Metal Rich Metallaboranes: Synthesis, Structure and Bonding of pileo-[(Cp*Ru)2M(CO)3(µ-H)(µ-E)(µ3-BH)B2H5] (M = Mo, W, E = CO, and M = Mn, E = H) Clusters
Abstract
:1. Introduction
2. Results and Discussion
Synthesis of the Pileo-Heterotrimetallic Clusters [(Cp*Ru)2M(CO)3(µ-H)(µ-E)(µ3-BH)B2H5] (M = Mo, W, E = CO, and M = Mn, E = H)
3. Materials and Methods
3.1. General Methods and Instrumentation
3.2. Single-Crystal X-ray Diffraction Analysis
3.3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, L.D.; Lipscomb, W.N. Closo Boron Hydrides with 13 to 24 Boron Atoms. Inorg. Chem. 1977, 16, 2989–2996. [Google Scholar] [CrossRef]
- Marder, T.B.; Lin, Z. Contemporary Metal Boron Chemistry I Borylenes, Boryls, Borane Sigma-Complexes, and Borohydrides. In Structure and Bonding; Springer: Berlin, Germany, 2008; Volume 130. [Google Scholar]
- Shameema, O.; Pathak, B.; Jemmis, E.D. Theoretical study of the reaction of B20H16 with MeCN: Closo/closo to closo/nido conversion. Inorg. Chem. 2008, 47, 4375–4382. [Google Scholar] [CrossRef] [PubMed]
- Fehlner, T.P.; Halet, J.-F.; Saillard, J.-Y. Molecular Clusters. A Bridge to Solid-State Chemistry; University Press: Cambridge, UK, 2007. [Google Scholar]
- Stock, A. Hydrides of Boron and Silicon; Cornell University Press: Ithaca, NY, USA, 1933. [Google Scholar]
- Kennedy, J.D. The Polyhedral Metallaboranes. Prog. Inorg. Chem. 1986, 34, 211–434. [Google Scholar]
- Grimes, R.N. Carboranes, 3rd ed.; Elsevier: Oxford, UK, 2016. [Google Scholar]
- Kar, S.; Pradhan, A.N.; Ghosh, S. Polyhedral Metallaboranes and Metallacarboranes. In Comprehensive Organometallic Chemistry IV; Parkin, G., Meyer, K., O’hare, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 9, pp. 263–369. [Google Scholar]
- Avdeeva, V.V.; Malinina, E.A.; Kuznetsov, N.T. Boron cluster anions and their derivatives in complexation reactions. Coord. Chem. Rev. 2022, 469, 214636–214744. [Google Scholar] [CrossRef]
- Grimes, R.N. Transition metal Metallacarboranes. In Comprehensive Organometallic Chemistry II; Abel, E.W., Stone, F.G.A., Wilkinson, G., Eds.; Pergamon: Oxford, UK, 1995; Volume 1, pp. 373–430. [Google Scholar]
- Housecroft, C.E. Boron Atoms in Transition Metal Clusters. Adv. Organomet. Chem. 1991, 33, 1–50. [Google Scholar]
- Hosmane, N.S.; Maguire, J.A. Metallacarboranes of d- and f-block metals. In Comprehensive Organometallic Chemistry III; Crabtree, R.H., Mingos, D.M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 3, pp. 175–264. [Google Scholar]
- King, R.B. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules. Chem. Rev. 2001, 101, 1119–1152. [Google Scholar] [CrossRef] [PubMed]
- Jemmis, E.D. Overlap control and stability of polyhedral molecules. closo-Carboranes. J. Am. Chem. Soc. 1982, 104, 7017–7020. [Google Scholar] [CrossRef]
- Mingos, D.M.P.; Wales, D.J. Introduction to Cluster Chemistry; Prentice Hall: Hoboken, NJ, USA, 1990. [Google Scholar]
- Tietze, L.F.; Griesbach, U.; Bothe, U.; Nakamura, H.; Yamamoto, Y. Novel Carboranes with a DNA Binding Unit for the Treatment of Cancer by Boron Neutron Capture Therapy. Chem. Bio. Chem. 2002, 3, 219–225. [Google Scholar] [CrossRef]
- Hosmane, N.S.; Eagling, R.D. Hand Book of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine; World Scientific: Singapore, 2018. [Google Scholar]
