Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of NiS and Te@NiS Nanoparticles
2.3. Synthesis of SGCN
2.4. Synthesis of SGCN/Te@NiS Nanocomposites
2.5. Photocatalytic Study
2.6. Band Gap Calculations for Photocatalysts
2.7. Antimicrobial Study
- The cultured bacteria and fungi were used to prepare inoculum. Two flasks were taken, having 25 mL water each with 0.32 g of nutrient broth. The flasks were autoclaved for about 15 min and labeled with the name of bacterial strains, i.e., Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli) and fungi strains i.e. Monilinia laxa (M. laxa) and Fusarium oxysporum (F. oxysporum). Two drops of bacterial strain were added into the respective flasks and placed in a shaker for 24 h. The fungal strains were incubated for 48 h.
- Then, the photocatalyst solutions (mg/L) were prepared, by using the relation: M1V1 = M2V2
- The medium was prepared by adding 1 g agar and 2 g broth to 100 mL water, in a flask. The solution was heated until it boiled. The sample was poured into Petri dishes and was allowed to cool down and solidify.
- After cooling, holes were punched in the gel by hole puncture, according to the number of mg/L solutions prepared (blank, 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm). The prepared mg/L solutions were added into the respective holes. The Petri dishes were covered and incubated for about 24 h at 37 °C and at 28 °C for 48 h for fungal strains.
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. X-ray Diffraction Pattern
3.3. SEM
3.4. Band Gap
3.5. XPS
3.6. Photocatalytic Activity Measurements
3.7. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldalbahi, A.; El-Naggar, M.E.; El-Newehy, M.H.; Rahaman, M.; Hatshan, M.R.; Khattab, T.A. Effects of technical textiles and synthetic nanofibers on environmental pollution. Polymers 2021, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Khan, M. Pakistan textile industry facing new challenges. Res. J. Int. Stud. 2010, 14, 21–29. [Google Scholar]
- Memon, J.A.; Aziz, A.; Qayyum, M. The rise and fall of Pakistan’s textile industry: An analytical view. Eur. J. Bus. Manag. 2020, 12, 136–142. [Google Scholar]
- Singh, S.; Khajuria, R. Penicillium enzymes for the textile industry. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 201–215. [Google Scholar]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Mansoor, S.; Shahid, S.; Ashiq, K.; Alwadai, N.; Javed, M.; Iqbal, S.; Fatima, U.; Zaman, S.; Nazim Sarwar, M.; Alshammari, F.H.; et al. Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applications. Inorg. Chem. Commun. 2022, 142, 109702. [Google Scholar] [CrossRef]
- Iqbal, S.; Javed, M.; Qamar, M.A.; Bahadur, A.; Fayyaz, M.; Akbar, A.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.J.C. Synthesis of Cu-ZnO/Polyacrylic Acid Hydrogel as Visible-Light-Driven Photocatalyst for Organic Pollutant Degradation. Chem. Sel. 2022, 7, e202103694. [Google Scholar] [CrossRef]
- Yaseen, D.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Singh, Z.; Chadha, P. Textile industry and occupational cancer. J. Occup. Med. Toxicol. 2016, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Erkurt, H.A. Biodegradation of Azo Dyes; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Newman, M. The Science of Pollution (Cuarta). 2015. Available online: https://bit.ly/33OMYAp (accessed on 12 December 2022).
