Photoluminescence Properties of X-Ray Generated Divalent Sm in Mechanochemically Prepared Nanocrystalline CaF₂:Sm3+
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerward, L.; Olsen, J.S.; Steenstrup, S.; Malinowski, M.; Åsbrink, S.; Waskowska, A. X-ray Diffraction Investigations of CaF2 at High Pressure. J. Appl. Crystallogr. 1992, 25, 578–581. [Google Scholar] [CrossRef]
- Hazen, R.M.; Finger, L.W. Calcium fluoride as an internal pressure standard in high-pressure cyrstallography. J. Appl. Crystallogr. 1981, 14, 234–236. [Google Scholar] [CrossRef]
- Song, K.S.; Williams, R.T. Alkaline Earth Fluorides. In Self-Trapped Excitons; Springer: Berlin/Heidelberg, Germany, 1993; pp. 96–122. [Google Scholar]
- Cheetham, A.; Fender, B.; Cooper, M. Defect structure of calcium fluoride containing excess anions I. Bragg scattering. J. Phys. C Solid State Phys. 2001, 4, 3107. [Google Scholar] [CrossRef]
- Ye, W.; Liu, X.; Qiying, H.; Zhou, Z.; Hu, G. Co-precipitation synthesis and self-reduction of CaF2:Eu2+ nanoparticles using different surfactants. Mater. Res. Bull. 2016, 83, 428–433. [Google Scholar] [CrossRef]
- Cantelar, E.; Sanz-García, J.A.; Sanz-Martín, A.; Muñoz Santiuste, J.E.; Cussó, F. Structural, photoluminescent properties and Judd-Ofelt analysis of Eu3+-activated CaF2 nanocubes. J. Alloys Compd. 2020, 813, 152194. [Google Scholar] [CrossRef]
- Pandurangappa, C.; Lakshminarasappa, B.N. Optical studies of samarium-doped fluoride nanoparticles. Philos. Mag. 2011, 91, 4486–4494. [Google Scholar] [CrossRef]
- Rozaila, Z.S.; Riesen, H. Photoinduced electron transfer in Eu2+ and Sm3+ co-doped CaF2 nanocrystals prepared by co-precipitation. Opt. Mater. 2024, 150, 115225. [Google Scholar] [CrossRef]
- Ritter, B.; Krahl, T.; Rurack, K.; Kemnitz, E. Nanoscale CaF2 doped with Eu3+ and Tb3+ through fluorolytic sol–gel synthesis. J. Mater. Chem. C 2014, 2, 8607–8613. [Google Scholar] [CrossRef]
- Yuan, G.; Murai, S.; Tamura, S.; Tomita, K.; Tanaka, K. Enhancement of up- and downconversion photoluminescence from Yb3+, Er3+ co-doped CaF2 nanoparticles deposited on two-dimensional plasmonic arrays. In Proceedings of the Proceedings Volume 11194, Plasmonics IV, Hangzhou, China, 20–23 October 2019. [Google Scholar]
- Nakhaei, O.; Shahtahmassebi, N.; Mahmood, R. Synthesis and Characterization of CaF2 NPs with Co-precipitation and Hydrothermal Method. J. Nanomed. Nanotechnol. 2011, 2, 116. [Google Scholar]
- Quan, Z.; Yang, D.; Yang, P.; Zhang, X.; Lian, H.; Liu, X.; Lin, J. Uniform Colloidal Alkaline Earth Metal Fluoride Nanocrystals: Nonhydrolytic Synthesis and Luminescence Properties. Inorg. Chem. 2008, 47, 9509–9517. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Adams, C.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2011, 41, 413–447. [Google Scholar] [CrossRef] [PubMed]
- Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E. Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1−xMbxF2 (M: Ca, Sr, Ba). Solid State Sci. 2016, 60, 65–74. [Google Scholar] [CrossRef]
- Molaiyan, P.; Witter, R. Mechanochemical synthesis of solid-state electrolyte Sm1−xCaxF3−x for batteries and other electrochemical devices. Mater. Lett. 2019, 244, 22–26. [Google Scholar] [CrossRef]
- Chowdhury, N.; Riesen, N.; Riesen, H. Yb3+ and Er3+ Codoped BaLiF3 Nanocrystals for X-ray Dosimetry and Imaging by Upconversion Luminescence. ACS Appl. Nano Mater. 2021, 4, 6659–6667. [Google Scholar] [CrossRef]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Mezentseva, N.V.; Bobrova, L.N.; Smorygo, O.L.; Eremeev, N.F.; Fedorova, Y.E.; Bespalko, Y.N.; Skriabin, P.I.; Krasnov, A.V.; Lukashevich, A.I.; et al. Chapter 12—Advanced Materials for Solid Oxide Fuel Cells and Membrane Catalytic Reactors. In Advanced Nanomaterials for Catalysis and Energy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–514. [Google Scholar]
- Düvel, A.; Wilkening, M.; Uecker, R.; Wegner, S.; Sepelak, V.; Heitjans, P. Mechanosynthesized nanocrystalline BaLiF3: The impact of grain boundaries and structural disorder on ionic transport. Phys. Chem. Chem. Phys. 2010, 12, 11251–11262. [Google Scholar] [CrossRef] [PubMed]
- Heise, M.; Scholz, G.; Krahl, T.; Kemnitz, E. Luminescent properties of Eu3+ doped CaF2, SrF2, BaF2 and PbF2 powders prepared by high-energy ball milling. Solid State Sci. 2019, 91, 113–118. [Google Scholar] [CrossRef]
- Rozaila, Z.S.; Riesen, N.; Riesen, H. Luminescence and photoionization of X-ray generated Sm2+ in coprecipitated CaF2 nanocrystals. Dalton Trans. 2021, 50, 16205–16213. [Google Scholar] [CrossRef]
- Crystallography Open Database. Available online: http://www.crystallography.net/cod/index.php (accessed on 1 December 2019).
