Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2)
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystal Structure and Structural Relationships
2.3. Electronic Structure, Chemical Bonding, and Electron Count Considerations
3. Materials and Methods
3.1. Synthesis
3.2. X-ray Diffraction Methods
3.3. Electronic Structure Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl Phases: Transitions between Metallic and Ionic Bonding. Angew. Chem. Int. Ed. Eng. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm Concept—A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Liu, K.F.; Xia, S.-Q. Recent Progresses on Thermoelectric Zintl Phases: Structures, Materials and Optimization. J. Solid State Chem. 2019, 270, 252–264. [Google Scholar] [CrossRef]
- Hodge, K.; Goldberger, J. Alkyne Hydrogenation Catalysis across a Family of Ga/In Layered Zintl Phases. ACS Appl. Mater. Interfaces 2021, 13, 52152–52159. [Google Scholar] [CrossRef] [PubMed]
- Brehm, J.A. Predicted Bulk Photovoltaic Effect in Hydrogenated Zintl Compounds. J. Mater. Chem C 2018, 6, 1470–1475. [Google Scholar] [CrossRef]
- Park, J.; Han, J.; Gim, J.; Garcia, J.; Iddir, H.; Ahmed, S.; Xu, G.L.; Amine, K.; Johnson, C.; Jung, Y.; et al. Evidence of Zintl Intermediate Phase and Its Impacts on Li and Na Storage Performance of Pb-Based Alloying Anodes. Chem. Mater. 2023, 35, 4171–4180. [Google Scholar] [CrossRef]
- Ogunbunmi, M.O.; Bobev, S. Exploiting the Fraternal Twin Nature of Thermoelectrics and Topological Insulators in Zintl Phases as a Tool for Engineering New Efficient Thermoelectric Generators. J. Mater. Chem. C 2023, 11, 8337–8357. [Google Scholar] [CrossRef]
- Baranets, S.; Ovchinnikov, A.; Bobev, S. Structural Diversity of the Zintl Pnictides with Rare-Earth Metals. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2021; pp. 227–324. [Google Scholar]
- Kauzlarich, S. Zintl Phases: From Curiosities to Impactful Materials. Chem. Mater. 2023, 35, 7355–7362. [Google Scholar] [CrossRef]
- Dolyniuk, J.-A.; He, H.; Ivanov, A.S.; Boldyrev, A.I.; Bobev, S.; Kovnir, K. Ba and Sr Binary Phosphides: Synthesis, Crystal Structures, and Bonding Analysis. Inorg. Chem. 2015, 54, 8608–8616. [Google Scholar] [CrossRef]
- Baranets, S.; Ovchinnikov, A.; Samarakoon, S.M.G.K.; Bobev, S. Synthesis, Crystal and Electronic Structure of the Zintl Phase Ba16Sb11. A Case Study Uncovering Greater Structural Complexity via Monoclinic Distortion of the Tetragonal Ca16Sb11 Structure Type. Z. Anorg. Allg. Chem. 2023, 649, e202300148. [Google Scholar] [CrossRef]
- Hoffmann, A.; Hlukhyy, V.; Fässler, T. Crystal Structure of undecacalcium decaarsenide, Ca11As10. Z. Kristallogr.—New Cryst. Struct. 2023, 238, 1–3. [Google Scholar] [CrossRef]
- Eisenmann, B.; Jordan, H.; Schäfer, H. Ba2Sb3, Eine Neue Zintlphase Mit Sb6-Ketten/On Ba2Sb3, a New Zintl Phase with Sb6 -Chains. Z. Naturforsch. B 1985, 40, 1603–1606. [Google Scholar] [CrossRef]
- Derrien, G.; Monconduit, L.; Tillard, M.; Belin, C. Pentabarium Tetraantimonide, β-Ba5Sb4: A More Symmetrical Arrangement for the Ba5Sb4 Compound. Acta Crystallogr. C 1999, 55, 1044–1046. [Google Scholar] [CrossRef]
- Emmerling, F.; Längin, N.; Pickhard, F.; Wendorff, M.; Röhr, C. Verbindungen Mit Pentelid-Hanteln M2: AIIIM6 Und AII11M10 (A = Rb, Cs, Ba; M = Sb, Bi)/Compounds with Pentelide Dumbbells M2: AI11M6 and AII11M10 (A = Rb, Cs, Ba; M = Sb, Bi). Z. Naturforsch. B 2004, 59, 7–16. [Google Scholar] [CrossRef]
- Eisenmann, B.; Gieck, C.; Rößler, U. Crystal Structure of Barium Diantimonide, BaSb2. Z. Kristallogr.—New Cryst. Struct. 2001, 216, 36. [Google Scholar] [CrossRef]
- Deller, K.; Eisenmann, B. BaSb3, Ein Antimonid Mit Einem Zweidimensional Unendlichen [Sb32-]n-Polyanion/BaSb3, an Antimonide with an Infinite Two Dimensional [Sb32-]n—Anion. Z. Naturforsch. B 1978, 33, 676–677. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Bobev, S. Exploration of Multi-Component Vanadium and Titanium Pnictides Using Flux Growth and Conventional High-Temperature Methods. Front. Chem. 2020, 7, 909. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, A.; Bobev, S. Bismuth as a Reactive Solvent in the Synthesis of Multicomponent Transition-Metal-Bearing Bismuthides. Inorg. Chem. 2020, 59, 3459–3470. [Google Scholar] [CrossRef]
