; et al. Demonstration of β-Ga2O3 Junction Barrier Schottky Diodes with a Baliga’s Figure of Merit of 0.85 GW/cm2 or a 5 A/700 V Handling Capabilities. IEEE Trans. Power Electron. 2021, 36, 6179–6182. [Google Scholar] [CrossRef]
- Yan, Q.; Gong, H.; Zhang, J.; Ye, J.; Zhou, H.; Liu, Z.; Xu, S.; Wang, C.; Hu, Z.; Feng, Q.; et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron, sp value of 0.93 GW/cm2. Appl. Phys. Lett. 2021, 118, 122102. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, X.; He, Y.; Wang, X.; Hong, Y.; Zhang, X.; Yuan, Z.; Wang, Y.; Lu, X.; Yin, J.; et al. The Impact of Anode p+ Islands Layout on the Performance of NiOx/β-Ga2O3 Hetero-Junction Barrier Schottky Diodes. IEEE Trans. Electron Devices 2023, 70, 5603–5608. [Google Scholar] [CrossRef]
- Wang, J.; Yao, X.-W.; Xu, X.-X.; Wu, X.; Qian, J.-H.; Wang, X.-J.; Liu, Y.-F.; Wu, C.-Y.; Luo, L.-B. SnO/β-Ga2O3 heterojunction barrier Schottky diodes for decreased reverse leakage current and improved breakdown voltage. J. Mater. Chem. C 2025, 13, 9992–9996. [Google Scholar] [CrossRef]
- Hu, T.C.; Wang, Z.P.; Sun, N.; Gong, H.H.; Yu, X.X.; Ren, F.F.; Yang, Y.; Gu, S.L.; Zheng, Y.D.; Zhang, R.; et al. A self-aligned Ga2O3 heterojunction barrier Schottky power diode. Appl. Phys. Lett. 2023, 123, 013507. [Google Scholar] [CrossRef]
- Gong, H.H.; Yu, X.X.; Xu, Y.; Chen, X.H.; Kuang, Y.; Lv, Y.J.; Yang, Y.; Ren, F.F.; Feng, Z.H.; Gu, S.L.; et al. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl. Phys. Lett. 2021, 118, 202102. [Google Scholar] [CrossRef]
- Wei, J.; Wei, Y.; Lu, J.; Peng, X.; Jiang, Z.; Yang, K.; Luo, X. Experimental study on electrical characteristics of large-size vertical β-Ga2O3 junction barrier Schottky diodes. In Proceedings of the 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vancouver, BC, Canada, 22–25 May 2022; pp. 97–100. [Google Scholar]
- Hu, Z.; Zhou, H.; Dang, K.; Cai, Y.; Feng, Z.; Gao, Y.; Feng, Q.; Zhang, J.; Hao, Y. Lateral β-Ga2O3 Schottky Barrier Diode on Sapphire Substrate with Reverse Blocking Voltage of 1.7 kV. IEEE J. Electron Devices Soc. 2018, 6, 815–820. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, H.; Feng, Q.; Zhang, J.; Zhang, C.; Dang, K.; Cai, Y.; Feng, Z.; Gao, Y.; Kang, X.; et al. Field-Plated Lateral β-Ga2O3 Schottky Barrier Diode with High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2. IEEE Electron Device Lett. 2018, 39, 1564–1567. [Google Scholar] [CrossRef]
- Wang, C.; Yan, Q.; Zhang, C.; Su, C.; Zhang, K.; Sun, S.; Liu, Z.; Zhang, W.; Alghamdi, S.; Ghandourah, E.; et al. β-Ga2O3 lateral Schottky barrier diodes with >10 kV breakdown voltage and anode engineering. IEEE Electron Device Lett. 2023, 44, 1684–1687. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A.; Peterson, C.; Krishnamoorthy, S. β-Ga2O3 Lateral High-Permittivity Dielectric Superjunction Schottky Barrier Diode With 1.34 GW/cm2 Power Figure of Merit. IEEE Electron Device Lett. 2022, 43, 2037–2040. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, M.; Porter, M.; Ma, Y.; Spencer, J.; Du, Z.; Jacobs, A.G.; Sasaki, K.; Wang, H.; Tadjer, M.; et al. 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 °C. IEEE Electron Device Lett. 2023, 44, 1268–1271. [Google Scholar] [CrossRef]
