Enhanced Surface Properties of TiO2-Based Coatings via Stevia-Assisted Spark Suppression: Insights from Density Functional Theory Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. MAO Process
2.2. Characterization
2.3. DFT Calculations
3. Results and Discussion
3.1. Voltage–Time Curves
3.2. Morphologies of the Oxide Layers
3.3. Compositional Analysis
3.4. Corrosion Behavior
3.5. DFT Insights into Surface Adsorption and Reactivity
4. Conclusions
- The addition of stevia moderates the intensity of plasma discharge, which promotes the development of a uniform silicon-rich structure with decreased porosity and smaller pore size.
- The sample treated in an electrolyte with stevia additive showed better corrosion resistance than the counterpart treated in an electrolyte without stevia.
- The HOMO–LUMO energy gap analysis indicates that TEOS exhibits higher chemical stability, while ST shows a favorable electron-donating propensity.
- The TDOS plots reveal distinct electronic structures, with TEOS + ST displaying unique characteristics. MEP maps highlight the electrophilic and nucleophilic reactivity of the molecules, suggesting their potential adsorption behavior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ozan, S.; Munir, K.; Biesiekierski, A.; Ipek, R.; Li, Y.; Wen, C. Titanium alloys, including nitinol. In Biomaterials Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 229–247. [Google Scholar]
- Zhang, L.C.; Chen, L.Y.; Wang, L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Adv. Eng. Mater. 2020, 22, 1901258. [Google Scholar] [CrossRef]
- Paghandeh, M.; Zarei-Hanzaki, A.; Abedi, H.; Vahidshad, Y.; Kawałko, J.; Dietrich, D.; Lampke, T. Compressive/tensile deformation behavior and the correlated microstructure evolution of Ti–6Al–4V titanium alloy at warm temperatures. J. Mater. Res. Technol. 2021, 10, 1291–1300. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Cheng, T.-C.; Fang, T.-H.; Li, M.-H. The fabrication and characteristics of hydroxyapatite film grown on titanium alloy Ti-6Al-4V by anodic treatment. J. Mater. Res. Technol. 2020, 9, 4817–4825. [Google Scholar] [CrossRef]
- Zehra, T.; Patil, S.A.; Shrestha, N.K.; Fattah-Alhosseini, A.; Kaseem, M. Anionic assisted incorporation of WO3 nanoparticles for enhanced electrochemical properties of AZ31 Mg alloy coated via plasma electrolytic oxidation. J. Alloys Compd. 2022, 916, 165445. [Google Scholar] [CrossRef]
- Roknian, M.; Fattah-Alhosseini, A.; Gashti, S.O. Plasma electrolytic oxidation coatings on pure Ti substrate: Effects of Na3PO4 concentration on morphology and corrosion behavior of coatings in ringer’s physiological solution. J. Mater. Eng. Perform. 2018, 27, 1343–1351. [Google Scholar] [CrossRef]
- Kaseem, M.; Choe, H.-C. Synchronized improvements in the protective and bioactive properties of plasma-electrolyzed layers via cellulose microcrystalline. ACS Biomater. Sci. Eng. 2023, 9, 197–210. [Google Scholar] [CrossRef]
- Toorani, M.; Aliofkhazraei, M. Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment. Surf. Interfaces 2019, 14, 262–295. [Google Scholar] [CrossRef]
- Kaseem, M.; Dikici, B. Optimization of surface properties of plasma electrolytic oxidation coating by organic additives: A review. Coatings 2021, 11, 374. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.-J.; Liu, Y.; Wang, D.; Chen, L.; Xie, L.; Li, L.; Zhang, W.; Wu, Y.-C. Stevioside–Zn2+ system as an eco-friendly corrosion inhibitor for C1020 carbon steel in hydrochloric acid solution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126010. [Google Scholar] [CrossRef]
- Roy, A.; De, S. Extraction of steviol glycosides using novel cellulose acetate pthalate (CAP)—Polyacrylonitrile blend membranes. J. Food Eng. 2014, 126, 7–16. [Google Scholar] [CrossRef]
- Dennington RD, I.I.; Keith, T.A.; Millam, J.M. GaussView, version 6.0. 16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09; Revision A.02; Gaussian Inc.: Wallingford, UK, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Plumley, J.A.; Dannenberg, J.J. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. J. Comput. Chem. 2011, 32, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- Kaseem, M.; Min, J.H.; Ko, Y.G. Corrosion behavior of Al-1wt% Mg-0.85 wt% Si alloy coated by micro-arc-oxidation using TiO2 and Na2MoO4 additives: Role of Current density. J. Alloys Compd. 2017, 723, 448–455. [Google Scholar] [CrossRef]
- Howard, C.J.; Sabine, T.M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 462–468. [Google Scholar] [CrossRef]
- Rezaee, M.; Khoie, S.M.M.; Liu, K.H. The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation. CrystEngComm 2011, 13, 5055–5061. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- DMol3; Accelrys Inc.: San Diego, CA, USA, 2004.
