Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystallization Studies
2.2. Thermal Analysis
2.3. X-ray Diffraction Measurements and Crystal-Structure Analysis
2.4. Infrared (IR) Spectroscopy
3. Results and Discussion
3.1. Crystallization
3.2. Thermal Behavior
3.2.1. AFP·AN
3.2.2. AX·3AN
3.3. Crystal Structures
3.3.1. AFP·AN
3.3.2. AX·AN (X = Se, Cr)
3.4. IR Spectroscopy of AFP·AN-(I)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrödter, K.; Bettermann, G.; Staffel, T.; Wahl, F.; Klein, T.; Hofmann, T. Phosphoric Acid and Phosphates in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2008; Volume 26, pp. 698–699. [Google Scholar]
- Xiong, L.; Chen, J.; Lu, J.; Pan, C.-Y.; Wu, L.-M. Monofluorophosphates: A New Source of Deep-Ultraviolet Nonlinear Optical Materials. Chem. Mater. 2018, 30, 7823–7830. [Google Scholar] [CrossRef]
- Lange, W. Über die Monofluorphosphorsäure und die Ähnlichkeit ihrer Salze mit den Sulfaten. Ber. Dtsch. Chem. Ges. 1929, 62B, 793–801. [Google Scholar] [CrossRef]
- Rây, R.C. Isomorphism and Chemical Homology. Nature 1930, 126, 310–311. [Google Scholar] [CrossRef]
- Lima-de-Faria, J.; Hellner, E.; Liebau, F.; Makovicky, E.; Parthé, E. Nomenclature of Inorganic Structure Types—Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Crystallogr. 1990, A46, 1–11. [Google Scholar] [CrossRef]
- Weil, M. Monofluorophosphates—New Examples and a Survey of the PO3F2− Anion. Chemistry 2021, 3, 45–73. [Google Scholar] [CrossRef]
- Montejo-Bernardo, J.M.; García-Granda, S.; Fernández-González, A. Structures of relevant ammonium salts in fertilizers. Acta Crystallogr. 2010, B66, 358–365. [Google Scholar] [CrossRef]
- Schülke, U.; Kayser, R. Herstellung von Fluorophosphaten, Difluorophosphaten, Fluorophosphonaten und Fluorophosphiten in fluoridhaltigen Harnstoffschmelzen. Z. Anorg. Allg. Chem. 1991, 600, 221–226. [Google Scholar] [CrossRef]
- Berndt, A.F.; Sylvester, J.M. The crystal structure of ammonium monofluorophosphate: (NH4)2PO3F(H2O). Acta Crystallogr. 1972, B28, 2191–2193. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Bruker. APEX2, SAINT and TWINABS; Bruker AXS Inc.: Madison, WI, USA, 2014. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- ATOMS for Windows; Shape Software: Kingsport, TN, USA, 2006.
- Mighell, A.D. The Reduced Cell: Its Use in the Identification of Crystalline Materials. J. Appl. Crystallogr. 1976, 9, 491–498. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155. [Google Scholar] [CrossRef]
- Brown, I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Brese, N.E.; O’Keeffe, M. Bond-Valence Parameters for Solids. Acta Crystallogr. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- de la Flor, G.; Orobengoa, D.; Tasci, E.; Perez-Mato, J.M.; Aroyo, M.I. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallorg. 2016, 49, 653–664. [Google Scholar] [CrossRef]
- Aroyo, M.I.; Perez-Mato, J.M.; Capillas, C.; Kroumova, E.; Ivantchev, S.; Madariaga, G.; Kirov, G.; Wondratschek, H. Bilbao Crystallographic Server I: Databases and crystallographic computing programs. Z. Kristallogr. 2006, 221, 15–27. [Google Scholar] [CrossRef]
- Lange, W.; Livingston, R. Studies of Fluorophosphoric Acids and Their Derivatives. XIII. Preparation of Anhydrous Monofluorophosphoric Acid. J. Am. Chem. Soc. 1946, 69, 1073–1076. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Bond-length distributions for ions bonded to oxygen: Results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids. IUCrJ 2020, 7, 581–629. [Google Scholar] [CrossRef]
