Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective
Abstract
:1. Introduction
2. Development History of LRM
3. Crystal Structure of LRM
4. Reaction Mechanism of LRM
5. Key Challenges of LRM
6. Modification Strategies of LRM
6.1. Morphology Design
6.2. Phase Composition and Structure Regulation
6.3. Surface Coating
6.4. Bulk Doping
6.5. Defective Structure Construction
6.6. Binder Research
7. Summary and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bielecki, A.; Ernst, S.; Skrodzka, W.; Wojnicki, I. The externalities of energy production in the context of development of clean energy generation. Environ. Sci. Pollut. Res. 2020, 27, 11506–11530. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Li, Z. Towards world’s low carbon development: The role of clean energy. Appl. Energy 2022, 307, 118160. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, X.; Fan, E.; Chen, R.; Wu, F.; Li, L. Carbon neutrality strategies for sustainable batteries: From structure, recycling, and properties to applications. Energy Environ. Sci. 2023, 16, 745–791. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Zhuo, H.; Peng, H.; Xiao, B.; Wang, Z.; Liu, X.; Li, Z.; Li, G.; Bai, X.; Wang, L.; Huang, X.; et al. Atomic-scale revealing the structure distribution between LiMO2 and Li2MnO3 in Li-rich and Mn-based oxide cathode materials. Adv. Energy Mater. 2023, 13, 2203354. [Google Scholar] [CrossRef]
- Ellis, B.L.; Lee, K.T.; Nazar, L.F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691–714. [Google Scholar] [CrossRef]
- Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123–4127. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188. [Google Scholar] [CrossRef]
- Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J.B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 269–284. [Google Scholar] [CrossRef]
- Xu, Y.N.; Chung, S.Y.; Bloking, J.T.; Chiang, Y.M.; Ching, W.Y. Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem. Solid-State Lett. 2004, 7, A131–A134. [Google Scholar] [CrossRef]
- Li, L.; Wu, L.; Wu, F.; Song, S.; Zhang, X.; Fu, C.; Yuan, D.; Xiang, Y. Review-recent research progress in surface modification of LiFePO4 cathode materials. J. Electrochem. Soc. 2017, 164, A2138. [Google Scholar] [CrossRef]
- Thackeray, M.M. Manganese oxides for lithium batteries. Prog. Solid State Chem. 1997, 25, 1–71. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, C.; Ruffo, R.; Peng, H.; Kim, D.K.; Cui, Y. Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 2009, 9, 4109–4114. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dong, Y.; Li, S.; Lee, J.; Wang, C.; Zhu, Z.; Xue, W.; Li, Y.; Li, J. Lithium manganese spinel cathodes for lithium-ion batteries. Adv. Energy Mater. 2020, 11, 2000997. [Google Scholar] [CrossRef]
- Park, O.K.; Cho, Y.; Lee, S.; Yoo, H.-C.; Song, H.-K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621–1633. [Google Scholar] [CrossRef]
- Thackeray, M.M. Exploiting the spinel structure for Li-ion battery applications: A tribute to John, B. Goodenough. Adv. Energy Mater. 2020, 11, 2001117–2001124. [Google Scholar] [CrossRef]
- Yang, X.; Sun, X.; Lee, S.J.; McBreen, J.; Mukerjee, S.; Daroux, M.L.; Xing, X.K. In situ synchrotron X-ray diffraction studies of the phase transitions in LixMn2O4 cathode materials. Electrochem. Solid-State Lett. 1999, 2, 157–160. [Google Scholar] [CrossRef]
- Zhang, W.; Cupid, D.M.; Gotcu, P.; Chang, K.; Li, D.; Du, Y.; Seifert, H.J. High-throughput description of infinite composition-structure-property-performance relationships of lithium-manganese oxide spinel cathodes. Chem. Mater. 2018, 30, 2287–2298. [Google Scholar] [CrossRef]
- Gauthier, N.; Courrèges, C.; Demeaux, J.; Tessier, C.; Martinez, H. Impact of the cycling temperature on electrode/electrolyte interfaces within Li4Ti5O12 vs. LiMn2O4 cells. J. Power Sources 2020, 448, 227573. [Google Scholar] [CrossRef]
- Reimers, J.N.; Dahn, J.R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Y.; Zheng, X.; Zhao, G.; Rui, K.; Li, P.; Xu, X.; Cheng, Z.; Dou, S.X.; Sun, W. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1803482. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, Y.; Fu, H.; Ou, M.; Hu, C.; Yu, S.; Hu, Z.; Chen, C.T.; Jiang, G.; Gu, H.; et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V. Angew. Chem. Int. Ed. 2021, 60, 4682–4688. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, H.; Li, Y.; Gao, R.; Xiao, X.; Yu, Q.; Wang, C.; Waluyo, I.; Ding, J.; Hunt, A.; et al. A surface Se-substituted LiCo[O2−δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv. Mater. 2020, 32, 2005182. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, C.; Weng, M.; Qiu, Y.; Chen, P.; Yang, K.; Huang, W.; Hong, Y.; Li, J.; Zhang, M.; et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 2021, 16, 599–605. [Google Scholar] [CrossRef]
- Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J.; Guo, F.; Wu, Y.A.; Rong, Y.; Kou, R.; Xiao, X.; et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2020, 11, 2000982. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Bruce, P.G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996, 381, 499–500. [Google Scholar] [CrossRef]
- Croguennec, L.; Deniard, P.; Brec, R. Electrochemical cyclability of orthorhombic LiMnO2: Characterization of cycled materials. J. Electrochem. Soc. 1997, 144, 3323. [Google Scholar] [CrossRef]
- Mishra, S.K.; Ceder, G. Structural stability of lithium manganese oxides. Phys. Rev. B 1999, 59, 6120. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yoshio, M. Preparation of orthorhombic LiMnO2 material by quenching. Electrochem. Solid-State Lett. 2001, 4, A166–A169. [Google Scholar] [CrossRef]
- Cho, J. Stabilization of spinel-like phase transformation of o-LiMnO2 during 55 °C cycling by sol-gel coating of CoO. Chem. Mater. 2001, 13, 4537–4541. [Google Scholar] [CrossRef]
- Wu, S.-H.; Yu, M.-T. Preparation and characterization of o-LiMnO2 cathode materials. J. Power Sources 2007, 165, 660–665. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Zhang, J.; Kang, W.; Yu, D.Y.W. Low-temperature direct synthesis of layered m-LiMnO2 for lithium-ion battery applications. J. Alloys Compd. 2016, 659, 248–254. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Wang, C.-Z.; Meng, X.; Wang, D.-P.; Chen, G. Effects of Al-doping on the stabilization of monoclinic LiMnO2. J. Solid State Chem. 2006, 179, 1602–1609. [Google Scholar] [CrossRef]
- Wu, X.M.; Li, R.X.; Chen, S.; He, Z.Q.; Xu, M.F. Comparative study of Co, Cr and Al-doped LiMnO2 prepared by ion exchange. Bull. Mater. Sci. 2008, 31, 109–113. [Google Scholar] [CrossRef]
- Liu, J.; Zou, Z.; Zhang, S.; Zhang, H. Structure, modification, and commercialization of high nickel ternary material (LiNi0.8Co0.1Mn0.1O2 and LiNi0.8Co0.15Al0.05O2) for lithium ion batteries. J. Solid State Electrochem. 2020, 25, 387–410. [Google Scholar] [CrossRef]
- Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434–452. [Google Scholar] [CrossRef]
- Kang, S.; Choi, D.; Lee, H.; Choi, B.; Kang, Y.M. A mechanistic insight into the oxygen redox of Li-rich layered cathodes and their related electronic/atomic behaviors upon cycling. Adv. Mater. 2023, 35, e2211965. [Google Scholar] [CrossRef]
- Nayak, P.K.; Erickson, E.M.; Schipper, F.; Penki, T.R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397. [Google Scholar] [CrossRef]
- Hua, W.; Wang, S.; Knapp, M.; Leake, S.J.; Senyshyn, A.; Richter, C.; Yavuz, M.; Binder, J.R.; Grey, C.P.; Ehrenberg, H.; et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 2019, 10, 5365. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Maeda, T.; Kiuchi, H.; Nakanishi, K.; Ohma, A.; Hatano, M.; Fukunaga, T.; Ohta, T.; Matsubara, E. Mechanism of structural change and the trigger of electrochemical degradation of Li-Rich layered oxide cathodes during charge-discharge cycles. ACS Appl. Energy Mater. 2019, 2, 8118–8124. [Google Scholar] [CrossRef]
- Zheng, H.; Hu, Z.; Liu, P.; Xu, W.; Xie, Q.; He, W.; Luo, Q.; Wang, L.; Gu, D.; Qu, B.; et al. Surface Ni-rich engineering towards highly stable Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials. Energy Storage Mater. 2020, 25, 76–85. [Google Scholar] [CrossRef]
- Ding, X.; Luo, D.; Cui, J.; Xie, H.; Ren, Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 7778–7782. [Google Scholar] [CrossRef] [PubMed]
- Boivin, E.; Guerrini, N.; House, R.A.; Lozano, J.G.; Jin, L.; Rees, G.J.; Somerville, J.W.; Kuss, C.; Roberts, M.R.; Bruce, P.G. The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes. Adv. Funct. Mater. 2020, 31, 2003660. [Google Scholar] [CrossRef]
- Yoon, M.; Dong, Y.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y.; Kang, S.J.; Li, J.; Cho, J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 2021, 6, 362–371. [Google Scholar] [CrossRef]
- House, R.A.; Marie, J.-J.; Pérez-Osorio, M.A.; Rees, G.J.; Boivin, E.; Bruce, P.G. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 2021, 6, 781–789. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Zhang, M.; Yin, Z.W.; Yin, L.; Xu, S.; Zuo, C.; Qi, R.; Xue, H.; Hu, J.; et al. Modifying Li@Mn6 superstructure units by Al substitution to enhance the long-cycle performance of Co-free Li-rich cathode. Adv. Energy Mater. 2021, 11, 2101962. [Google Scholar] [CrossRef]