- Rehman, K.; Shahzad, T.; Sahar, A.; Hussain, S.; Mahmood, F.; Siddique, M.H.; Siddique, M.A.; Rashid, M.I. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ 2018, 6, e4802. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Bharathi, D.; Saravanan, M.; Manikandan, E.; Kumar, S.S.; Pugazhendhi, A. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J. Photochem. Photobiol. B Biol. 2018, 188, 126–134. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Shariq, M.; Fadhali, M.M.; Madkhali, O.; Ali, S.K.; Syed, I.S.; Awaji, M.Y.; Shakir Khan, M. Accelerated Decoloration of Organic Dyes from Wastewater Using Ternary Metal/g-C3N4/ZnO Nanocomposites: An Investigation of Impact of g-C3N4 Concentration and Ni and Mn Doping. Catalysts 2022, 12, 1388. [Google Scholar] [CrossRef]
- Afzal, M.I.; Shahid, S.; Mansoor, S.; Javed, M.; Iqbal, S.; Hakami, O.; Yousef, E.S.; Al-Fawzan, F.F.; Elkaeed, E.B.; Pashameah, R.A.; et al. Fabrication of a Ternary Nanocomposite g-C3N4/Cu@CdS with Superior Charge Separation for Removal of Organic Pollutants and Bacterial Disinfection from Wastewater under Sunlight Illumination. Toxics 2022, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Park, S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Kiwaan, H.; Atwee, T.; Azab, E.; El-Bindary, A. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 2020, 1200, 127115. [Google Scholar] [CrossRef]
- Dodoo-Arhin, D.; Asiedu, T.; Agyei-Tuffour, B.; Nyankson, E.; Obada, D.; Mwabora, J. Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Mater. Today Proc. 2021, 38, 809–815. [Google Scholar] [CrossRef]
- Rajendrachari, S.; Taslimi, P.; Karaoglanli, A.C.; Uzun, O.; Alp, E.; Jayaprakash, G.K. Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arab. J. Chem. 2021, 14, 103180. [Google Scholar] [CrossRef]
- Lai, M.T.L.; Lai, C.W.; Lee, K.M.; Chook, S.W.; Yang, T.C.K.; Chong, S.H.; Juan, J.C. Facile one-pot solvothermal method to synthesize solar active Bi2WO6 for photocatalytic degradation of organic dye. J. Alloys Compd. 2019, 801, 502–510. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, V.; Kim, K.-H.; Rawat, M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ. Res. 2019, 177, 108569. [Google Scholar] [CrossRef]
- Muthuvel, A.; Jothibas, M.; Manoharan, C. Synthesis of copper oxide nanoparticles by chemical and biogenic methods: Photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 2020, 5, 14. [Google Scholar] [CrossRef]
- Verma, M.; Singh, K.P.; Kumar, A. Reactive magnetron sputtering based synthesis of WO3 nanoparticles and their use for the photocatalytic degradation of dyes. Solid State Sci. 2020, 99, 105847. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Hegazey, R.; Kotp, Y.H.; Alharbi, A. Facile synthesis of Fe2O3 nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of methylene blue and crystal violet dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117195. [Google Scholar] [CrossRef]
- Aziz, A.; Ali, N.; Khan, A.; Bilal, M.; Malik, S.; Ali, N.; Khan, H. Chitosan-zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int. J. Biol. Macromol. 2020, 153, 502–512. [Google Scholar] [CrossRef]
- Ahadi, M.; Saber Tehrani, M.; Aberoomand Azar, P.; Waqif Husain, S. Novel preparation of sensitized ZnS nanoparticles and its use in photocatalytic degradation of tetracycline. Int. J. Environ. Sci. Technol. 2016, 13, 2797–2804. [Google Scholar] [CrossRef]
- Ayodhya, D.; Venkatesham, M.; Santoshi Kumari, A.; Reddy, G.B.; Ramakrishna, D.; Veerabhadram, G. Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles. J. Exp. Nanosci. 2016, 11, 418–432. [Google Scholar] [CrossRef]