- Zhang, X.; Yan, H. Transition metal-induced B−H functionalization of o-carborane. Coord. Chem. Rev. 2019, 378, 466–482. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z. Synthesis, Structure, and Reactivity of 13- and 14-Vertex Carboranes. Acc. Chem. Res. 2014, 47, 1623–1633. [Google Scholar] [CrossRef]
- Deng, L.; Xie, Z. Advances in the chemistry of carboranes and metallacarboranes with more than 12 vertices. Coord. Chem. Rev. 2007, 251, 2452–2476. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, D.; Xu, J.; Li, C.; Lu, C.; Yan, H. Electrooxidative B−H Functionalization of nido-Carboranes. Angew. Chem. Int. Ed. 2021, 60, 7838–7844. [Google Scholar] [CrossRef] [PubMed]
- Farràs, P.; Juárez-Pérez, E.J.; LepšÍk, M.; Luque, R.; Núñez, R.; Teixidor, F. Metallacarboranes and Their Interactions: Theoretical Insights and Their Applicability. Chem. Soc. Rev. 2012, 41, 3445–3463. [Google Scholar] [CrossRef] [PubMed]
- Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F.F.; Teixidor, F. Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chem. Rev. 2016, 116, 14307–14378. [Google Scholar] [CrossRef] [PubMed]
- Teixidor, F.; Núñez, R.; Flores, M.A.; Demonceau, A.; Viñas, C. Forced Exo-Nido Rhoda and Ruthenacarboranes as Catalyst Precursors. A review. J. Organomet. Chem. 2000, 614–615, 48–56. [Google Scholar] [CrossRef]
- Núñez, R.; Romero, I.; Teixidor, F.; Viñas, C. Icosahedral boron clusters: A perfect tool for the enhancement of polymer features. Chem. Soc. Rev. 2016, 45, 5147–5173. [Google Scholar] [CrossRef] [PubMed]
- Kirlikovali, K.O.; Axtell, J.A.; Gonzalez, A.; Phung, A.C.; Khan, S.I.; Spokoyny, A.M. Luminescent metal complexes featuring photophysically innocent boron cluster ligands. Chem. Sci. 2016, 7, 5132–5138. [Google Scholar] [CrossRef]
- Fink, K.; Uchman, M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021, 431, 213684–213693. [Google Scholar] [CrossRef]
- Ghosh, S.; Noll, B.C.; Fehlner, T.P. Expansion of iridaborane clusters by addition of monoborane. Novel metallaboranes and mechanistic detail. Dalton Trans. 2008, 371–378. [Google Scholar] [CrossRef]
- Kennedy, J.D. Macropolyhedral metallaboranes—Aspects of preparation, constitution and structure. Coord. Chem. Rev. 2016, 323, 71–86. [Google Scholar] [CrossRef]
- Housecroft, C.E. Boranes and Metallaboranes Structure, Bonding and Reactivity, 2nd ed.Ellis Horwood: Frederick, MD, USA, 1994. [Google Scholar]
- Housecroft, C.E. From metallaboranes to transition metal borides: The chemistry of metal-rich metallaborane clusters. Polyhedron 1987, 6, 1935–1958. [Google Scholar] [CrossRef]
- Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 1971, 792–793. [Google Scholar] [CrossRef]
- Wade, K. Skeletal electron counting in cluster species. Some generalisations and predictions. Inorg. Nucl. Chem. Lett. 1972, 8, 559–562. [Google Scholar] [CrossRef]
- Wade, K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66. [Google Scholar]
- Williams, R.E. Carboranes and boranes; polyhedra and polyhedral fragment. Inorg. Chem. 1971, 10, 210–214. [Google Scholar] [CrossRef]