- Ahn, J.; Kang, J.; Cho, M.K.; Park, H.; Ko, W.; Lee, Y.; Kim, H.S.; Jung, Y.H.; Jeon, T.Y.; Kim, H.; et al. Selective anionic redox and suppressed structural disordering enabling high-energy and long-life Li-rich layered-oxide cathode. Adv. Energy Mater. 2021, 11, 2102311. [Google Scholar] [CrossRef]
- Sun, J.; Sheng, C.; Cao, X.; Wang, P.; He, P.; Yang, H.; Chang, Z.; Yue, X.; Zhou, H. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Adv. Funct. Mater. 2021, 32, 2110295. [Google Scholar] [CrossRef]
- Zhao, H.; Li, W.; Li, J.; Xu, H.; Zhang, C.; Li, J.; Han, C.; Li, Z.; Chu, M.; Qiu, X. Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy 2022, 92, 106760. [Google Scholar] [CrossRef]
- Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H.L.; Jaye, C.; Fischer, D.A.; et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 2018, 3, 690–698. [Google Scholar] [CrossRef]
- Xu, J.; Wan, J.; Zhang, W.; Li, Y.; Cheng, F.; Cheng, Z.; Xu, Y.; Sun, S.; Li, Q.; Fang, C.; et al. Regulating the unhybridized O 2p orbitals of high-performance Li-rich Mn-based layered oxide cathode by Gd-doping induced bulk oxygen vacancies. Adv. Funct. Mater. 2023, 33, 2214613. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, J.; Li, D.; Li, Y.; Zeng, Z.; Liu, H.; Zhang, H.; Ji, F.; Geng, X.; Lu, J.; et al. A structure self-healing Li-rich cathode achieved by lithium supplement of Li-rich LLZO coating. Adv. Funct. Mater. 2023, 33, 2214775. [Google Scholar] [CrossRef]
- Zeng, L.; Liang, H.; Qiu, B.; Shi, Z.; Cheng, S.; Shi, K.; Liu, Q.; Liu, Z. Voltage decay of Li-rich layered oxides: Mechanism, modification strategies, and perspectives. Adv. Funct. Mater. 2023, 33, 2213260. [Google Scholar] [CrossRef]
- Johnston, W.D.; Heikes, R.R. A study of the LixMn(1−x)O system. J. Am. Chem. Soc. 1956, 78, 3255–3260. [Google Scholar] [CrossRef]
- Thackeray, M.M.; David, W.I.F.; Bruce, P.G.; Goodenough, J.B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472. [Google Scholar] [CrossRef]
- Ceder, G.; Mishra, S.K. The Stability of orthorhombic and monoclinic-layered LiMnO2. Electrochem. Solid-State Lett. 1999, 2, 550–552. [Google Scholar] [CrossRef]
- Kalyani, P.; Chitra, S.; Mohan, T.; Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 1999, 80, 103–106. [Google Scholar] [CrossRef]
- Gummow, R.J.; De Kock, A.; Thackeray, M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 1994, 69, 59–67. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Johnson, C.S.; Vaughey, J.T.; Li, N.; Hackney, S.A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 2005, 15, 2257–2267. [Google Scholar] [CrossRef]
- Capitaine, F.; Gravereau, P.; Delmas, C. A new variety of LiMnO2 with a layered structure. Solid State Ionics 1996, 89, 197–202. [Google Scholar] [CrossRef]
- Rossouw, M.H.; Thackeray, M.M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mat. Res. Bull. 1991, 26, 463–473. [Google Scholar] [CrossRef]
- Whittingham, M.S.; Zavalij, P.Y. Manganese dioxides as cathodes for lithium rechargeable cells: The stability challenge. Solid State Ionics 2000, 131, 109–115. [Google Scholar] [CrossRef]
- Jang, Y.I.; Huang, B.; Chiang, Y.M.; Sadoway, D.R. Stabilization of LiMnO2 in the α-NaFeO2 structure type by LiAlO2 addition. Electrochem. Solid-State Lett. 1998, 1, 13. [Google Scholar] [CrossRef]
- Davidson, I.J.; McMillan, R.S.; Slegr, H.; Luan, B.; Kargina, I.; Murray, J.J.; Swainson, I.P. Electrochemistry and structure of Li2−xCryMn2−yO4 phases. J. Power Sources 1999, 81, 406–411. [Google Scholar] [CrossRef]
- Armstrong, A.R.; Robertson, A.D.; Bruce, P.G. Structural transformation on cycling layered Li(Mn1−yCoy)O2 cathode materials. Electrochim. Acta 1999, 45, 285–294. [Google Scholar] [CrossRef]
- Robertson, A.D.; Armstrong, A.R.; Bruce, P.G. Layered LixMn1−yCoyO2 intercalation electrodes influence of ion exchange on capacity and structure upon cycling. Chem. Mater. 2001, 13, 2380–2386. [Google Scholar] [CrossRef]
- Spahr, M.E.; Novák, P.; Schnyder, B.; Haas, O.; Nesper, R. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J. Electrochem. Soc. 1998, 145, 1113. [Google Scholar] [CrossRef]
- Ohzuku, T.; Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 2001, 30, 642–643. [Google Scholar] [CrossRef]