- Molaei, M.; Fattah-Alhosseini, A.; Nouri, M.; Mahmoodi, P.; Nourian, A. Incorporating TiO2 nanoparticles to enhance corrosion resistance, cytocompatibility, and antibacterial properties of PEO ceramic coatings on titanium. Ceram. Int. 2022, 48, 21005–21024. [Google Scholar] [CrossRef]
- Molaei, M.; Fattah-Alhosseini, A.; Nouri, M.; Mahmoodi, P.; Navard, S.H.; Nourian, A. Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles. Surf. Interfaces 2022, 30, 101967. [Google Scholar] [CrossRef]
- Rogov, A.B.; Yerokhin, A.; Matthews, A. The role of cathodic current in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the “soft sparking” mode. Langmuir 2017, 33, 11059–11069. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Kaseem, M.; Ko, Y.G. Hard acid–hard base interactions responsible for densification of alumina layer for superior electrochemical performance. Corros. Sci. 2020, 170, 108663. [Google Scholar] [CrossRef]
- Arun, S.; Ahn, S.-G.; Choe, H.-C. Surface characteristics of HA-coated and PEO-treated Ti-6Al-4V alloy in solution containing Ag nanoparticles. Surf. Interfaces 2023, 39, 102932. [Google Scholar] [CrossRef]
- Marques Ida, S.; da Cruz, N.C.; Landers, R.; Yuan, J.C.; Mesquita, M.F.; Sukotjo, C.; Mathew, M.T.; Barão, V.A. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration. Biointerphases 2015, 10, 041002. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ceron, D.A.; Amaya-Roncancio, S.; Riva, J.S.; Vargas-Eudor, A.; Escobar-Rincon, D.; Restrepo-Parra, E. Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study. Surf. Coat. Technol. 2021, 421, 127437. [Google Scholar] [CrossRef]
- Shokouhfar, M.; Dehghanian, C.; Montazeri, M.; Baradaran, A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl. Surf. Sci. 2012, 258, 2416–2423. [Google Scholar] [CrossRef]
- de Urquijo-Ventura, M.S.; Rao, M.S.; Meraz-Davila, S.; Torres-Ochoa, J.A.; Quevedo-Lopez, M.A.; Ramirez-Bon, R. PVP-SiO2 and PVP-TiO2 hybrid films for dielectric gate applications in CdS-based thin film transistors. Polymer 2020, 191, 122261. [Google Scholar] [CrossRef]
- Eduok, U.; Faye, O.; Szpunar, J.; Khaled, M. Effect of silylating agents on the superhydrophobic and self-cleaning properties of siloxane/polydimethylsiloxane nanocomposite coatings on cellulosic fabric filters for oil–water separation. RSC Adv. 2021, 11, 9586. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.; Shi, T.; Wang, S.; Huang, X.; Zhang, T.; Tang, Y.; Zhang, X.; Qiu, R. Silane-based coatings on pyrite for remedication of acid mine drainage. Water Res. 2013, 47, 4391–4402. [Google Scholar] [CrossRef]
