Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystal Structure and Structural Relationships
2.3. Electronic Structure, Chemical Bonding, and Electron Count Considerations
3. Materials and Methods
3.1. Synthesis
3.2. X-ray Diffraction Methods
3.3. Electronic Structure Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl Phases: Transitions between Metallic and Ionic Bonding. Angew. Chem. Int. Ed. Eng. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm Concept—A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Liu, K.F.; Xia, S.-Q. Recent Progresses on Thermoelectric Zintl Phases: Structures, Materials and Optimization. J. Solid State Chem. 2019, 270, 252–264. [Google Scholar] [CrossRef]
- Hodge, K.; Goldberger, J. Alkyne Hydrogenation Catalysis across a Family of Ga/In Layered Zintl Phases. ACS Appl. Mater. Interfaces 2021, 13, 52152–52159. [Google Scholar] [CrossRef] [PubMed]
- Brehm, J.A. Predicted Bulk Photovoltaic Effect in Hydrogenated Zintl Compounds. J. Mater. Chem C 2018, 6, 1470–1475. [Google Scholar] [CrossRef]
- Park, J.; Han, J.; Gim, J.; Garcia, J.; Iddir, H.; Ahmed, S.; Xu, G.L.; Amine, K.; Johnson, C.; Jung, Y.; et al. Evidence of Zintl Intermediate Phase and Its Impacts on Li and Na Storage Performance of Pb-Based Alloying Anodes. Chem. Mater. 2023, 35, 4171–4180. [Google Scholar] [CrossRef]
- Ogunbunmi, M.O.; Bobev, S. Exploiting the Fraternal Twin Nature of Thermoelectrics and Topological Insulators in Zintl Phases as a Tool for Engineering New Efficient Thermoelectric Generators. J. Mater. Chem. C 2023, 11, 8337–8357. [Google Scholar] [CrossRef]
- Baranets, S.; Ovchinnikov, A.; Bobev, S. Structural Diversity of the Zintl Pnictides with Rare-Earth Metals. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2021; pp. 227–324. [Google Scholar]
- Kauzlarich, S. Zintl Phases: From Curiosities to Impactful Materials. Chem. Mater. 2023, 35, 7355–7362. [Google Scholar] [CrossRef]
- Dolyniuk, J.-A.; He, H.; Ivanov, A.S.; Boldyrev, A.I.; Bobev, S.; Kovnir, K. Ba and Sr Binary Phosphides: Synthesis, Crystal Structures, and Bonding Analysis. Inorg. Chem. 2015, 54, 8608–8616. [Google Scholar] [CrossRef]
- Baranets, S.; Ovchinnikov, A.; Samarakoon, S.M.G.K.; Bobev, S. Synthesis, Crystal and Electronic Structure of the Zintl Phase Ba16Sb11. A Case Study Uncovering Greater Structural Complexity via Monoclinic Distortion of the Tetragonal Ca16Sb11 Structure Type. Z. Anorg. Allg. Chem. 2023, 649, e202300148. [Google Scholar] [CrossRef]
- Hoffmann, A.; Hlukhyy, V.; Fässler, T. Crystal Structure of undecacalcium decaarsenide, Ca11As10. Z. Kristallogr.—New Cryst. Struct. 2023, 238, 1–3. [Google Scholar] [CrossRef]
- Eisenmann, B.; Jordan, H.; Schäfer, H. Ba2Sb3, Eine Neue Zintlphase Mit Sb6-Ketten/On Ba2Sb3, a New Zintl Phase with Sb6 -Chains. Z. Naturforsch. B 1985, 40, 1603–1606. [Google Scholar] [CrossRef]
- Derrien, G.; Monconduit, L.; Tillard, M.; Belin, C. Pentabarium Tetraantimonide, β-Ba5Sb4: A More Symmetrical Arrangement for the Ba5Sb4 Compound. Acta Crystallogr. C 1999, 55, 1044–1046. [Google Scholar] [CrossRef]
- Emmerling, F.; Längin, N.; Pickhard, F.; Wendorff, M.; Röhr, C. Verbindungen Mit Pentelid-Hanteln M2: AIIIM6 Und AII11M10 (A = Rb, Cs, Ba; M = Sb, Bi)/Compounds with Pentelide Dumbbells M2: AI11M6 and AII11M10 (A = Rb, Cs, Ba; M = Sb, Bi). Z. Naturforsch. B 2004, 59, 7–16. [Google Scholar] [CrossRef]
- Eisenmann, B.; Gieck, C.; Rößler, U. Crystal Structure of Barium Diantimonide, BaSb2. Z. Kristallogr.—New Cryst. Struct. 2001, 216, 36. [Google Scholar] [CrossRef]
- Deller, K.; Eisenmann, B. BaSb3, Ein Antimonid Mit Einem Zweidimensional Unendlichen [Sb32-]n-Polyanion/BaSb3, an Antimonide with an Infinite Two Dimensional [Sb32-]n—Anion. Z. Naturforsch. B 1978, 33, 676–677. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Bobev, S. Exploration of Multi-Component Vanadium and Titanium Pnictides Using Flux Growth and Conventional High-Temperature Methods. Front. Chem. 2020, 7, 909. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, A.; Bobev, S. Bismuth as a Reactive Solvent in the Synthesis of Multicomponent Transition-Metal-Bearing Bismuthides. Inorg. Chem. 2020, 59, 3459–3470. [Google Scholar] [CrossRef]
