Biophysical Characterization of Membrane Interactions of 3-Hydroxy-4-Pyridinone Vanadium Complexes: Insights for Antidiabetic Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Liposome Size Determination
2.2. DSC Analysis of Vanadium Complex Effects on DMPC Liposomes
2.3. UV-Vis Analysis of Vanadium Complex Effects
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Liposomes
3.3. Vesicle Size Distribution
3.4. Differential Scanning Calorimetry (DSC)
3.5. Ultraviolet-Visible Absorption Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaral, L.M.P.F.; Moniz, T.; Silva, A.M.N.; Rangel, M. Vanadium Compounds with Antidiabetic Potential. Int. J. Mol. Sci. 2023, 24, 15675. [Google Scholar] [CrossRef]
- Singh, A.P.; Roy, S.; Maurya, I.C. Vanadium complexes: Potential candidates for therapeutic applications. Transit. Met. Chem. 2024, 49, 101–119. [Google Scholar] [CrossRef]
- Treviño, S.; Diaz, A. Vanadium and insulin: Partners in metabolic regulation. J. Inorg. Biochem. 2020, 208, 111094. [Google Scholar] [CrossRef]
- Li, M.; Ding, W.; Smee, J.J.; Baruah, B.; Willsky, G.R.; Crans, D.C. Anti-diabetic effects of vanadium(III, IV, V)–chlorodipicolinate complexes in streptozotocin-induced diabetic rats. Biometals 2009, 22, 895–905. [Google Scholar] [CrossRef]
- Semiz, S. Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflammatory, and antihyperglycemic effects. J. Trace Elem. Med. Biol. 2022, 69, 126887. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K. Anti-diabetic and toxic effects of vanadium compounds. Mol. Cell. Biochem. 2000, 206, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Reyes, L.; Sánchez-Gaytán, B.L.; Pérez-Aguilar, J.M.; González-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [PubMed]
- Dayanand, Y.; Pather, R.; Xulu, N.; Booysen, I.; Sibiya, N.; Khathi, A.; Ngubane, P. Exploring the Biological Effects of Anti-Diabetic Vanadium Compounds in the Liver, Heart and Brain. Diabetes Metab. Syndr. Obes. 2024, 17, 3267–3278. [Google Scholar] [CrossRef]
- Scior, T.; Guevara-Garcia, A.; Bernard, P.; Do, Q.-T.; Domeyer, D.; Laufer, S. Are Vanadium Compounds Drugable? Structures and Effects of Antidiabetic Vanadium Compounds: A Critical Review. Mini-Rev. Med. Chem. 2005, 5, 963–978. [Google Scholar] [CrossRef]
- Domingo, J.L.; Gómez, M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem. Toxicol. 2016, 95, 137–141. [Google Scholar] [CrossRef]
- Ścibior, A.; Pietrzyk, Ł.; Plewa, Z.; Skiba, A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J. Trace Elem. Med. Biol. 2020, 61, 126508. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, C.; Zhao, X.; Han, X.; Li, X.; Ye, Y.; Li, Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front. Chem. 2022, 10, 869860. [Google Scholar] [CrossRef]
- Cilibrizzi, A.; Abbate, V.; Chen, Y.-L.; Ma, Y.; Zhou, T.; Hider, R.C. Hydroxypyridinone Journey into Metal Chelation. Chem. Rev. 2018, 118, 7657–7701. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.A.; Chaves, S. 3-Hydroxypyridinone Derivatives as Metal-Sequestering Agents for Therapeutic Use. Future Med. Chem. 2015, 7, 383–410. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.A.; Marques, S.M.; Chaves, S. Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord. Chem. Rev. 2012, 256, 240–259. [Google Scholar] [CrossRef]