- MAUD. Available online: http://maud.radiographema.eu/ (accessed on 2 December 2019).
- Zhang, J.; Riesen, H. Photostimulated and persistent luminescence of samarium ions in BaFCl. J. Lumin. 2019, 207, 188–194. [Google Scholar] [CrossRef]
- Liu, Z.; Stevens-Kalceff, M.A.; Wang, X.; Riesen, H. Mechanochemical synthesis of nanocrystalline BaFCl:Sm3+ storage phosphor by ball milling. Chem. Phys. Lett. 2013, 588, 193–197. [Google Scholar] [CrossRef]
- Bensalah, A.; Mortier, M.; Patriarche, G.; Gredin, P.; Vivien, D. Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles. J. Solid State Chem. 2006, 179, 2636–2644. [Google Scholar] [CrossRef]
- Zhi, G.; Song, J.; Mei, B.; Weibing, Z. Synthesis and Characterization of Er3+ Doped CaF2 Nanoparticles. J. Alloys Compd. 2011, 509, 9133–9137. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wells, J.-P.R. Laser Spectroscopy of Alkaline Earth Fluoride Crystals Doped with Trivalent Samarium and Europium Ions. Ph.D. Thesis, University of Canterbury, Christchurch, New Zeland, 1996. [Google Scholar]
- Mikhail, P.; Ramseyer, K.; Frei, G.; Budde, F.; Hulliger, J. Bleaching of Sm2+ during photoluminescence and cathodoluminescence. Opt. Commun. 2001, 188, 111–117. [Google Scholar] [CrossRef]
- Rabbiner, N. Fluorescence of Sm3+ in CaF2. Phys. Rev. 1963, 130, 502–506. [Google Scholar] [CrossRef]
- Bungala, C.J.; Kumar, M.; Gopal, K. Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses. Opt. Mater. 2011, 33, 1643–1647. [Google Scholar]
- Jamalaiah, B.C.; Rasool, S.N. Fluorescence properties of Sm3+ ions in yttrium aluminum borate phosphors for optical applications. J. Mol. Struct. 2015, 1097, 161–165. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Yang, R.; Mao, M.; Qiu, J.; Kityk, I.V. Photoluminescence of Sm3+, Dy3+, and Tm3+-doped transparent glass ceramics containing CaF2 nanocrystals. J. Non-Cryst. Solids 2009, 355, 2668–2673. [Google Scholar] [CrossRef]
- Qiao, Y.-P.; Chen, P. Luminescence, energy transfer, and color adjustment of CaO-CaF2-Al2O3-B2O3-SiO2 glass co-doped with CeO2 and Sm2O3. J. Non-Cryst. Solids 2021, 552, 120461. [Google Scholar] [CrossRef]
- Wood, D.L.; Kaiser, W. Absorption and Fluorescence of Sm2+ in CaF2, SrF2, and BaF2. Phys. Rev. 1962, 126, 2079–2088. [Google Scholar] [CrossRef]
- Kelly-Gorham, M.R.K.; DeVetter, B.M.; Brauer, C.S.; Cannon, B.D.; Burton, S.D.; Bliss, M.; Johnson, T.J.; Myers, T.L. Complex refractive index measurements for BaF2 and CaF2 via single-angle infrared reflectance spectroscopy. Opt. Mater. 2017, 72, 743–748. [Google Scholar] [CrossRef]
- Kaiser, W.; Spitzer, W.G.; Kaiser, R.H.; Howarth, L.E. Infrared properties of CaF2, SrF2, and BaF2. Phys. Rev. 1962, 127, 1950–1954. [Google Scholar] [CrossRef]
- Rozaila, Z.S.; Hutchison, W.; Riesen, H. Persistent Spectral Hole-Burning and Zeeman Effect of X-ray-Induced Sm2+ in CaF2:Sm3+ Nanocrystals. J. Phys. Chem. C 2023, 127, 16950–16959. [Google Scholar] [CrossRef]
- Radzhabov, E.A. Spectroscopy of divalent samarium in alkaline-earth fluorides. Opt. Mater. 2018, 85, 127–132. [Google Scholar] [CrossRef]