- Johnson, C.S.; Li, N.; Vaughey, J.T.; Hackney, S.A.; Thackeray, M.M. Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1−x)Li1+yMn2−yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 2005, 7, 528–536. [Google Scholar]
- McCalla, E.; Lowartz, C.M.; Brown, C.R.; Dahn, J.R. Formation of layered-layered composites in the Li-Co-Mn oxide pseudoternary system during slow cooling. Chem. Mater. 2013, 25, 912–918. [Google Scholar] [CrossRef]
- Jarvis, K.A.; Wang, C.-C.; Manthiram, A.; Ferreira, P.J. The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes. J. Mater. Chem. A 2014, 2, 1353–1362. [Google Scholar] [CrossRef]
- He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L.; et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937. [Google Scholar] [CrossRef] [PubMed]
- Menon, A.S.; Ulusoy, S.; Ojwang, D.O.; Riekehr, L.; Didier, C.; Peterson, V.K.; Salazar-Alvarez, G.; Svedlindh, P.; Edström, K.; Gomez, C.P.; et al. Synthetic pathway determines the nonequilibrium crystallography of Li- and Mn-rich layered oxide cathode materials. ACS Appl. Energy Mater. 2021, 4, 1924–1935. [Google Scholar] [CrossRef]
- Lu, Z.; Beaulieu, L.Y.; Donaberger, R.A.; Thomas, C.L.; Dahn, J.R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3O2. J. Electrochem. Soc. 2002, 149, A778. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 2002, 149, A815. [Google Scholar] [CrossRef]
- Ammundsen, B.; Paulsen, J.; Davidson, I.; Liu, R.-S.; Shen, C.-H.; Chen, J.-M.; Jang, L.-Y.; Lee, J.-F. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J. Electrochem. Soc. 2002, 149, A431. [Google Scholar] [CrossRef]
- Genevois, C.; Koga, H.; Croguennec, L.; Ménétrier, M.; Delmas, C.; Weill, F. Insight into the atomic structure of cycled Lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction. J. Phys. Chem. C 2014, 119, 75–83. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Kang, S.-H.; Johnson, C.S.; Vaughey, J.T.; Benedek, R.; Hackney, S.A. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Z.; Dahn, J.R. Lack of cation clustering in Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0<x≤1/2) and Li[CrxLi(1−x)/3Mn(2−2x)/3]O2 (0<x<1). Chem. Mater. 2003, 15, 3214–3220. [Google Scholar]
- Jarvis, K.A.; Deng, Z.; Allard, L.F.; Manthiram, A.; Ferreira, P.J. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater. 2011, 23, 3614–3621. [Google Scholar] [CrossRef]
- Koga, H.; Croguennec, L.; Mannessiez, P.; Ménétrier, M.; Weill, F.; Bourgeois, L.; Duttine, M.; Suard, E.; Delmas, C. Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: Insights into their structure. J. Phys. Chem. C 2012, 116, 13497–13506. [Google Scholar] [CrossRef]
- Fujii, H.; Ozawa, K.; Mochiku, T. Electron diffraction and high-resolution electron microscopy studies on layered Li2−δ(Mn1−xCox)1+δO3. J. Solid State Chem. 2013, 203, 345–352. [Google Scholar] [CrossRef]
- Bareño, J.; Balasubramanian, M.; Kang, S.H.; Wen, J.G.; Lei, C.H.; Pol, S.V.; Petrov, I.; Abraham, D.P. Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2. Chem. Mater. 2011, 23, 2039–2050. [Google Scholar] [CrossRef]
- Boulineau, A.; Simonin, L.; Colin, J.-F.; Canévet, E.; Daniel, L.; Patoux, S. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem. Mater. 2012, 24, 3558–3566. [Google Scholar] [CrossRef]
- Yu, H.; Ishikawa, R.; So, Y.G.; Shibata, N.; Kudo, T.; Zhou, H.; Ikuhara, Y. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 5969–5973. [Google Scholar] [CrossRef] [PubMed]
- Bréger, J.; Jiang, M.; Dupré, N.; Meng, Y.S.; Shao-Horn, Y.; Ceder, G.; Grey, C.P. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 2005, 178, 2575–2585. [Google Scholar] [CrossRef]
- Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Reinvestigation of Li2MnO3 structure: Electron diffraction and high resolution TEM. Chem. Mater. 2009, 21, 4216–4222. [Google Scholar] [CrossRef]
- Weill, F.; Tran, N.; Croguennec, L.; Delmas, C. Cation ordering in the layered Li1+x(Ni0.425Mn0.425Co0.15)1−xO2 materials (x = 0 and 0.12). J. Power Sources 2007, 172, 893–900. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, K.; Zhang, J.; Sun, B.; Wang, G. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2208–2220. [Google Scholar] [CrossRef] [PubMed]
- Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.P.; Vezin, H.; Sougrati, M.T.; Doublet, M.L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2016, 8, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Harris, K.J.; Jiang, M.; Wu, Y.; Goward, G.R.; Botton, G.A. Unraveling the rapid performance decay of layered high-energy cathodes: From nanoscale degradation to drastic bulk evolution. ACS Nano 2018, 12, 2708–2718. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Nie, A.; Zheng, J.; Zhou, Y.; Lu, D.; Zhang, X.; Xu, R.; Belharouak, I.; Zu, X.; Xiao, J.; et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015, 15, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D.R.; Zhang, J.-G.; et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2013, 7, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y.M.; Yoon, W.S. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2020, 59, 2578–2605. [Google Scholar] [CrossRef]
- Lei, Y.; Ni, J.; Hu, Z.; Wang, Z.; Gui, F.; Li, B.; Ming, P.; Zhang, C.; Elias, Y.; Aurbach, D.; et al. Surface modification of Li-rich Mn-based layered oxide cathodes: Challenges, materials, methods, and characterization. Adv. Energy Mater. 2020, 10, 2002506. [Google Scholar] [CrossRef]
- Gou, X.; Hao, Z.; Hao, Z.; Yang, G.; Yang, Z.; Zhang, X.; Yan, Z.; Zhao, Q.; Chen, J. In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries. Adv. Funct. Mater. 2022, 32, 2112088. [Google Scholar] [CrossRef]
- Zhang, M.; Kitchaev, D.A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P.J.; Grey, C.P.; Whittingham, M.S.; Piper, L.F.J.; Van der Ven, A.; et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540. [Google Scholar] [CrossRef]
- Zuo, W.; Luo, M.; Liu, X.; Wu, J.; Liu, H.; Li, J.; Winter, M.; Fu, R.; Yang, W.; Yang, Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 2020, 13, 4450–4497. [Google Scholar] [CrossRef]
- House, R.A.; Rees, G.J.; Pérez-Osorio, M.A.; Marie, J.-J.; Boivin, E.; Robertson, A.W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.G. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 2020, 5, 777–785. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Li, L.; Yu, L.; Diao, J.; Zhou, T.; Li, S.; Dai, A.; Zhao, W.; Xu, S.; et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022, 606, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.L.; Gao, M.Y.; Li, G.R.; Gao, X.P. Insights into Li-rich Mn-based cathode materials with high capacity: From dimension to lattice to atom. Adv. Energy Mater. 2021, 12, 2003885. [Google Scholar] [CrossRef]
- Zheng, J.; Shi, W.; Gu, M.; Xiao, J.; Zuo, P.; Wang, C.; Zhang, J.-G. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 2013, 160, A2212. [Google Scholar] [CrossRef]
- Zheng, J.; Myeong, S.; Cho, W.; Yan, P.; Xiao, J.; Wang, C.; Cho, J.; Zhang, J.G. Li- and Mn-rich cathode materials: Challenges to commercialization. Adv. Energy Mater. 2016, 7, 1601284. [Google Scholar] [CrossRef]
- Shin, Y.; Ding, H.; Persson, K.A. Revealing the intrinsic Li mobility in the Li2MnO3 lithium-excess material. Chem. Mater. 2016, 28, 2081–2088. [Google Scholar] [CrossRef]
- Wei, G.Z.; Lu, X.; Ke, F.S.; Huang, L.; Li, J.T.; Wang, Z.X.; Zhou, Z.Y.; Sun, S.G. Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367. [Google Scholar] [CrossRef]
- Chen, L.; Su, Y.; Chen, S.; Li, N.; Bao, L.; Li, W.; Wang, Z.; Wang, M.; Wu, F. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Adv. Mater. 2014, 26, 6756–6760. [Google Scholar] [CrossRef]
- Xu, M.; Fei, L.; Zhang, W.; Li, T.; Lu, W.; Zhang, N.; Lai, Y.; Zhang, Z.; Fang, J.; Zhang, K.; et al. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett. 2017, 17, 1670–1677. [Google Scholar] [CrossRef]
- Yu, C.; Wang, H.; Guan, X.; Zheng, J.; Li, L. Conductivity and electrochemical performance of cathode xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures. J. Alloys Compd. 2013, 546, 239–245. [Google Scholar] [CrossRef]
- Chen, H.; Islam, M.S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 2016, 28, 6656–6663. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, P.; Gu, M.; Xiao, J.; Browning, N.D.; Yan, P.; Wang, C.; Zhang, J.-G. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 2015, 27, 1381–1390. [Google Scholar] [CrossRef]
- Hong, J.; Lim, H.-D.; Lee, M.; Kim, S.-W.; Kim, H.; Oh, S.-T.; Chung, G.-C.; Kang, K. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries. Chem. Mater. 2012, 24, 2692–2697. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, J.; Tang, Z.K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J.G.; Liu, L.M.; Wang, C. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 2019, 14, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ning, D.; Wong, D.; An, K.; Tang, Y.; Zhou, D.; Schuck, G.; Chen, Z.; Zhang, N.; Liu, X. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nat. Commun. 2022, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Sudayama, T.; Asakura, D.; Kikkawa, J.; Watanabe, E.; Okubo, M.; Yamada, A. High-voltage electrochemical properties of lithium-rich spinel oxides. J. Phys. Chem. C 2023, 127, 12428–12434. [Google Scholar] [CrossRef]
