Complex Structure, Chemical Bonding, and Electrical Transport Properties of a La-Doped Zintl Phase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Analysis
2.2. Electronic Structure and Chemical Bonding
2.3. Electrical Transport Properties
3. Materials and Methods
3.1. Synthesis
3.2. X-Ray Crystallographic Analysis
3.3. Electronic Structure Calculation
3.4. Thermal Gravimetric Analysis (TGA)
3.5. Electrical Transport Properties Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Lim, W.Y.S.; Duran, S.S.F.; Loh, X.J.; Suwardi, A. Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Lett. 2022, 7, 720–735. [Google Scholar] [CrossRef]
- Jia, Y.; Jiang, Q.; Sun, H.; Liu, P.; Hu, D.; Pei, Y.; Liu, W.; Crispin, X.; Fabiano, S.; Ma, Y.; et al. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems. Adv. Mater. 2021, 33, 2102990. [Google Scholar] [CrossRef] [PubMed]
- DiSalvo, F.J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- ARodrigues, J.E.F.S.; Gainza, J.; Serrano-Sánchez, F.; Marini, C.; Huttel, Y.; Nemes, N.M.; Martínez, J.L.; Alonso, J.A. Atomic Structure and Lattice Dynamics of CoSb3 Skutterudite-Based Thermoelectrics. Chem. Mater. 2022, 34, 1213–1224. [Google Scholar] [CrossRef]
- Zhu, H.; Li, W.; Nozariasbmarz, A.; Liu, N.; Zhang, Y.; Priya, S.; Poudel, B. Half-Heusler alloys as emerging high power density thermoelectric cooling materials. Nat. Commun. 2023, 14, 3300. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, K.M.; Ortiz, B.R.; Gomes, L.C.; Meschke, V.; Adamczyk, J.; Braden, T.L.; Kaczorowski, D.; Ertekin, E.; Toberer, E.S. Strong Scattering from Low-Frequency Rattling Modes Results in Low Thermal Conductivity in Antimonide Clathrate Compounds. Chem. Mater. 2023, 35, 2918–2935. [Google Scholar] [CrossRef]
- Yu, Y.; Cagnoni, M.; Cojocaru-Mirédin, O.; Wuttig, M. Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Adv. Funct. Mater. 2020, 30, 1904862. [Google Scholar] [CrossRef]
- Nam, G.; Choi, W.; Lee, J.; Lim, S.J.; Jo, H.; Ok, K.M.; Ahn, K.; You, T.-S. Effect of Multi Substitution on the Thermoelectric Performance of the Ca11−xYbxSb10−yGez(0 ≤ x ≤ 9; 0 ≤ y ≤ 3; 0 ≤ z ≤ 3) System: Experimental and Theoretical Studies. Inorg. Chem. 2017, 56, 7099–7110. [Google Scholar] [CrossRef] [PubMed]
- Sa, H.; Lee, J.; Jo, H.; Moon, D.; Kim, M.; Ok, K.M.; You, T.-S. p-Type Double Doping and the Diamond-like Morphology Shift of the Zintl Phase Thermoelectric Materials: The Ca11−xAxSb10−yGez(A = Na, Li; 0.06(3) ≤ x ≤ 0.17(5), 0.19(1) ≤ y ≤ 0.55(1), 0.13(1) ≤ z ≤ 0.22(1)) System. Inorg. Chem. 2021, 60, 10124–10136. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ahn, K.; Kim, K.; Jo, H.; Yoon, J.S.; Moon, D.; Shin, W.H.; Ok, K.M.; You, T.-S. Effect of Rare-Earth Metals Substitution for Ca on the Crystal Structure and Thermoelectric Properties of the Ca11−xRExSb10−y System. Cryst. Growth Des. 2019, 19, 3498–3508. [Google Scholar] [CrossRef]
- Lee, J.; Sa, H.; Jo, H.; Moon, D.; Ok, K.M.; You, T.-S. Site-Selective n-Type “Heavy” Rare-Earth-Metal Doping in the Complex Zintl Phase Ca11−xRExSb10−y (RE = Tb, Dy, Ho, Er, Tm). Cryst. Growth Des. 2020, 20, 4503–4511. [Google Scholar] [CrossRef]
- Emsley, J. The Elements; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- PDXL2, Version 2.8.4.0, Integrated X-Ray Powder Diffraction Software, Rigaku: Tokyo, Japan, 2011.