- He, M.; Fan, M.; Peng, Z.; Wang, G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur. J. Med. Chem. 2021, 221, 113546. [Google Scholar] [CrossRef]
- Amaral, L.M.; Moniz, T.; Rangel, M. Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis. Molecules 2024, 29, 5905. [Google Scholar] [CrossRef]
- Tenchov, B. On the reversibility of the phase transitions in lipid-water systems. Chem. Phys. Lipids 1991, 57, 165–177. [Google Scholar] [CrossRef]
- Caffrey, M.; Hogan, J. LIPIDAT: A database of lipid phase transition temperatures and enthalpy changes. DMPC data subset analysis. Chem. Phys. Lipids 1992, 61, 1–109. [Google Scholar] [CrossRef]
- Koynova, R.; Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta Biomembr. 1998, 1376, 91–145. [Google Scholar] [CrossRef]
- Rangel, M.; Leite, A.; Amorim, M.J.; Garribba, E.; Micera, G.; Lodyga-Chruscinska, E. Vanadium(IV) and (V) complexes with pyridinone ligands: Synthesis, characterization and insulin-mimetic activity. Inorg. Chem. 2006, 45, 8086–8097. [Google Scholar] [CrossRef] [PubMed]
- Rangel, M.; Amorim, M.J.; Nunes, A.; Leite, A.; Pereira, E.; Castro, B.D.; Sousa, C.; Yoshikawa, Y.; Sakurai, H. Novel 3-hydroxy-4-pyridinonato oxidovanadium(IV) complexes to investigate structure/activity relationships. J. Inorg. Biochem. 2009, 103, 496–502. [Google Scholar] [CrossRef]
- Burgess, J.; De Castro, B.; Oliveira, C.; Rangel, M.; Schlindwein, W. Synthesis and characterization of 3-hydroxy-4-pyridinone-oxovanadium(IV) complexes. Polyhedron 1997, 16, 789–794. [Google Scholar] [CrossRef]
- McLaren, C.W.F. An accurate and convenient organic phosphorous assay. Anal. Biochem. 1971, 39, 527–530. [Google Scholar] [CrossRef]
- McLauchlan, C.C.; Peters, B.J.; Willsky, G.R.; Crans, D.C. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev. 2015, 301, 163–199. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; McLauchlan, C.C.; Rompel, A.; Crans, D.C. Polyoxidovanadates’ interactions with proteins: An overview. Coord. Chem. Rev. 2022, 454, 214344. [Google Scholar] [CrossRef]
- Bharathi, S.; Mahendiran, D.; Senthil Kumar, R.; Rahiman, A.K. In vitro antioxidant and insulin mimetic activities of heteroleptic oxovanadium(IV) complexes with thiosemicarbazones and naproxen. ChemistrySelect 2020, 5, 6236–6525. [Google Scholar] [CrossRef]
- Adachi, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Bis(allixinato)oxovanadium(IV) Complex Is a Potent Antidiabetic Agent: Studies on Structure−Activity Relationship for a Series of Hydroxypyrone−Vanadium Complexes. J. Med. Chem. 2006, 49, 3251–3256. [Google Scholar] [CrossRef]
- Sultana, S.Y.; Sharma, M.; Talukdar, H.; Saikia, G.; Begum, T.; Sinha, A.; Mishra, S.; Sarma, B.; Dasgupta, S.; Islam, N.S. Synthesis, Structure, Stability, Lipophilicity and Insulin-Sensitizing Activity of New Heteroleptic Oxidovanadium(V) Complexes. J. Inorg. Biochem. 2025, 270, 112939. [Google Scholar] [CrossRef] [PubMed]
Vanadium Complex Formulae | Substituents | Ligand Abbreviation | Complex Abbreviation | ||
---|---|---|---|---|---|
R1 | R2 | ||||
1 | H | CH3 | Hmpp | VO(mpp) | |
2 | CH3 | CH3 | Hdmpp | VO(dmpp) | |
3 | CH3-CH2 | CH3 | Hetmpp | VO(etmpp) | |
4 | CH3-(CH2)3 | CH3 | Hbutmpp | VO(butmpp) | |
5 | CH3-(CH2)5 | CH3 | Hhexylmpp | VO(hexylmpp) | |