- Borthakur, P.; Boruah, P.K.; Darabdhara, G.; Sengupta, P.; Das, M.R.; Boronin, A.I.; Kibis, L.S.; Kozlova, M.N.; Fedorov, V.E. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J. Environ. Chem. Eng. 2016, 4, 4600–4611. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K. In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation. Mater. Chem. Phys. 2016, 171, 126–136. [Google Scholar] [CrossRef]
- Kakodkar, S.B. Synthesis, characterisation and photocatalytic activity of cadmium sulphide nanoparticles. Chem. Sci. Trans 2016, 5, 75–78. [Google Scholar]
- Ayodhya, D.; Veerabhadram, G. Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 157, 57–69. [Google Scholar] [CrossRef]
- Sharma, S.; Khare, N. Hierarchical Bi2S3 nanoflowers: A novel photocatalyst for enhanced photocatalytic degradation of binary mixture of Rhodamine B and Methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. Adv. Powder Technol. 2018, 29, 3336–3347. [Google Scholar] [CrossRef]
- Guo, H.; Ke, Y.; Wang, D.; Lin, K.; Shen, R.; Chen, J.; Weng, W. Efficient adsorption and photocatalytic degradation of Congo red onto hydrothermally synthesized NiS nanoparticles. J. Nanoparticle Res. 2013, 15, 1475. [Google Scholar] [CrossRef] [Green Version]
- Bharathi, D.; Ranjithkumar, R.; Chandarshekar, B.; Bhuvaneshwari, V. Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: As a bionanocomposite. Int. J. Biol. Macromol. 2019, 129, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Oshida, Y. Bioscience and Bioengineering of Titanium Materials; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Chen, X.; Zhang, H.; Ci, C.; Sun, W.; Wang, Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano 2019, 13, 3600–3607. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.A.; Javed, M.; Shahid, S.; Iqbal, S.; Abubshait, S.A.; Abubshait, H.A.; Ramay, S.M.; Mahmood, A.; Ghaithan, H.M. Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J. Nanopart. Res. 2021, 9, 105534. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 2019, 9, 2489. [Google Scholar] [CrossRef] [Green Version]
- Ayodhya, D.; Veerabhadram, G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater. Today Energy 2018, 9, 83–113. [Google Scholar]
- Iqbal, S. Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 274, 119097. [Google Scholar] [CrossRef]
- Alenizia, M.; Alserourya, F.; Kumarc, R.; Aslamd, M.; Barakatc, M. Removal of trichlorophenol from wastewater using NiS/RGO/TiO. Composites 2020, 24, 26. [Google Scholar]
- Gomaa, M.M.; Sayed, M.H.; Abdel-Wahed, M.S.; Boshta, M. A facile chemical synthesis of nanoflake NiS 2 layers and their photocatalytic activity. RSC Adv. 2022, 12, 10401–10408. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, D.; Ye, F.; Wang, K.; Shi, Z. Synthesis of lawn-like NiS2 nanowires on carbon fiber paper as bifunctional electrode for water splitting. Int. J. Hydrogen Energy 2017, 42, 17038–17048. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Y.; Gao, C.; Liu, L.; Zhang, Y.; Chen, Y.; Shao, Y. Construction of AgBr/BiOBr S-scheme heterojunction using ion exchange strategy for high-efficiency reduction of CO2 to CO under visible light. Sep. Purif. Technol. 2022, 303, 122288. [Google Scholar] [CrossRef]
- Sher, M.; Javed, M.; Shahid, S.; Hakami, O.; Qamar, M.A.; Iqbal, S.; AL-Anazy, M.M.; Baghdadi, H.B. Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiation. J. Photochem. Photobiol. A Chem. 2021, 418, 113393. [Google Scholar] [CrossRef]