- Cho, K.J.; Chang, W.; Lee, H.-K.; Mun, J.K. β-Ga2O3 schottky barrier diodes with near-zero turn-on voltage and breakdown voltage over 3.6 kV. Trans. Electr. Electron. Mater. 2024, 25, 365–369. [Google Scholar] [CrossRef]
- Khan, D.; Gajula, D.; Okur, S.; Tompa, G.S.; Koley, G. β-Ga2O3 thin film based lateral and vertical Schottky barrier diode. ECS J. Solid State Sci. Technol. 2019, 8, Q106. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Cheng, L.; Ren, F.-F.; Zhou, J.; Bai, S.; Lu, H.; Gu, S.; Zhang, R.; Zheng, Y.; et al. High performance lateral Schottky diodes based on quasi-degenerated Ga2O3. Chin. Phys. B 2019, 28, 038503. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, X.; He, Q.; Hao, W.; Zhao, X.; Hua, M.; Xu, G.; Long, S. Demonstration of β-Ga2O3 heterojunction gate field-effect rectifier. IEEE Trans. Electron Devices 2023, 70, 3762–3767. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, H.; He, W.; Hong, Z.; Lu, Q.; Guo, L.; Liu, T.; Liu, X.; Hao, Y. Characteristic of flexible β-Ga2O3 Schottky barrier diode based on mechanical stripping process. Superlattices Microstruct. 2021, 160, 107078. [Google Scholar] [CrossRef]
- Hao, W.; Wu, F.; Li, W.; Xu, G.; Xie, X.; Zhou, K.; Guo, W.; Zhou, X.; He, Q.; Zhao, X.; et al. Improved vertical β-Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension. IEEE Trans. Electron Devices 2023, 70, 2129–2134. [Google Scholar] [CrossRef]
- Wang, B.; Xiao, M.; Spencer, J.; Qin, Y.; Sasaki, K.; Tadjer, M.J.; Zhang, Y. 2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension. IEEE Electron Device Lett. 2023, 44, 221–224. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, B.; Spencer, J.; Qin, Y.; Porter, M.; Ma, Y.; Wang, Y.; Sasaki, K.; Tadjer, M.; Zhang, Y. NiO junction termination extension for high-voltage (>3 kV) Ga2O3 devices. Appl. Phys. Lett. 2023, 122, 183501. [Google Scholar] [CrossRef]
- Hong, Y.; Zheng, X.; He, Y.; Zhang, H.; Zhang, W.; Zhang, J.; Ma, X.; Hao, Y. Effect of p-NiOx junction termination extension on interface states in NiOx/ β-Ga2O3 heterojunction diodes. Mater. Sci. Semicond. Process. 2025, 185, 108987. [Google Scholar] [CrossRef]
- Gilankar, A.; Katta, A.; Das, N.; Kalarickal, N.K. >3kV NiO/Ga2O3 Heterojunction Diodes with Space-Modulated Junction Termination Extension and Sub-1V Turn-on. IEEE J. Electron Devices Soc. 2025, 13, 373–377. [Google Scholar] [CrossRef]
- Liu, M.; Gao, H.; Tian, X.; Cai, Y.; Feng, Q.; Liu, C.; Zhang, C.; Zhang, J.; Hao, Y. Vertical β-Ga2O3 Schottky Barrier Diode with the Composite Termination Structure. ECS J. Solid State Sci. Technol. 2024, 13, 125001. [Google Scholar] [CrossRef]
- Gong, H.; Sun, N.; Hu, T.; Yu, X.; Porter, M.; Yang, Z.; Ren, F.; Gu, S.; Zheng, Y.; Zhang, R.; et al. Ga2O3/NiO junction barrier Schottky diodes with ultra-low barrier TiN contact. Appl. Phys. Lett. 2024, 124, 233507. [Google Scholar] [CrossRef]