- Mingos, D.M.P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984, 17, 311–319. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Balakrishnarajan, M.M.; Pancharatna, P.D. Unifying Electron-Counting Rule for Macropolyhedral Boranes, Metallaboranes, and Metallocenes. J. Am. Chem. Soc. 2001, 123, 4313–4323. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Balakrishnarajan, M.M.; Pancharatna, P.D. Electronic Requirements for Macropolyhedral Boranes. Chem. Rev. 2002, 102, 93–144. [Google Scholar] [CrossRef]
- Mingos, D.M.P. 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules—Historical and Recent Developments (Structure and Bonding); Springer Nature: Berlin, Germany, 2021; Volume 187. [Google Scholar]
- Mingos, D.M.P. 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules—Historical and Recent Developments (Structure and Bonding); Springer Nature: Berlin, Germany, 2021; Volume 188. [Google Scholar]
- Kennedy, J.D. The Polyhedral Metallaboranes. Prog. Inorg. Chem. 1984, 32, 519–679. [Google Scholar]
- Bould, J.; Pasieka, M.; Braddock-Wilking, J.; Rath, N.P.; Barton, L. Synthesis of Heterobimetallaboranes and Related Species from [(PPh3)2(CO)OsB5H9]: Pileo-[(PPh3)2(CO)OsB5H5lrH(PPh3)(CO)], closo-[(PPh3)2(CO)(µ-H)OsB4H5{η5-(C5Me5)M}] (M = Rh, Ir), nido-[(PPh3)2(CO)Os(µ-H){η5-(C5Me5)Ir}B3H6], and nido-[(PPh3)2(CO)OsB4H7(n-C4H9)]. Organometallics 1995, 14, 5138–5149. [Google Scholar]
- Barton, L.; Bould, J.; Fang, H.; Rath, N.P. Formation of Heterobimetallaheptaboranes from the nido-metallahexaboranes (PPh3)2(CO)OsB5H9 and (PPh3)2(CO)IrB5H8. Main Group Met. Chem. 1996, 19, 711–726. [Google Scholar] [CrossRef]
- Bullick, H.J.; Grebenik, P.D.; Green, M.L.H.; Hughes, A.K.; Leach, J.B.; Mountford, P. Reactivity of nido-[2-{Fe(η-C5H5)}B5H10] with some transition-metal hydride complexes. J. Chem. Soc. Dalton Trans. 1994, 3337–3342. [Google Scholar] [CrossRef]
- Hoffmann, R. Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1982, 21, 711–724. [Google Scholar] [CrossRef]
- Geetharani, K.; Bose, S.K.; Varghese, B.; Ghosh, S. From Metallaborane to Borylene Complexes: Syntheses and Structures of Triply Bridged Ruthenium and Tantalum Borylene Complexes. Chem. Eur. J. 2010, 16, 11357–11366. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, K.; Bhattacharyya, M.; Prakash, R.; Ramkumar, V.; Ghosh, S. New Trinuclear Complexes of Group 6, 8, and 9 Metals with a Triply Bridging Borylene Ligand. Chem. Eur. J. 2016, 22, 8889–8896. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Shang, M.; Fehlner, T.P. Chemistry of Dimetallaboranes Derived from the Reaction of [Cp*MCl2]2 with Monoboranes (M = Ru, Rh; Cp* = η5-C5Me5). J. Am. Chem. Soc. 1999, 121, 1275–1287. [Google Scholar] [CrossRef]
- Pradhan, A.N.; Jaiswal, S.; Ghosh, S. Metal-Rich Metallaboranes: Synthesis, Structure, and Bonding of Heteronuclear Trimetallic Clusters containing (µ3-BH) Ligand. Eur. J. Inorg. Chem. 2023, 26, e202300254–e202300263. [Google Scholar] [CrossRef]
- Pradhan, A.N.; Bairagi, S.; Ghosh, S. Diborane and Triborane Species in the Coordination Sphere of Group-8 Transition Metals. Inorg. Chem. 2023, 62, 14790–14803. [Google Scholar] [CrossRef]
- Lei, X.; Shang, M.; Fehlner, T.P. Synthesis and Characterization of Cp*3Ru3B3H8, Cp* = η5-C5Me5, Exhibiting a Capped Nido Geometry. Cluster Geometry Driven by Hydrogen Bridging. Inorg. Chem. 1998, 37, 3900–3901. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Prakash, R.; Jagan, R.; Ghosh, S. Synthesis and ligand substitution of tri-metallic triply bridging borylene complexes. J. Organomet. Chem. 2018, 866, 79–86. [Google Scholar] [CrossRef]