- Shinde, D.V.; Patil, S.A.; Cho, K.; Ahn, D.Y.; Shrestha, N.K.; Mane, R.S.; Lee, J.K.; Han, S.H. Revisiting Metal Sulfide Semiconductors: A Solution-Based General Protocol for Thin Film Formation, Hall Effect Measurement, and Application Prospects. Adv. Funct. Mater. 2015, 25, 5739–5747. [Google Scholar] [CrossRef]
- Isac, L.; Cazan, C.; Enesca, A.; Andronic, L. Copper sulfide based heterojunctions as photocatalysts for dyes photodegradation. Front. Chem. 2019, 7, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Ou, X.; Xiang, Q.; Carabineiro, S.A.; Fan, J.; Lv, K. Research progress in metal sulfides for photocatalysis: From activity to stability. Chemosphere 2022, 135085. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, C.; Malathi, A.; Daneshvar, E.; Kollu, P.; Bhatnagar, A. Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@ HPGA nanocomposite. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; He, J.; Wu, G.; Hu, J. “Thermal Stabilization Effect” of Al2O3 nano-dopants improves the high-temperature dielectric performance of polyimide. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Lou, S.; Gao, Y.; Kong, L.; Yan, S.; Wang, K.; Song, H. Effect of Co doping on electrocatalytic performance of Co-NiS2/CoS2 heterostructures. Nanomaterials 2021, 11, 1245. [Google Scholar] [CrossRef]
- Tomke, P.D.; Rathod, V.K. Nanoengineering Tools in Beverage Industry. In Nanoengineering in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–69. [Google Scholar]
- Jing, J.; Chen, Z.; Feng, C.; Sun, M.; Hou, J. Transforming g-C3N4 from amphoteric to n-type semiconductor: The important role of p/n type on photoelectrochemical cathodic protection. J. Alloys Compd. 2021, 851, 156820. [Google Scholar] [CrossRef]
- Mao, M.; Xu, J.; Li, L.; Zhao, S.; Li, X. The pn heterojunction constructed by NiMnO3 nanoparticles and Ni3S4 to promote charge separation and efficient catalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 23190–23204. [Google Scholar] [CrossRef]
- Matsuura, K.; Mizumoto, N.; Kobayashi, K.; Nozaki, T.; Fujita, T.; Yashiro, T.; Fuchikawa, T.; Mitaka, Y.; Vargo, E.L. A genomic imprinting model of termite caste determination: Not genetic but epigenetic inheritance influences offspring caste fate. Am. Nat. 2018, 191, 677–690. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C 3 N 4 -Based Heterostructured Photocatalysts. Adv. Energy Mater. 2017, 8, 1701503. [Google Scholar] [CrossRef]
- Luo, X.-L.; He, G.-L.; Fang, Y.-P.; Xu, Y.-H. Nickel sulfide/graphitic carbon nitride/strontium titanate (NiS/g-C3N4/SrTiO3) composites with significantly enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 2018, 518, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Wang, X.-T.; Jian, L.-J.; Abdallah, N.I.M.; Dong, X.-F.; Wang, C.-W. Pn Heterostructured design of decahedral NiS/BiVO4 with efficient charge separation for enhanced photodegradation of organic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125565. [Google Scholar] [CrossRef]
- Vignesh, S.; Kim, H. Interfacial coupling effects in α-Fe2O3/g-C3N4 composite magnetically separable heterojunction with upgraded Z-scheme photocatalytic performance of mixed organic pollutant degradation. J. Phys. Chem. Solids 2022, 169, 110869. [Google Scholar] [CrossRef]
- Vinoth, S.; Rajaitha, P.M.; Venkadesh, A.; Devi, K.S.; Radhakrishnan, S.; Pandikumar, A. Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose. Nanoscale Adv. 2020, 2, 4242–4250. [Google Scholar] [CrossRef]