- Cicirello, G.; Wang, M.; Sam, Q.P.; Hart, J.L.; Williams, N.L.; Yin, H.; Cha, J.J.; Wang, J. Two-Dimensional Violet Phosphorus P11: A Large Band Gap Phosphorus Allotrope. J. Am. Chem. Soc. 2023, 145, 8218–8230. [Google Scholar] [CrossRef]
- Todorov, I.; Young Chung, D.; Ye, L.; Freeman, A.J.; Kanatzidis, M.G. Synthesis, Structure and Charge Transport Properties of Yb5Al2Sb6: A Zintl Phase with Incomplete Electron Transfer. Inorg. Chem. 2009, 48, 4768–4776. [Google Scholar] [CrossRef]
- Hadenfeldt, C.; Bartels, F. Pentacalciumhexaphosphahypodiphosphat, Ca5P8: Eine Verbindung Mit Isolierten Anionen P810− Mit Der Gestaffelten Konformation von Ethan. Z. Anorg. Allg. Chem. 1994, 620, 1247–1252. [Google Scholar] [CrossRef]
- Emmerling, F.; Hirschle, C.; Röhr, C. Cs5Sb8 Und β-CsSb: Zwei Neue Binäre Zintl-Phasen. Z. Anorg. Allg. Chem. 2002, 628, 559–563. [Google Scholar] [CrossRef]
- Kleinke, H. A Three-Dimensional Extended Sb Network in the Metallic Antimonides (M’,Ti)5Sb8 (M’ = Zr, Hf, Nb, Mo). Inorg. Chem. 2001, 40, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, A.; Grytsiv, A.; Failamani, F.; Rogl, G.; Puchegger, S.; Müller, H.; Broz, P.; Zelenka, F.; Macciò, D.; Saccone, A.; et al. Constitution of the Binary M-Sb Systems (M = Ti, Zr, Hf) and Physical Properties of MSb2. Intermetallics 2018, 94, 119–132. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, 2832–2838. [Google Scholar] [CrossRef]
- Goicoechea, J.M. Homoatomic Polyanions of the Early P-Block Elements. In Clusters—Contemporary Insight in Structure and Bonding. Structure and Bonding; Dehnen, S., Ed.; Springer: Cham, Switzerland, 2016; pp. 63–97. [Google Scholar]
- Deller, K.; Eisenmann, B. Die Kristallstruktur Des Ca2As3. Z. Naturforsch. B 1976, 31, 1023–1027. [Google Scholar] [CrossRef]
- Wang, Y.; Calvert, L.D.; Smart, M.L.; Taylor, J.B.; Gabe, E.J. The Structure of Trieuropium Tetraarsenide. Acta Crystallogr. B 1979, 35, 2186–2188. [Google Scholar] [CrossRef]
- von Schnering, H.-G.; Wittmann, M.; Sommer, D. Eu3P4, Sr3P4 Und Ba3P4, Polyphosphide Mit P46--Ketten in Einer α-ThSi2-Defektstruktur. Z. Anorg. Allg. Chem. 1984, 510, 61–71. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Wang, H.-C.; Botti, S.; Marques, M.A.L. Predicting Stable Crystalline Compounds Using Chemical Similarity. NPJ Comput. Mater. 2021, 7, 12. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed.; Cornell Univ. Press: Ithaca, NY, USA, 2000; ISBN 978-0-8014-0333-0. [Google Scholar]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- Baranets, S.; Bobev, S. From the Ternary Phase Ca14Zn1+δSb11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14-xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitaln Structural Transformations. Inorg. Chem. 2019, 58, 8506–8516. [Google Scholar] [CrossRef] [PubMed]
- Zevalkink, A.; Takagiwa, Y.; Kitahara, K.; Kimura, K.; Snyder, G.J. Thermoelectric Properties and Electronic Structure of the Zintl Phase Sr5Al2Sb6. Dalton Trans. 2014, 43, 4720–4725. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, J.; Kawamura, A.; Kovnir, K.; Kauzlarich, S. Yb14MgSb11 and Ca14MgSb11—New Mg-Containing Zintl Compounds and Their Structures, Bonding, and Thermoelectric Properties. Chem. Mater. 2015, 27, 343–351. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Q.; Wang, Q.; Su, Y.; Zhou, S.; Liu, X.-C.; Xia, S.-Q. Cation Substitution and Size Effects in Ca2ZnSb2 and Yb2MnSb2: Crystal and Electronic Structures and Thermoelectric Properties. Inorg. Chem. 2023, 62, 7333–7341. [Google Scholar] [CrossRef]
- SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- SADABS; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Gelato, L.M.; Parthé, E. STRUCTURE TIDY—A Computer Program to Standardize Crystal Structure Data. J. Appl. Crystallogr. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Jepsen, O.; Andersen, O.K. The Stuttgart TB-LMTO Program, Version 47, Stuttgard, Germany, 2000. Available online: https://www2.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html (accessed on 18 December 2023).