- Chipperfield, A.K.; Housecroft, C.E.; Matthews, D.M. Ru3(CO)9B2H6: A metal-rich ruthenaborane analogue of pentaborane(9) and a model for a triruthenium supported unsaturated hydrocarbon. J. Organomet. Chem. 1990, 384, C38–C42. [Google Scholar] [CrossRef]
- Leadbeater, N.E. A High Yield Route to Ruthenaboranes. Organometallics 1998, 17, 5913–5915. [Google Scholar] [CrossRef]
- Grebenik, P.D.; Green, M.L.H.; Kelland, M.A.; Leach, J.B.; Mountford, P. Synthesis of Small nido-Ferrapentaboranes;a Novel Borane-capped nido-DiferrapentaboraneSynthesis of Small nido-Ferrapentaboranes;a Novel Borane-capped nido-Diferrapentaborane. J. Chem. Soc. Chem. Commun. 1990, 1234–1236. [Google Scholar] [CrossRef]
- Hattersley, A.D.; Housecroft, C.E.; Rheingold, A.L. Cluster core geometrical variation in heterometallic boride clusters containing RhRu4 skeletons: Crystal structures of [RhRu4H2(η5-C5Me5)(µ-Cl)(CO)12B] and [RhRu4H(nbd)(CO)12B(AuPPh3)] (nbd = norbornadiene). J. Chem. Soc. Dalton Trans. 1996, 1996, 603–610. [Google Scholar] [CrossRef]
- Ghosh, S.; Fehlner, T.P.; Beatty, A.M.; Noll, B.C. Insertion of B-X (X ) Cl, SMe2) Moieties into Ruthenaborane Frameworks: Synthesis and Characterization of (η5-C5Me5Ru)2(µ-H)B4HmCln, (m, n = 4, 3; 5, 2; 7, 2), closo-1-(SMe2)-2,3-(η5-C5Me5Ru)2(µ3-H)B5HCl3, and closo-2,3-(η5-C5Me5Ru)2B6H3Cl3. Organometallics 2005, 24, 2473–2480. [Google Scholar] [CrossRef]
- Mondal, B.; Bag, R.; Ghorai, S.; Bakthavachalam, K.; Jemmis, E.D.; Ghosh, S. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2}2{µ-η2:η2-B2H4}] and [{Cp*M(CO)2}2B2H2M(CO)4], M = Mo, W. Angew. Chem. Int. Ed. 2018, 57, 8079–8083. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, D.; Mondal, B.; Ramalakshmi, R.; Kundu, S.; Varghese, B.; Ghosh, S. First-row Transition Metal-Diborane and Borylene Complexes. Chem. Eur. J. 2015, 21, 5074–5083. [Google Scholar] [CrossRef] [PubMed]
- Anju, R.S.; Saha, K.; Mondal, B.; Dorcet, V.; Roisnel, T.; Halet, J.F.; Ghosh, S. Chemistry of Diruthenium Analogue of Pentaborane(9) With Heterocumulenes: Toward Novel Trimetallic Cubane-Type Clusters. Inorg. Chem. 2014, 53, 10527–10535. [Google Scholar] [CrossRef]
- Ryschkewitsch, G.E.; Nainan, K.C. Octahydrotriborate(1-) ([B3H8]-) salts. Method A. Inorg. Synth. 1974, 15, 113–114. [Google Scholar]
- Weiss, R.; Grimes, R.N. Sources of Line Width in Boron-11 Nuclear Magnetic Resonance Spectra. Scalar Relaxation and Boron-Boron Coupling in B4H10 and B5H9. J. Am. Chem. Soc. 1978, 100, 1401–1405. [Google Scholar] [CrossRef]
- Led, J.J.; Gesmar, H. Application of the linear prediction method to NMR spectroscopy. Chem. Rev. 1991, 91, 1413–1426. [Google Scholar] [CrossRef]
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.C.; Polidori, G.; Camalli, M. SIRPOW. 92—A program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Cryst. 1994, 27, 435–436. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3–8. [Google Scholar]