- Pan, H.; Jiao, S.; Xue, Z.; Zhang, J.; Xu, X.; Gan, L.; Li, Q.; Liu, Y.; Yu, X.; Li, H.; et al. The roles of Ni and Mn in the thermal stability of lithium-rich manganese-rich oxide cathode. Adv. Energy Mater. 2023, 13, 2203989. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Yi, L.; Yu, R.; Liu, M.; Yang, X. Preparation and performance of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 with a fusiform porous micro-nano structure. J. Mater. Chem. A 2016, 4, 15929–15939. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, P.; Xie, Q.; Zhang, G.; Zheng, H.; Cai, Y.; Li, Z.; Wang, L.; Zhu, Z.Z.; Mai, L.; et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy 2019, 59, 184–196. [Google Scholar] [CrossRef]
- Deng, B.; Chen, Y.; Wu, P.; Han, J.; Li, Y.; Zheng, H.; Xie, Q.; Wang, L.; Peng, D.-L. Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries. J. Power Sources 2019, 418, 122–129. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, T.; Xie, Q.; He, W.; Zhang, Y.; Zheng, H.; Lu, X.; Wei, W.; Sa, B.; Wang, L.; et al. Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl. Mater. Interfaces 2021, 13, 8239–8248. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Wu, J.; Ding, Z.; Yao, P.; Zhang, S.; Chen, Y. 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv. Energy Mater. 2019, 10, 1903139. [Google Scholar] [CrossRef]
- Wu, T.; Liu, X.; Zhang, X.; Lu, Y.; Wang, B.; Deng, Q.; Yang, Y.; Wang, E.; Lyu, Z.; Li, Y.; et al. Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries. Adv. Mater. 2021, 33, 2001358. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, B.; Jiang, N.; Chu, W.; Zhang, H.; Zou, R.; Xia, D. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv. Mater. 2018, 30, 1707255. [Google Scholar] [CrossRef] [PubMed]
- de Boisse, B.M.; Jang, J.; Okubo, M.; Yamada, A. Cobalt-free O2-type lithium-rich layered oxides. J. Electrochem. Soc. 2018, 165, A3630. [Google Scholar] [CrossRef]
- Shang, H.; Zuo, Y.; Shen, F.; Song, J.; Ning, F.; Zhang, K.; He, L.; Xia, D. O2-type Li0.78[Li0.24Mn0.76]O2 nanowires for high-performance lithium-ion battery cathode. Nano Lett. 2020, 20, 5779–5785. [Google Scholar] [CrossRef] [PubMed]
- Eum, D.; Kim, B.; Kim, S.J.; Park, H.; Wu, J.; Cho, S.P.; Yoon, G.; Lee, M.H.; Jung, S.K.; Yang, W.; et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 2020, 19, 419–427. [Google Scholar] [CrossRef]
- Wu, F.; Li, N.; Su, Y.; Shou, H.; Bao, L.; Yang, W.; Zhang, L.; An, R.; Chen, S. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 2013, 25, 3722–3726. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, R.; Gao, W.; Zuo, J.-M.; Zhang, X.F.; Misture, S.T.; Chen, Y.; Lockard, J.V.; Zhang, B.; Guo, S.; et al. An ion-exchange promoted phase transition in a Li-excess layered cathode material for high-performance lithium ion batteries. Adv. Energy Mater. 2015, 5, 1401937–1401948. [Google Scholar] [CrossRef]
- Deng, Y.-P.; Fu, F.; Wu, Z.-G.; Yin, Z.-W.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G. Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J. Mater. Chem. A 2016, 4, 257–263. [Google Scholar] [CrossRef]
- Zhang, X.D.; Shi, J.L.; Liang, J.Y.; Yin, Y.X.; Zhang, J.N.; Yu, X.Q.; Guo, Y.G. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cho, W.; Zhang, X.; Oshima, Y.; Choi, J.W. A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 2016, 7, 13598. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, P.; Wei, H.; Tang, L.; Zhang, X.; He, Z.; Li, Y.; Tong, H.; Zheng, J. Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 2019, 63, 103889. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, C.; Xiong, X.; Xiong, J.; Hu, R.; Chen, Y.; Liu, M. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 2015, 54, 13058–13062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Belharouak, I.; Li, L.; Lei, Y.; Elam, J.W.; Nie, A.; Chen, X.; Yassar, R.S.; Axelbaum, R.L. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 2013, 3, 1299–1307. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, Z.; He, Z.; Zheng, J.; Li, Y.; Yan, C.; Mao, J. Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. J. Energy Chem. 2021, 60, 591–598. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, E.; He, C.; Shi, C.; Li, J.; Zhao, N. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J. Power Sources 2013, 236, 25–32. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, B.; Liu, J.; Kaliyappan, K.; Sun, Q.; Liu, Y.; Dadheech, G.; Balogh, M.P.; Yang, L.; Sham, T.-K.; et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 2017, 34, 120–130. [Google Scholar] [CrossRef]