- Kaiser, W.; Garrett, C.G.B.; Wood, D.L. Fluorescence and Optical Maser Effects in CaF2:Sm++. Phys. Rev. 1961, 123, 766–776. [Google Scholar] [CrossRef]
- Qiao, Y.-P. Influence of Sm2O3 and CaF2 Concentration on the Enhancement of Luminescence and Red Colour in Borosilicate Glass. Trans. Indian Ceram. Soc. 2021, 80, 208–215. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Stevens-Kalceff, M.A.; Riesen, H. Effects of Postannealing on the Photoluminescence Properties of Coprecipitated Nanocrystalline BaFCl:Sm3+. J. Phys. Chem. A 2013, 117, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
- Stevens-Kalceff, M.A.; Liu, Z.; Riesen, H. Cathodoluminescence Microanalysis of Irradiated Microcrystalline and Nanocrystalline Samarium Doped BaFCl. Microsc. Microanal. 2012, 18, 1229–1238. [Google Scholar] [CrossRef]
(a) Ball milling time CaF2: 0.1% Sm 3+ | |||||
Time (h) | Average crystallite size ± 1 (nm) | Lattice parameter, a (Å) | Rietveld refinement | ||
% | % | ||||
1 | 12 | 5.4754 ± 0.0012 | 18.9 | 14.5 | 1.30 |
3 | 11 | 5.4763 ± 0.0010 | 19.0 | 15.1 | 1.26 |
5 | 9 | 5.4823 ± 0.0012 | 19.4 | 14.9 | 1.30 |
8 | 8 | 5.4832 ± 0.0013 | 18.5 | 14.9 | 1.24 |
(b) Concentration of Sm 3+ CaF2: ySm 3+, 8 h ball milling time | |||||
y% | Average crystallite size ± 1 (nm) | Lattice parameter, a (Å) | Rietveld refinement | ||
% | % | ||||
0 | 12 | 5.4824 ± 0.0011 | 15.9 | 13.9 | 1.14 |
0.05 | 11 | 5.4826 ± 0.0012 | 16.8 | 13.8 | 1.22 |
0.1 | 9 | 5.4832 ± 0.0013 | 18.5 | 14.9 | 1.24 |
0.3 | 9 | 5.4838 ± 0.0012 | 17.4 | 14.4 | 1.21 |
0.5 | 8 | 5.4844 ± 0.0011 | 17.8 | 15.2 | 1.17 |
1 | 8 | 5.4864 ± 0.0010 | 17.3 | 14.6 | 1.18 |
3 | 7 | 5.4880 ± 0.0014 | 17.1 | 14.5 | 1.18 |
5 | 6 | 5.4915 ± 0.0017 | 17.2 | 14.6 | 1.18 |
(c) Annealing temperature CaF2: 0.1% Sm 3+, 8 h ball milling time | |||||
Temp. (°C) | Average crystallite size ± 1 (nm) | Lattice parameter, a (Å) | Rietveld refinement | ||
% | % | ||||
as-pre | 9 | 5.4774 ± 0.0011 | 20.9 | 15.0 | 1.39 |
200 | 12 | 5.4753 ± 0.0007 | 19.3 | 15.4 | 1.25 |
300 | 22 | 5.4701 ± 0.0004 | 18.7 | 15.3 | 1.22 |
400 | 45 | 5.4687 ± 0.0002 | 18.7 | 15.2 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozaila, Z.S.; Riesen, N.; Riesen, H. Photoluminescence Properties of X-Ray Generated Divalent Sm in Mechanochemically Prepared Nanocrystalline CaF₂:Sm3+. Inorganics 2024, 12, 332. https://doi.org/10.3390/inorganics12120332
Rozaila ZS, Riesen N, Riesen H. Photoluminescence Properties of X-Ray Generated Divalent Sm in Mechanochemically Prepared Nanocrystalline CaF₂:Sm3+. Inorganics. 2024; 12(12):332. https://doi.org/10.3390/inorganics12120332
Chicago/Turabian StyleRozaila, Z. Siti, Nicolas Riesen, and Hans Riesen. 2024. "Photoluminescence Properties of X-Ray Generated Divalent Sm in Mechanochemically Prepared Nanocrystalline CaF₂:Sm3+" Inorganics 12, no. 12: 332. https://doi.org/10.3390/inorganics12120332
APA StyleRozaila, Z. S., Riesen, N., & Riesen, H. (2024). Photoluminescence Properties of X-Ray Generated Divalent Sm in Mechanochemically Prepared Nanocrystalline CaF₂:Sm3+. Inorganics, 12(12), 332. https://doi.org/10.3390/inorganics12120332