6 | H | CH3-CH2 | Hetpp | VO(etpp) | |
7 | CH3-CH2 | CH3-CH2 | Hdetpp | VO(detpp) | |
8 | CH3-(CH2)3 | CH3-CH2 | Hbutetpp | VO(butetpp) | |
9 | CH3-(CH2)5 | CH3-CH2 | Hhexyletpp | VO(hexyletpp) |
Complex | d (nm) a | PDI a |
---|---|---|
DMPC | 112.4 ± 0.8 | 0.063 ± 0.018 |
VO(mpp) | 112.3 ± 0.8 | 0.040 ± 0.005 |
VO(dmpp) | 114.2 ± 1.1 | 0.035 ± 0.009 |
VO(etmpp) | 111.1 ± 1.0 | 0.043 ± 0.008 |
VO(butmpp) | 112.8 ± 1.9 | 0.034 ± 0.010 |
VO(hexylmpp) | 115.1 ± 1.0 | 0.070 ± 0.002 |
VO(etpp) | 111.6 ± 0.9 | 0.053 ± 0.007 |
VO(detpp) | 113.5 ± 1.2 | 0.056 ± 0.008 |
VO(butetpp) | 108.7 ± 0.8 | 0.044 ± 0.006 |
VO(hexyletpp) | 108.6 ± 0.7 | 0.049 ± 0.009 |
Tm/°C | ΔT1/2/°C | ΔH/kJ·mol−1 | |
---|---|---|---|
DMPC | 24.5 | 0.8 | 20.2 |
VO(mpp) | 24.5 | 0.8 | 21.0 |
VO(dmpp) | 24.4 | 0.8 | 20.2 |
VO(etmpp) | 24.4 | 0.8 | 20.9 |
VO(butmpp) | 23.9 | 1.2 | 19.5 |
VO(hexylmpp) | 22.9 | 1.3 | 24.1 |
VO(etpp) | 24.4 | 0.8 | 20.2 |
VO(detpp)2 | 24.4 | 0.8 | 19.7 |
VO(butetpp)2 | 24.5 | 0.8 | 21.1 |
VO(hexyletpp)2 | 22.9 | 1.1 | 23.5 |
Tm/°C | ΔT1/2/°C | ΔH/kJ·mol−1 | |
---|---|---|---|
DMPC (no complex added) | 24.5 | 0.8 | 19.6 |
DMPC + VO(butmpp) 0.5 mM | 24.5 | 0.8 | 19.3 |
DMPC + VO(butmpp) 1.0 mM | 24.2 | 1.0 | 19.7 |
DMPC + VO(butmpp) 2.0 mM | 23.9 | 1.2 | 19.5 |
DMPC + VO(hexylmpp) 0.5 mM | 24.0 | 0.8 | 23.5 |
DMPC + VO(hexylmpp) 1.0 mM | 23.6 | 1.0 | 24.5 |
DMPC + VO(hexylmpp) 2.0 mM | 22.9 | 1.3 | 24.1 |
DMPC + VO(hexyletpp) 0.5 mM | 24.0 | 1.0 | 22.7 |
DMPC + VO(hexyletpp) 1.0 mM | 23.7 | 1.0 | 22.0 |
DMPC + VO(hexyletpp) 2.0 mM | 22.9 | 1.1 | 23.5 |
Complex | A (DMSO) | λ (DMSO) (nm) | A (HEPES) | λ (HEPES) (nm) | A (DMPC) | λ (DMPC) (nm) |
---|---|---|---|---|---|---|
VO(mpp) | 2.127 | 294 | 2.496 | 274 | 2.310 | 274 |
VO(dmpp) | 2.253 | 302 | 2.592 | 286 | 2.507 | 286 |
VO(etmpp) | 2.640 | 302 | 2.500 | 286 | 2.634 | 286 |
VO(butmpp) | 2.332 | 302 | 2.699 | 284 | 2.762 | 284 |
VO(hexylmpp) | 1.991 | 302 | 0.779 | 282 | 1.649 | 286 |
VO(etpp) | 2.323 | 296 | 2.823 | 276 | 2.800 | 276 |
VO(detpp) | 2.557 | 304 | 1.573 | 284 | 1.571 | 284 |
VO(butetpp) | 2.796 | 304 | 2.385 | 284 | 2.368 | 286 |
VO(hexyletpp) | 1.281 | 292 | 1.244 | 280 | 1.720 | 282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, L.M.P.F.; Moniz, T.; Rangel, M. Biophysical Characterization of Membrane Interactions of 3-Hydroxy-4-Pyridinone Vanadium Complexes: Insights for Antidiabetic Applications. Inorganics 2025, 13, 311. https://doi.org/10.3390/inorganics13100311
Amaral LMPF, Moniz T, Rangel M. Biophysical Characterization of Membrane Interactions of 3-Hydroxy-4-Pyridinone Vanadium Complexes: Insights for Antidiabetic Applications. Inorganics. 2025; 13(10):311. https://doi.org/10.3390/inorganics13100311
Chicago/Turabian StyleAmaral, Luísa M. P. F., Tânia Moniz, and Maria Rangel. 2025. "Biophysical Characterization of Membrane Interactions of 3-Hydroxy-4-Pyridinone Vanadium Complexes: Insights for Antidiabetic Applications" Inorganics 13, no. 10: 311. https://doi.org/10.3390/inorganics13100311
APA StyleAmaral, L. M. P. F., Moniz, T., & Rangel, M. (2025). Biophysical Characterization of Membrane Interactions of 3-Hydroxy-4-Pyridinone Vanadium Complexes: Insights for Antidiabetic Applications. Inorganics, 13(10), 311. https://doi.org/10.3390/inorganics13100311