- von Barth, U.; Hedin, L. A Local Exchange-Correlation Potential for the Spin Polarized Case: I. J. Phys. C Solid State Phys. 1972, 5, 1629–1642. [Google Scholar] [CrossRef]
- Steinberg, S.; Dronskowski, R. The Crystal Orbital Hamilton Population (COHP) Method as a Tool to Visualize and Analyze Chemical Bonding in Intermetallic Compounds. Crystals 2018, 8, 225. [Google Scholar] [CrossRef]
Chemical Formula | Ba5Sb8 |
---|---|
fw/g mol−1 | 1660.70 |
Space group | Fdd2 |
a/Å | 15.6568(13) |
b/Å | 35.240(3) |
c/Å | 6.8189(4) |
V/Å3 | 3762.3 |
ρcalc./g cm−3 | 5.86 |
μ (Mo-Kα)/cm−1 | 215.2 |
Reflections collected/Independent reflections | 10675/2811 |
R1 (I > 2σ(I)) [a] | 0.0204 |
wR2 (I > 2σ(I)) [a] | 0.0418 |
R1 (all data) [a] | 0.0209 |
wR2 (all data) [a] | 0.0419 |
Δρmax,min/e−·Å−3 | 1.67, −1.01 |
CCDC deposition number | 2307632 |
Atom | Site | x | y | z | Ueq |
---|---|---|---|---|---|
Ba1 | 16b | 0.0017(1) | 0.2017(1) | 0.1058(1) | 0.007(1) |
Ba2 | 16b | 0.5149(1) | 0.1031(1) | 0.1323(1) | 0.006(1) |
Ba3 | 8a | 0 | 0 | 0.0000(1) | 0.006(1) |
Sb1 | 16b | 0.0679(1) | 0.3027(1) | 0.1182(1) | 0.007(1) |
Sb2 | 16b | 0.0846(1) | 0.1005(1) | 0.1286(1) | 0.007(1) |
Sb3 | 16b | 0.1598(1) | 0.1714(1) | 0.4507(1) | 0.007(1) |
Sb4 | 16b | 0.6654(1) | 0.2346(1) | 0.2396(1) | 0.007(1) |
Atom Pair | Distance/Å | Atom Pair | Distance/Å | Atoms Pair | Distance/Å |
---|---|---|---|---|---|
Ba1–Sb1 | 3.5021(9) | Ba2–Sb2 | 3.6054(8) | Sb1–Sb2 | 2.8855(7) |
Ba1–Sb1 | 3.6631(9) | Ba2–Sb3 | 3.5326(7) | Sb2–Sb3 | 2.8868(8) |
Ba1–Sb2 | 3.5538(7) | Ba2–Sb4 | 3.5929(8) | Sb3–Sb4 | 2.9728(8) |
Ba1–Sb3 | 3.5772(7) | Ba3–Sb1 | 3.5185(6) | Sb4–Sb4 | 2.8655(11) |
Ba1–Sb4 | 3.5663(8) | Ba3–Sb1 | 3.5185(6) | Atoms | Angles/° |
Ba1–Sb1 | 3.7062(8) | Ba3–Sb2 | 3.8820(6) | Sb1–Sb2–Sb3 | 116.75(2) |
Ba2–Sb1 | 3.5672(8) | Ba3–Sb3 | 3.3970(7) | Sb2–Sb3–Sb4 | 106.58(2) |
Ba2–Sb1 | 3.5502(8) | Ba3–Sb4 | 3.7639(9) | Sb4–Sb4–Sb3 | 108.16(2) |
Ba2–Sb2 | 3.6686(8) | Ba3–Sb4 | 3.6328(9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarakoon, S.M.G.K.; Ovchinnikov, A.; Baranets, S.; Bobev, S. Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics 2024, 12, 3. https://doi.org/10.3390/inorganics12010003
Samarakoon SMGK, Ovchinnikov A, Baranets S, Bobev S. Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics. 2024; 12(1):3. https://doi.org/10.3390/inorganics12010003
Chicago/Turabian StyleSamarakoon, S. M. Gayomi K., Alexander Ovchinnikov, Sviatoslav Baranets, and Svilen Bobev. 2024. "Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2)" Inorganics 12, no. 1: 3. https://doi.org/10.3390/inorganics12010003
APA StyleSamarakoon, S. M. G. K., Ovchinnikov, A., Baranets, S., & Bobev, S. (2024). Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics, 12(1), 3. https://doi.org/10.3390/inorganics12010003