- Han, Z.; Hao, W.; Liu, J.; Xu, G.; Hu, Q.; Zheng, Z.; Yang, S.; Long, S. Improved β-Ga2O3 Schottky Barrier Diodes Featuring p-NiO Gradual Junction Termination Extension within Mesa Structure. In Proceedings of the 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bremen, Germany, 2–6 June 2024; pp. 232–235. [Google Scholar]
- Prajapati, P.; Lodha, S. Barrier height enhancement in β-Ga2O3 Schottky diodes using an oxygen-rich ultra-thin AlOx interfacial layer. Appl. Phys. Lett. 2024, 125, 061602. [Google Scholar] [CrossRef]
- Qin, Y.; Porter, M.; Xiao, M.; Du, Z.; Zhang, H.; Ma, Y.; Spencer, J.; Wang, B.; Song, Q.; Sasaki, K.; et al. 2 kV, 0.7 mΩ·cm2 Vertical Ga2O3 Superjunction Schottky Rectifier with Dynamic Robustness. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar]
- Hendricks, N.S.; Islam, A.E.; Sowers, E.A.; Williams, J.; Dryden, D.M.; Liddy, K.J.; Wang, W.; Speck, J.S.; Green, A.J. Current transport mechanisms of metal/TiO2/β-Ga2O3 diodes. J. Appl. Phys. 2024, 135, 095705. [Google Scholar] [CrossRef]
- Li, M.; He, M.; Wang, X.; Jiang, Y.; Wen, K.; Du, F.; Deng, C.; He, J.; Zhang, Y.; Yu, W.; et al. High-performance β-Ga2O3 Schottky barrier diodes with Mg current blocking layer using spin-on-glass technique. Appl. Phys. Lett. 2024, 125, 132101. [Google Scholar] [CrossRef]














| Parameter | Si | GaAs | 4H-SiC | GaN | Diamond | β-Ga2O3 | AlN | h-BN | ZnO |
|---|---|---|---|---|---|---|---|---|---|
| Eg (eV) | 1.12 | 1.43 | 3.2 | 3.4 | 5.5 | 4.7–4.9 | 6.2 | 6.1 | 3.37 |
| Μ (cm2/Vs) | 1480 | 8400 | 1000 | 1250 | 2000 | 200–300 | 30 | 62 | / |
| EC (MV/cm) | 0.3 | 0.4 | 2.5 | 3.3 | 10 | 8 | 15.4 | 7 | 0.01 |
| VS (107cm/s) | 1 | 1.2 | 2 | 2.5–2.6 | 1 | 1.8–2 | 1.3 | / | 3.2 |
| Thermal conductivity (WmK−1) | 150 | 5 | 490 | 200 | 2200 | 23 | 319 | 625 | 50 |
| Dielectric constant (ε) | 11.8 | 12.9 | 9.7 | 9 | 5.5 | 10 | 9.76 | 4.97 | 8.5 |
| BFOM | 1 | 14.7 | 317 | 846 | 24,660 | 3214 | 32,384 | 3083 | 10 |
| JFOM | 1 | 1.8 | 278 | 1089 | 81,000 | 2844 | 7744 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-Q.; Liu, J.-J.; Tian, Y.-T.; Xi, H.; Yue, Q.-H.; Li, H.-F.; Wu, Z.-Y.; Sun, L.-F. Recent Progress of β-Ga2O3 Power Diodes: A Comprehensive Review. Inorganics 2025, 13, 364. https://doi.org/10.3390/inorganics13110364
Zhang L-Q, Liu J-J, Tian Y-T, Xi H, Yue Q-H, Li H-F, Wu Z-Y, Sun L-F. Recent Progress of β-Ga2O3 Power Diodes: A Comprehensive Review. Inorganics. 2025; 13(11):364. https://doi.org/10.3390/inorganics13110364
Chicago/Turabian StyleZhang, Lin-Qing, Jia-Jia Liu, Ya-Ting Tian, Han Xi, Qing-Hua Yue, Hong-Fang Li, Zhi-Yan Wu, and Li-Fang Sun. 2025. "Recent Progress of β-Ga2O3 Power Diodes: A Comprehensive Review" Inorganics 13, no. 11: 364. https://doi.org/10.3390/inorganics13110364
APA StyleZhang, L.-Q., Liu, J.-J., Tian, Y.-T., Xi, H., Yue, Q.-H., Li, H.-F., Wu, Z.-Y., & Sun, L.-F. (2025). Recent Progress of β-Ga2O3 Power Diodes: A Comprehensive Review. Inorganics, 13(11), 364. https://doi.org/10.3390/inorganics13110364