- APEX2, Version 2013.6-2; Bruker AXS Inc.: Madison, WI, USA, 2013.
- SAINT, Version 8.32B; Bruker AXS Inc.: Madison, WI, USA, 2013.
- Sheldrick, G.M. SADABS, Version 2016/2; University of Göttingen: Göttingen, Germany, 2016. [Google Scholar]
- Gelato, L.M.; Parthe, E. STRUCTURE TIDY—A computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Andersen, O.K. Linear methods in band theory. Phys. Rev. B. 1975, 12, 3060–3083. [Google Scholar] [CrossRef]
- Andersen, O.K.; Jepsen, O. Explicit, First-Principles Tight-Binding Theory. Phys. Rev. Lett. 1984, 53, 2571–2574. [Google Scholar] [CrossRef]
- Lambrecht, W.R.L.; Andersen, O.K. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B. 1986, 34, 2439–2449. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, O.; Burkhardt, A.; Andersen, O.K. The TB-LMTO-ASA Program; Version 4.7; Max-Plank-Institut für Festkörperforschung: Stuttgart, Germany, 1999. [Google Scholar]
- Andersen, O.K.; Jepsen, O.; Glötzel, D. Canonical Description of the Band Structures of Metals. In Highlights of Condensed Matter Theory; Bassani, F., Fumi, F., Tosi, M., Eds.; Elsevier North Holland: New York, NY, USA, 1985; pp. 65–72. [Google Scholar]
- Jepsen, O.; Andersen, O.K. Calculated electronic structure of the sandwiched1 metals LaI2 and CeI2: Application of new LMTO techniques. Z. Phys. B Condens. Matter 1995, 97, 35–47. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 49, 16223–16233. [Google Scholar] [CrossRef] [PubMed]
Formula weight (g/mol) | 1676.164 |
Space group; Z | I4/mmm (No. 139); 4 |
Unit cell dimensions (Å) | a = 12.0258(2) |
c = 17.4202(4) | |
Volume (Å3) | 2519.3(1) |
Data/restraints/parameters | 712/0/42 |
R indices a (I > 2σ(I)) | R1 = 0.0279 |
wR2 = 0.0645 | |
R indices a (all data) | R1 = 0.0333 |
wR2 = 0.0669 | |
Goodness of fit on F2 | 1.118 |
Largest diff. peak/hole (e/Å3) | 2.460/−2.129 |
Atom | Ca1 | Ca2 | Ca3 | Ca4/La | Sb1 | Sb2 | Sb3 | Sb4 | Sb5 |
---|---|---|---|---|---|---|---|---|---|
Wyckoff site | 16n | 16n | 8h | 4e | 16m | 8j | 8h | 4e | 4d |
QVAL | 1.677 | 2.072 | 1.553 | 3.278 | 4.999 | 5.254 | 4.808 | 5.565 | 5.438 |
Volume (Å3) | 58.27 | 49.24 | 61.34 | 77.10 | 88.26 | 66.67 | 90.02 | 80.76 | 58.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, Y.; Choi, M.-H.; Ok, K.M.; You, T.-S. Complex Structure, Chemical Bonding, and Electrical Transport Properties of a La-Doped Zintl Phase. Inorganics 2024, 12, 333. https://doi.org/10.3390/inorganics12120333
Lee J, Lee Y, Choi M-H, Ok KM, You T-S. Complex Structure, Chemical Bonding, and Electrical Transport Properties of a La-Doped Zintl Phase. Inorganics. 2024; 12(12):333. https://doi.org/10.3390/inorganics12120333
Chicago/Turabian StyleLee, Junsu, Yunjeong Lee, Myung-Ho Choi, Kang Min Ok, and Tae-Soo You. 2024. "Complex Structure, Chemical Bonding, and Electrical Transport Properties of a La-Doped Zintl Phase" Inorganics 12, no. 12: 333. https://doi.org/10.3390/inorganics12120333
APA StyleLee, J., Lee, Y., Choi, M.-H., Ok, K. M., & You, T.-S. (2024). Complex Structure, Chemical Bonding, and Electrical Transport Properties of a La-Doped Zintl Phase. Inorganics, 12(12), 333. https://doi.org/10.3390/inorganics12120333