- Cicirello, G.; Wang, M.; Sam, Q.P.; Hart, J.L.; Williams, N.L.; Yin, H.; Cha, J.J.; Wang, J. Two-Dimensional Violet Phosphorus P11: A Large Band Gap Phosphorus Allotrope. J. Am. Chem. Soc. 2023, 145, 8218–8230. [Google Scholar] [CrossRef]
- Todorov, I.; Young Chung, D.; Ye, L.; Freeman, A.J.; Kanatzidis, M.G. Synthesis, Structure and Charge Transport Properties of Yb5Al2Sb6: A Zintl Phase with Incomplete Electron Transfer. Inorg. Chem. 2009, 48, 4768–4776. [Google Scholar] [CrossRef]
- Hadenfeldt, C.; Bartels, F. Pentacalciumhexaphosphahypodiphosphat, Ca5P8: Eine Verbindung Mit Isolierten Anionen P810− Mit Der Gestaffelten Konformation von Ethan. Z. Anorg. Allg. Chem. 1994, 620, 1247–1252. [Google Scholar] [CrossRef]
- Emmerling, F.; Hirschle, C.; Röhr, C. Cs5Sb8 Und β-CsSb: Zwei Neue Binäre Zintl-Phasen. Z. Anorg. Allg. Chem. 2002, 628, 559–563. [Google Scholar] [CrossRef]
- Kleinke, H. A Three-Dimensional Extended Sb Network in the Metallic Antimonides (M’,Ti)5Sb8 (M’ = Zr, Hf, Nb, Mo). Inorg. Chem. 2001, 40, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, A.; Grytsiv, A.; Failamani, F.; Rogl, G.; Puchegger, S.; Müller, H.; Broz, P.; Zelenka, F.; Macciò, D.; Saccone, A.; et al. Constitution of the Binary M-Sb Systems (M = Ti, Zr, Hf) and Physical Properties of MSb2. Intermetallics 2018, 94, 119–132. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, 2832–2838. [Google Scholar] [CrossRef]
- Goicoechea, J.M. Homoatomic Polyanions of the Early P-Block Elements. In Clusters—Contemporary Insight in Structure and Bonding. Structure and Bonding; Dehnen, S., Ed.; Springer: Cham, Switzerland, 2016; pp. 63–97. [Google Scholar]
- Deller, K.; Eisenmann, B. Die Kristallstruktur Des Ca2As3. Z. Naturforsch. B 1976, 31, 1023–1027. [Google Scholar] [CrossRef]
- Wang, Y.; Calvert, L.D.; Smart, M.L.; Taylor, J.B.; Gabe, E.J. The Structure of Trieuropium Tetraarsenide. Acta Crystallogr. B 1979, 35, 2186–2188. [Google Scholar] [CrossRef]
- von Schnering, H.-G.; Wittmann, M.; Sommer, D. Eu3P4, Sr3P4 Und Ba3P4, Polyphosphide Mit P46--Ketten in Einer α-ThSi2-Defektstruktur. Z. Anorg. Allg. Chem. 1984, 510, 61–71. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Wang, H.-C.; Botti, S.; Marques, M.A.L. Predicting Stable Crystalline Compounds Using Chemical Similarity. NPJ Comput. Mater. 2021, 7, 12. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed.; Cornell Univ. Press: Ithaca, NY, USA, 2000; ISBN 978-0-8014-0333-0. [Google Scholar]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- Baranets, S.; Bobev, S. From the Ternary Phase Ca14Zn1+δSb11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14-xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitaln Structural Transformations. Inorg. Chem. 2019, 58, 8506–8516. [Google Scholar] [CrossRef] [PubMed]
- Zevalkink, A.; Takagiwa, Y.; Kitahara, K.; Kimura, K.; Snyder, G.J. Thermoelectric Properties and Electronic Structure of the Zintl Phase Sr5Al2Sb6. Dalton Trans. 2014, 43, 4720–4725. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hu, Y.; Wang, J.; Kawamura, A.; Kovnir, K.; Kauzlarich, S. Yb14MgSb11 and Ca14MgSb11—New Mg-Containing Zintl Compounds and Their Structures, Bonding, and Thermoelectric Properties. Chem. Mater. 2015, 27, 343–351. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Q.; Wang, Q.; Su, Y.; Zhou, S.; Liu, X.-C.; Xia, S.-Q. Cation Substitution and Size Effects in Ca2ZnSb2 and Yb2MnSb2: Crystal and Electronic Structures and Thermoelectric Properties. Inorg. Chem. 2023, 62, 7333–7341. [Google Scholar] [CrossRef]
- SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- SADABS; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Gelato, L.M.; Parthé, E. STRUCTURE TIDY—A Computer Program to Standardize Crystal Structure Data. J. Appl. Crystallogr. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Jepsen, O.; Andersen, O.K. The Stuttgart TB-LMTO Program, Version 47, Stuttgard, Germany, 2000. Available online: https://www2.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html (accessed on 18 December 2023).