- Sun, Y.K.; Lee, M.J.; Yoon, C.S.; Hassoun, J.; Amine, K.; Scrosati, B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 2012, 24, 1192–1196. [Google Scholar] [CrossRef]
- Chong, S.; Chen, Y.; Yan, W.; Guo, S.; Tan, Q.; Wu, Y.; Jiang, T.; Liu, Y. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J. Power Sources 2016, 332, 230–239. [Google Scholar] [CrossRef]
- Martha, S.K.; Nanda, J.; Kim, Y.; Unocic, R.R.; Pannala, S.; Dudney, N.J. Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J. Mater. Chem. A 2013, 1, 5587–5595. [Google Scholar] [CrossRef]
- Fu, Q.; Du, F.; Bian, X.; Wang, Y.; Yan, X.; Zhang, Y.; Zhu, K.; Chen, G.; Wang, C.; Wei, Y. Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4. J. Mater. Chem. A 2014, 2, 7555–7562. [Google Scholar] [CrossRef]
- Xu, Z.; Ci, L.; Yuan, Y.; Nie, X.; Li, J.; Cheng, J.; Sun, Q.; Zhang, Y.; Han, G.; Min, G.; et al. Potassium prussian blue-coated Li-rich cathode with enhanced lithium ion storage property. Nano Energy 2020, 75, 104942. [Google Scholar] [CrossRef]
- Si, M.; Wang, D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C.; Lu, X.; Zhao, H.; Bai, Y. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv. Sci. 2020, 7, 1902538. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y.; Deng, H.; Ma, J.; Zeng, Y.; Zhu, Z.; Lv, Z.; Xia, H.; Ge, X.; Cao, S.; et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496. [Google Scholar] [CrossRef] [PubMed]
- Qing, R.-P.; Shi, J.-L.; Xiao, D.-D.; Zhang, X.-D.; Yin, Y.-X.; Zhai, Y.-B.; Gu, L.; Guo, Y.-G. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv. Energy Mater. 2016, 6, 1501914. [Google Scholar] [CrossRef]
- He, W.; Liu, P.; Qu, B.; Zheng, Z.; Zheng, H.; Deng, P.; Li, P.; Li, S.; Huang, H.; Wang, L.; et al. Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 2019, 6, 1802114–1802124. [Google Scholar] [CrossRef]
- Wang, Q.; He, W.; Wang, L.; Li, S.; Zheng, H.; Liu, Q.; Cai, Y.; Lin, J.; Xie, Q.; Peng, D.-L. Morphology control and Na+ doping toward high-performance Li-rich layered cathode materials for lithium-ion batteries. ACS Sustain. Chem. Eng. 2020, 9, 197–206. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.X.; He, X.D.; Liao, J.Y.; Hu, Q.; Chen, F.; Zhang, X.Q.; Zhao, Y.; Chen, C.H. Surface Li+/K+ exchange toward double-gradient modification of layered Li-rich cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 31477–31483. [Google Scholar] [CrossRef]
- Choi, A.; Lim, J.; Kim, H.-J.; Jung, S.C.; Lim, H.-W.; Kim, H.; Kwon, M.-S.; Han, Y.K.; Oh, S.M.; Lee, K.T. Site-selective in situ electrochemical doping for Mn-rich layered oxide cathode materials in lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702514. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Zhao, W.; Chen, Z.; Chen, Z.; Li, S.; Hu, J.; Cao, B.; Li, J.; Zheng, S.; et al. Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode. Energy Storage Mater. 2022, 45, 422–431. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Shen, X.; Li, W.; Gao, Y.; Banis, M.N.; Li, M.; Chen, K.; Zhu, L.; Yu, R.; et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 2018, 8, 1802105. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.; Hu, T.; Meng, Y.S.; Luo, J. Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. J. Power Sources 2018, 375, 21–28. [Google Scholar] [CrossRef]
- Meng, J.; Xu, L.; Ma, Q.; Yang, M.; Fang, Y.; Wan, G.; Li, R.; Yuan, J.; Zhang, X.; Yu, H.; et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Chen, W.; Chen, J.; Yang, W.; Zou, H.; Lin, Z. Enhanced electrochemical performance of Li-rich cathode materials by organic fluorine doping and spinel Li1+xNiyMn2−yO4 coating. ACS Sustain. Chem. Eng. 2019, 8, 121–128. [Google Scholar] [CrossRef]
- Pei, Y.; Li, S.; Chen, Q.; Liang, R.; Li, M.; Gao, R.; Ren, D.; Deng, Y.-P.; Jin, H.; Wang, S.; et al. Cationic-anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. J. Mater. Chem. A 2021, 9, 2325–2333. [Google Scholar] [CrossRef]
- Zhang, K.; Qi, J.; Song, J.; Zuo, Y.; Yang, Y.; Yang, T.; Chen, T.; Liu, X.; Chen, L.; Xia, D. Sulfuration of Li-rich Mn-based cathode materials for multianionic redox and stabilized coordination environment. Adv. Mater. 2022, 34, 2109564. [Google Scholar] [CrossRef]
- Li, B.; Yan, H.; Ma, J.; Yu, P.; Xia, D.; Huang, W.; Chu, W.; Wu, Z. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: Towards better electrochemical performance. Adv. Funct. Mater. 2014, 24, 5112–5118. [Google Scholar] [CrossRef]