- Javed, M.; Abid, M.; Hussain, S.; Shahwar, D.; Arshad, S.; Ahmad, N.; Arif, M.; Khan, H.; Nadeem, S.; Raza, H. Synthesis, characterization and photocatalytic applications of s-doped graphitic carbon nitride nanocomposites with nickel doped zinc oxide nanoparticles. Dig. J. Nanomater. Biostruct. 2020, 15, 1097–1105. [Google Scholar] [CrossRef]
- Mi, L.; Chen, Y.; Wei, W.; Chen, W.; Hou, H.; Zheng, Z. Large-scale urchin-like micro/nano-structured NiS: Controlled synthesis, cation exchange and lithium-ion battery applications. RSC Adv. 2013, 3, 17431–17439. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Ramakrishnan, V.M.; Asokan, V.; Palanichamy, P.; Rangasamy, B.; Sundaram, S.; Velauthapillai, D. Nickel sulphide-carbon composite hole transporting material for (CH3NH3PbI3) planar heterojunction perovskite solar cell. Mater. Lett. 2018, 221, 283–288. [Google Scholar] [CrossRef]
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015, 176–177, 44–52. [Google Scholar] [CrossRef]
- Abubshait, S.A.; Iqbal, S.; Abubshait, H.A.; AlObaid, A.A.; Al-Muhimeed, T.I.; Abd-Rabboh, H.S.; Bahadur, A.; Li, W.J.C.; Physicochemical, S.A.; Aspects, E. Effective heterointerface combination of 1D/2D Co-NiS/Sg-C3N4 heterojunction for boosting spatial charge separation with enhanced photocatalytic degradation of organic pollutants and disinfection of pathogens. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127390. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Javed, M.; Liu, G.; Al-Muhimeed, T.I.; AlObaid, A.A.; Ahmad, Z.; Feng, K.; Xiao, D.J. Synergetic intimate interface contacts of 2D/1D Sg-C3N4/Co-NiS heterojunction with spatial charge separation for boosting photodegradation of MB and inactivation of pathogens under visible light irradiation. J. Alloys Compd. 2022, 892, 162012. [Google Scholar] [CrossRef]
- Bahadur, A.; Iqbal, S.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A. Designing a novel visible-light-driven heterostructure Ni–ZnO/SgC 3 N 4 photocatalyst for coloured pollutant degradation. RSC Adv. 2021, 11, 36518–36527. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Amjad, A.; Javed, M.; Alfakeer, M.; Mushtaq, M.; Rabea, S.; Elkaeed, E.B.; Pashameah, R.A.; Alzahrani, E.; Farouk, A.-E. Boosted Spatial Charge Carrier Separation of Binary ZnFe2O4/Sg-C3N4 Heterojunction for Visible-light-driven Photocatalytic activity and Antimicrobial Performance. Front. Chem. 2022, 894. [Google Scholar] [CrossRef]
- Ye, Z.; Kong, L.; Chen, F.; Chen, Z.; Lin, Y.; Liu, C. A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik 2018, 164, 345–354. [Google Scholar] [CrossRef]
- Kokilavani, S.; Syed, A.; Kumar, B.H.; Elgorban, A.M.; Bahkali, A.H.; Ahmed, B.; Das, A.; Khan, S.S. Facile synthesis of MgS/Ag2MoO4 nanohybrid heterojunction: Outstanding visible light harvesting for boosted photocatalytic degradation of MB and its anti-microbial applications. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127097. [Google Scholar] [CrossRef]
- Lin, X.P.; Huang, F.Q.; Wang, W.D.; Zhang, K.L. A novel photocatalyst BiSbO4 for degradation of methylene blue. Appl. Catal. A Gen. 2006, 307, 257–262. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, L.; Chang, C.; Fu, Y.; Chu, X. Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4by two-step hydrothermal method and itsphotocatalytic degradation of bisphenol A. Catal. Commun. 2013, 37, 92–95. [Google Scholar] [CrossRef]
- Zhang, P.; Munawar, T.; Soltane, R.; Javed, M.; Liu, G.; Iqbal, S.; Qamar, M.A.; Dera, A.A.; Alrbyawi, H.; Alfakeer, M. Fabrication of Cr-ZnFe2O4/Sg-C3N4 Heterojunction Enriched Charge Separation for Sunlight Responsive Photocatalytic Performance and Antibacterial Study. Molecules 2022, 27, 6330. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Lam, S.-M.; Sin, J.-C.; Zeng, H.; Mohamed, A.R. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Sep. Purif. Technol. 2020, 236, 116195. [Google Scholar] [CrossRef]