- von Barth, U.; Hedin, L. A Local Exchange-Correlation Potential for the Spin Polarized Case: I. J. Phys. C Solid State Phys. 1972, 5, 1629–1642. [Google Scholar] [CrossRef]
- Steinberg, S.; Dronskowski, R. The Crystal Orbital Hamilton Population (COHP) Method as a Tool to Visualize and Analyze Chemical Bonding in Intermetallic Compounds. Crystals 2018, 8, 225. [Google Scholar] [CrossRef]
Chemical Formula | Ba5Sb8 |
---|---|
fw/g mol−1 | 1660.70 |
Space group | Fdd2 |
a/Å | 15.6568(13) |
b/Å | 35.240(3) |
c/Å | 6.8189(4) |
V/Å3 | 3762.3 |
ρcalc./g cm−3 | 5.86 |
μ (Mo-Kα)/cm−1 | 215.2 |
Reflections collected/Independent reflections | 10675/2811 |
R1 (I > 2σ(I)) [a] | 0.0204 |
wR2 (I > 2σ(I)) [a] | 0.0418 |
R1 (all data) [a] | 0.0209 |
wR2 (all data) [a] | 0.0419 |
Δρmax,min/e−·Å−3 | 1.67, −1.01 |
CCDC deposition number | 2307632 |
Atom | Site | x | y | z | Ueq |
---|---|---|---|---|---|
Ba1 | 16b | 0.0017(1) | 0.2017(1) | 0.1058(1) | 0.007(1) |
Ba2 | 16b | 0.5149(1) | 0.1031(1) | 0.1323(1) | 0.006(1) |
Ba3 | 8a | 0 | 0 | 0.0000(1) | 0.006(1) |
Sb1 | 16b | 0.0679(1) | 0.3027(1) | 0.1182(1) | 0.007(1) |
Sb2 | 16b | 0.0846(1) | 0.1005(1) | 0.1286(1) | 0.007(1) |
Sb3 | 16b | 0.1598(1) | 0.1714(1) | 0.4507(1) | 0.007(1) |
Sb4 | 16b | 0.6654(1) | 0.2346(1) | 0.2396(1) | 0.007(1) |
Atom Pair | Distance/Å | Atom Pair | Distance/Å | Atoms Pair | Distance/Å |
---|---|---|---|---|---|
Ba1–Sb1 | 3.5021(9) | Ba2–Sb2 | 3.6054(8) | Sb1–Sb2 | 2.8855(7) |
Ba1–Sb1 | 3.6631(9) | Ba2–Sb3 | 3.5326(7) | Sb2–Sb3 | 2.8868(8) |
Ba1–Sb2 | 3.5538(7) | Ba2–Sb4 | 3.5929(8) | Sb3–Sb4 | 2.9728(8) |
Ba1–Sb3 | 3.5772(7) | Ba3–Sb1 | 3.5185(6) | Sb4–Sb4 | 2.8655(11) |
Ba1–Sb4 | 3.5663(8) | Ba3–Sb1 | 3.5185(6) | Atoms | Angles/° |
Ba1–Sb1 | 3.7062(8) | Ba3–Sb2 | 3.8820(6) | Sb1–Sb2–Sb3 | 116.75(2) |
Ba2–Sb1 | 3.5672(8) | Ba3–Sb3 | 3.3970(7) | Sb2–Sb3–Sb4 | 106.58(2) |
Ba2–Sb1 | 3.5502(8) | Ba3–Sb4 | 3.7639(9) | Sb4–Sb4–Sb3 | 108.16(2) |
Ba2–Sb2 | 3.6686(8) | Ba3–Sb4 | 3.6328(9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarakoon, S.M.G.K.; Ovchinnikov, A.; Baranets, S.; Bobev, S. Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics 2024, 12, 3. https://doi.org/10.3390/inorganics12010003
Samarakoon SMGK, Ovchinnikov A, Baranets S, Bobev S. Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics. 2024; 12(1):3. https://doi.org/10.3390/inorganics12010003
Chicago/Turabian StyleSamarakoon, S. M. Gayomi K., Alexander Ovchinnikov, Sviatoslav Baranets, and Svilen Bobev. 2024. "Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2)" Inorganics 12, no. 1: 3. https://doi.org/10.3390/inorganics12010003
APA StyleSamarakoon, S. M. G. K., Ovchinnikov, A., Baranets, S., & Bobev, S. (2024). Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2). Inorganics, 12(1), 3. https://doi.org/10.3390/inorganics12010003