- Kaseem, M.; Zehra, T.; Khan, M.A.; Safira, A.R.; Cho, H.; Lee, J.; Lee, G.; Yang, H.W.; Park, N. Guar gum-driven high-energy plasma electrolytic oxidation for concurrent improvements in the electrochemical and catalytic properties of Ti-15 Zr alloy. Surf. Interfaces 2022, 34, 102403. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Chaouiki, A.; Han, D.I.; Ko, Y.G. Multiwfn: A multifunctional wavefunction analyzer. J. Colloid Interface Sci. 2022, 622, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M. Full structural analysis of steviol: A DFT study. J. Mol. Struct. 2018, 1173, 679–689. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, Y.; Tian, D.; Li, Y.; Zhuang, L.; Wang, Y.; Xiao, W.; Zhu, J. Theoretical design and preparation research of molecularly imprinted polymers for steviol glycosides. J. Mol. Model. 2021, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tüzün, B.; Bhawsar, J. Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arab. J. Chem. 2021, 14, 102927. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-S’anchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Chaudhary, S.; Head, A.R.; Sánchez-De-Armas, R.; Tissot, H.; Olivieri, G.; Bournel, F.; Montelius, L.; Ye, L.; Rochet, F.; Gallet, J.-J.; et al. Real-time study of CVD growth of silicon oxide on rutile TiO2 (110) using tetraethyl orthosilicate. J. Phys. Chem. C 2015, 119, 19149–19161. [Google Scholar] [CrossRef]
Electrolyte | Composition | Conductivity ms/cm | |||
---|---|---|---|---|---|
CaAC (M) | CaGly (M) | TEOS (mL) | ST (g) | ||
0ST | 0.15 | 0.02 | 10 | 0 | 18.5 |
10ST | 0.15 | 0.02 | 10 | 10 | 18.1 |
Sample | Ecorr (V) | icorr (A/cm2) | βa (V/Decade) | |βc| (V/Decade) | Rp (Ω.cm2) |
---|---|---|---|---|---|
substrate | −0.428 | 1.01 × 10−6 | 0.430 | 0.164 | 7.24 × 105 |
0ST | −0.313 | 8.77 × 10−9 | 0.309 | 0.106 | 1.19 × 108 |
10ST | −0.022 | 1.72 × 10−10 | 0.264 | 0.158 | 5.98 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaseem, M.; Safira, A.R.; Fattah-alhosseini, A. Enhanced Surface Properties of TiO2-Based Coatings via Stevia-Assisted Spark Suppression: Insights from Density Functional Theory Calculations. Inorganics 2024, 12, 134. https://doi.org/10.3390/inorganics12050134
Kaseem M, Safira AR, Fattah-alhosseini A. Enhanced Surface Properties of TiO2-Based Coatings via Stevia-Assisted Spark Suppression: Insights from Density Functional Theory Calculations. Inorganics. 2024; 12(5):134. https://doi.org/10.3390/inorganics12050134
Chicago/Turabian StyleKaseem, Mosab, Ananda Repycha Safira, and Arash Fattah-alhosseini. 2024. "Enhanced Surface Properties of TiO2-Based Coatings via Stevia-Assisted Spark Suppression: Insights from Density Functional Theory Calculations" Inorganics 12, no. 5: 134. https://doi.org/10.3390/inorganics12050134
APA StyleKaseem, M., Safira, A. R., & Fattah-alhosseini, A. (2024). Enhanced Surface Properties of TiO2-Based Coatings via Stevia-Assisted Spark Suppression: Insights from Density Functional Theory Calculations. Inorganics, 12(5), 134. https://doi.org/10.3390/inorganics12050134