- Sheldrick, G.M. SHELXS97 and SHELXL97: Program for Crystal Structure Solution and Refinement; University of Gottingen: Gottingen, Germany, 1997. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Schmider, H.L.; Becke, A.D. Optimized density functionals from the extended G2 test set. J. Chem. Phys. 1998, 108, 9624–9631. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter Mater. Phys. 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. A New Basis Set Exchange: An Open, up-to-date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- London, F.J. Quantum theory of interatomic currents in aromatic combinations. J. Phys. Radium 1937, 8, 397–409. [Google Scholar] [CrossRef]
- Wiberg, K. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO Program 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2013. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctioal wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Clusters | d(B-B)av (Å) | Dihedral Angle (°) b | d(ΠMM′B2-M) a (Å) | 11B NMR (δ, ppm) | Ref. |
---|---|---|---|---|---|
1.82 (3) | 117.6 | 1.748 | 121.3, 59.9, 23.5 | [47] | |
1.874 (11) (H) 1.806 (6) (Cl) | 119.2 (H) 117.9 (Cl) | 1.821 (H) 1.807 (Cl) | 128.3, 14.4 (H) 114.5, 32.6, −0.9 (Cl) | [51] [47] | |
1.814 (19) (Mo) 1.829 (16) (W) | 116.7 (Mo) 116.7 (W) | 1.778 (Mo) 1.771 (W) | 124.8, 60.7, 20.1 (Mo) 126.0, 59.9, 22.5 (W) | [52] | |
1.796 (3) (Mo) — (W) | 114.6 (Mo) — (W) | 1.804 (Mo) — (W) | 120.6, 15.9, −0.2 (Mo) 122.3; 21.2, 0.4 (W) | this work | |
1.781 (8) | 115.9 | 1.784 | 118.0, 21.9, −1.5 | this work |
Compound | 2 | 4 |
---|---|---|
CCDC No. | 2192116 | 2192115 |
Empirical formula | C24H37B3MoO4Ru2 | C23H38B3MnO3Ru2 |
Formula weight | 720.04 | 652.04 |
Crystal system | monoclinic | monoclinic |
Space group | P21/n | P21/n |
a (Å) | 10.9696(12) | 9.3964(13) |
b (Å) | 13.7372(17) | 14.3307(17) |
c (Å) | 18.383(2) | 20.306(2) |
α (°) | 90 | 90 |
β (°) | 100.328(4) | 94.870(5) |
γ (°) | 90 | 90 |
Volume (Å3) | 2725.3(5) | 2724.4(6) |
Z | 4 | 4 |
ρcalc (g/cm−3) | 1.755 | 1.590 |
µ (mm−1) | 1.575 | 1.572 |
F (000) | 1432 | 1312 |
2θ range for data collection (°) | 55.028 | 50 |
Independent reflections | 6153 | 4792 |
Final R indices [I ≥ 2σ (I)] | 0.0226 | 0.0644 |
Parameters | 338 | 331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, A.N.; Jaiswal, S.; Cordier, M.; Halet, J.-F.; Ghosh, S. Metal Rich Metallaboranes: Synthesis, Structure and Bonding of pileo-[(Cp*Ru)2M(CO)3(µ-H)(µ-E)(µ3-BH)B2H5] (M = Mo, W, E = CO, and M = Mn, E = H) Clusters. Inorganics 2024, 12, 7. https://doi.org/10.3390/inorganics12010007
Pradhan AN, Jaiswal S, Cordier M, Halet J-F, Ghosh S. Metal Rich Metallaboranes: Synthesis, Structure and Bonding of pileo-[(Cp*Ru)2M(CO)3(µ-H)(µ-E)(µ3-BH)B2H5] (M = Mo, W, E = CO, and M = Mn, E = H) Clusters. Inorganics. 2024; 12(1):7. https://doi.org/10.3390/inorganics12010007
Chicago/Turabian StylePradhan, Alaka Nanda, Shippy Jaiswal, Marie Cordier, Jean-François Halet, and Sundargopal Ghosh. 2024. "Metal Rich Metallaboranes: Synthesis, Structure and Bonding of pileo-[(Cp*Ru)2M(CO)3(µ-H)(µ-E)(µ3-BH)B2H5] (M = Mo, W, E = CO, and M = Mn, E = H) Clusters" Inorganics 12, no. 1: 7. https://doi.org/10.3390/inorganics12010007
APA StylePradhan, A. N., Jaiswal, S., Cordier, M., Halet, J. -F., & Ghosh, S. (2024). Metal Rich Metallaboranes: Synthesis, Structure and Bonding of pileo-[(Cp*Ru)2M(CO)3(µ-H)(µ-E)(µ3-BH)B2H5] (M = Mo, W, E = CO, and M = Mn, E = H) Clusters. Inorganics, 12(1), 7. https://doi.org/10.3390/inorganics12010007