- Javed, M.; Iqbal, S.; Qamar, M.A.; Shariq, M.; Ahmed, I.A.; BaQais, A.; Alzahrani, H.; Ali, S.K.; Masmali, N.; Althagafi, T.M. Fabrication of Effective Co-SnO2/SGCN Photocatalysts for the Removal of Organic Pollutants and Pathogen Inactivation. Crystals 2023, 13, 163. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Iqbal, S.; Sher, M.; Bahadur, A.; AL-Anazy, M.M.; Laref, A.; Li, D. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126176. [Google Scholar] [CrossRef]
- Elavarasan, N.; Vignesh, S.; Srinivasan, M.; Venkatesh, G.; Palanisamy, G.; Ramasamy, P.; Palanivel, B.; Al-Enizi, A.M.; Ubaidullah, M.; Reddy, V.R.M. Synergistic S-Scheme mechanism insights of g-C3N4 and rGO combined ZnO-Ag heterostructure nanocomposite for efficient photocatalytic and anticancer activities. J. Alloys Compd. 2022, 906, 164255. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Iqbal, S.; Sher, M.; Akbar, M.B. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. A Chem. 2020, 401, 112776. [Google Scholar] [CrossRef]
Sr. No | Photocatalyst | Target Pollutant | Light Source | Radiation Time (min.) | Degradation % | Ref |
---|---|---|---|---|---|---|
1 | ZnS | MB | Xe lamp | 120 | 77.2 | [69] |
2 | MgS/Ag2MoO4 | MB | Visible | 200 | 90 | [70] |
3 | BiSbO4 | MB | Xe lamp | 10 h | 96.7 | [71] |
4 | FeOOH-LDO | MB | Xe lamp | 180 | 92 | [72] |
5 | BiSbO4 | MB | Xe lamp | 10 h | 96.7 | [71] |
6 | Cr-ZnFe2O4/S-g-C3N4 | MB | Solar | 90 | 100 | [73] |
7 | Pt-BiFeO3 | MG | Solar | 240 | 96 | [74] |
8 | Co-SnO2/SGCN | MB | Solar | 120 | 98 | [75] |
9 | SGCN/Te@NiS | MB | Solar | 70 | 97 | Present Work |
Antibacterial and Antifungal Potential | |||
---|---|---|---|
Bacterial strains | Samples | Blank | Zone of Inhibition (mm) |
B. subtilis | NiS | 0 | 11 |
Te@NiS | 0 | 13 | |
SGCN | 0 | 15 | |
SGCN/Te@NiS | 0 | 19 | |
E. coli | NiS | 0 | 10 |
Te@NiS | 0 | 12 | |
SGCN | 0 | 14 | |
SGCN/Te@NiS | 0 | 18 | |
M. laxa | NiS | 0 | 15.6 |
Te@NiS | 0 | 21.4 | |
SGCN | 0 | 22.7 | |
SGCN/Te@NiS | 0 | 39.2 | |
F. oxysporum | NiS | 0 | 13.8 |
Te@NiS | 0 | 19.1 | |
SGCN | 0 | 21.9 | |
SGCN/Te@NiS | 0 | 36.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramzan, M.; Javed, M.; Iqbal, S.; Alhujaily, A.; Mahmood, Q.; Aroosh, K.; Bahadur, A.; Qayyum, M.A.; Awwad, N.S.; Ibrahium, H.A.; et al. Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study. Inorganics 2023, 11, 156. https://doi.org/10.3390/inorganics11040156
Ramzan M, Javed M, Iqbal S, Alhujaily A, Mahmood Q, Aroosh K, Bahadur A, Qayyum MA, Awwad NS, Ibrahium HA, et al. Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study. Inorganics. 2023; 11(4):156. https://doi.org/10.3390/inorganics11040156
Chicago/Turabian StyleRamzan, Maryam, Mohsin Javed, Shahid Iqbal, Ahmad Alhujaily, Qaiser Mahmood, Komal Aroosh, Ali Bahadur, Muhammad Abdul Qayyum, Nasser S. Awwad, Hala A. Ibrahium, and et al. 2023. "Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study" Inorganics 11, no. 4: 156. https://doi.org/10.3390/inorganics11040156
APA StyleRamzan, M., Javed, M., Iqbal, S., Alhujaily, A., Mahmood, Q., Aroosh, K., Bahadur, A., Qayyum, M. A., Awwad, N. S., Ibrahium, H. A., Al-Anazy, M. M., & Elkaeed, E. B. (2023). Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study. Inorganics, 11(4), 156. https://doi.org/10.3390/inorganics11040156