- Li, Q.; Ning, D.; Zhou, D.; An, K.; Schuck, G.; Wong, D.; Kong, W.; Schulz, C.; Schumacher, G.; Liu, X. Tuning both anionic and cationic redox chemistry of Li-rich Li1.2Mn0.6Ni0.2O2 via a “three-in-one” strategy. Chem. Mater. 2020, 32, 9404–9414. [Google Scholar] [CrossRef]
- Wang, E.; Xiao, D.; Wu, T.; Liu, X.; Zhou, Y.; Wang, B.; Lin, T.; Zhang, X.; Yu, H. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides. Adv. Funct. Mater. 2022, 32, 2201744. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Z.; Zhong, J.; Liu, Y.; Li, J.; Wang, X.; Kang, F. A simple dual-ion doping method for stabilizing Li-rich materials and suppressing voltage decay. ACS Appl. Mater. Interfaces 2020, 12, 13996–14004. [Google Scholar] [CrossRef]
- Nie, L.; Wang, Z.; Zhao, X.; Chen, S.; He, Y.; Zhao, H.; Gao, T.; Zhang, Y.; Dong, L.; Kim, F.; et al. Cation/anion codoped and cobalt-free Li-rich layered cathode for high-performance Li-ion batteries. Nano Lett. 2021, 21, 8370–8377. [Google Scholar] [CrossRef]
- Lee, J.; Kitchaev, D.A.; Kwon, D.H.; Lee, C.W.; Papp, J.K.; Liu, Y.S.; Lun, Z.; Clement, R.J.; Shi, T.; McCloskey, B.D.; et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 2018, 556, 185–190. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.-X.; Wang, S.; Dong, J.-M.; Yasmin, A.; Hu, Q.; Wen, Z.-Y.; Chen, C.-H. Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification. Nano Energy 2019, 61, 411–419. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, C.; Zhang, Y.; Lin, L.; Liu, P.; Wang, L.; Wei, Q.; Lin, J.; Sa, B.; Xie, Q.; et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783–2100795. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; He, W.; Xiong, T.; Cheng, Y.; Xie, Q.; Ma, Y.; Zheng, H.; Wang, L.; Zhu, Z.Z.; et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J. Am. Chem. Soc. 2019, 141, 10876–10882. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Li, H.; Zhang, S.; Zhu, B.; Wang, S.; Zheng, J.; Liu, F.; Zhang, Z.; Lai, Y. Enhanced activity and reversibility of anionic redox by tuning lithium vacancies in Li-rich cathode materials. ACS Appl. Mater. Interfaces 2021, 13, 39480–39490. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 2016, 7, 12108. [Google Scholar] [CrossRef]
- Sun, Y.; Cong, H.; Zan, L.; Zhang, Y. Oxygen vacancies and stacking faults introduced by low-temperature reduction improve the electrochemical properties of Li2MnO3 nanobelts as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 2017, 9, 38545–38555. [Google Scholar] [CrossRef]
- Cui, S.L.; Zhang, X.; Wu, X.W.; Liu, S.; Zhou, Z.; Li, G.R.; Gao, X.P. Understanding the structure-performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective. ACS Appl. Mater. Interfaces 2020, 12, 47655–47666. [Google Scholar] [CrossRef]
- Liu, J.; Hou, M.; Yi, J.; Guo, S.; Wang, C.; Xia, Y. Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ. Sci. 2014, 7, 705–714. [Google Scholar] [CrossRef]
- Guo, H.; Wei, Z.; Jia, K.; Qiu, B.; Yin, C.; Meng, F.; Zhang, Q.; Gu, L.; Han, S.; Liu, Y.; et al. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 2019, 16, 220–227. [Google Scholar] [CrossRef]
- Yang, J.; Li, P.; Zhong, F.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Xia, D.; Cao, Y. Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv. Energy Mater. 2020, 10, 1904264. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, X.; Wang, J.; Yuan, Y.; Sun, Q.; Tian, R.; Yang, H.; Lu, J. Restraining the octahedron collapse in lithium and manganese rich NCM cathode toward suppressing structure transformation. Adv. Energy Mater. 2022, 12, 2201323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Weng, Z.; Zhou, C.; Han, M.; Shi, N.; Xie, Q.; Peng, D.-L. Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective. Inorganics 2024, 12, 8. https://doi.org/10.3390/inorganics12010008
Guo W, Weng Z, Zhou C, Han M, Shi N, Xie Q, Peng D-L. Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective. Inorganics. 2024; 12(1):8. https://doi.org/10.3390/inorganics12010008
Chicago/Turabian StyleGuo, Weibin, Zhangzhao Weng, Chongyang Zhou, Min Han, Naien Shi, Qingshui Xie, and Dong-Liang Peng. 2024. "Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective" Inorganics 12, no. 1: 8. https://doi.org/10.3390/inorganics12010008
APA StyleGuo, W., Weng, Z., Zhou, C., Han, M., Shi, N., Xie, Q., & Peng, D. -L. (2024). Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective. Inorganics, 12(1), 8. https://doi.org/10.3390/inorganics12010008