- Müller, U. Symmetry Relationships between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Krivovichev, S.V. Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr. 2012, A68, 393–398. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Which Inorganic Structures are the Most Complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, J.R. A “Simplexity Principle” and Its Relation to “Ease” of Crystallization. J. Geol. 1953, 61, 439–451. [Google Scholar] [CrossRef]
- Kaußler, C.; Kieslich, G. crystIT: Complexity and configurational entropy of crystal structures via information theory. J. Appl. Crystallogr. 2021, 54, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Gagné, O.C.; Hawthorne, F.C. Bond-length distributions for ions bonded to oxygen: Metalloids and post-transition metals. Acta Crystallogr. 2018, B74, 63–78. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Théorêt, A.; Sandorfy, C. Infrared spectra and crystalline phase transitions of ammonium nitrate. Can. J. Chem. 1964, 42, 57–62. [Google Scholar] [CrossRef]
- Jantz, S.G.; van Wüllen, L.; Fischer, A.; Libowitzky, E.; Baran, E.J.; Weil, M.; Höppe, H.A. Syntheses, Crystal Structures, NMR Spectroscopy, and Vibrational Spectroscopy of Sr(PO3F)·H2O and Sr(PO3F). Eur. J. Inorg. Chem. 2016, 7, 1121–1128. [Google Scholar] [CrossRef]
- Weil, M.; Puchberger, M.; Baran, E.J. Preparation and Characterization of Dimercury(I) Monofluorophosphate(V), Hg2PO3F: Crystal Structure, Thermal Behavior, Vibrational Spectra, and Solid-State 31P and 19F NMR Spectra. Inorg. Chem. 2004, 43, 8330–8335. [Google Scholar] [CrossRef]
- Weil, M.; Baran, E.J.; Kremer, R.K.; Libowitzky, E. Synthesis, Crystal Structure, and Properties of Mn(PO3F)(H2O)2. Z. Anorg. Allg. Chem. 2015, 641, 184–191. [Google Scholar] [CrossRef]
- Weil, M.; Puchberger, M.; Füglein, E.; Baran, E.J.; Vannahme, J.; Jakobsen, H.J.; Skibsted, J. Single-Crystal Growth and Characterization of Disilver(I) Monofluorophosphate(V), Ag2PO3F: Crystal Structure, Thermal Behavior, Vibrational Spectroscopy, and Solid-State 19F, 31P, and 109Ag MAS NMR Spectroscopy. Inorg. Chem. 2007, 46, 801–808. [Google Scholar] [CrossRef]
- Baran, E.J.; Weil, M. Vibrational spectra of the layered monofluorophosphate(V), NH4Ag3(PO3F)2. J. Raman Spectr. 2009, 40, 1698–1700. [Google Scholar] [CrossRef]
(NH4)2PO3F·NH4NO3-(I) | (NH4)2PO3F·NH4NO3-(II) | (NH4)2PO3F·NH4NO3-(III) | |
---|---|---|---|
Code | AFP·AN-(I) | AFP·AN-(II) | AFP·AN-(III) |
Mr | 214.11 | 214.11 | 214.11 |
Space group, No | P21/n, 14 | P1, 2 | P21/n, 14 |
Z | 4 | 4 | 4 |
Temperature/°C | −73 | −98 | −173 |
Crystal form, color | plate, colourless | plate, colourless | plate, colourless |
Crystal dimension/mm3 | 0.55 × 0.45 × 0.10 | 0.45 × 0.35 × 0.08 | 0.35 × 0.30 × 0.06 |
a/Å | 10.3145(7) | 10.3414(4) | 10.3182(9) |
b/Å | 6.1035(4) | 6.1056(2) | 6.0591(6) |
c/Å | 14.3299(10) | 14.1704(7) | 14.3715(12) |
α/° | 90 | 91.248(3) | 90 |
β/° | 103.885(2) | 101.016(2) | 98.563(2) |
γ/° | 90 | 89.173(2) | 90 |
V/Å3 | 875.77(10) | 877.98(6) | 888.48(14) |
X-ray density/g·cm−3 | 1.624 | 1.620 | 1.601 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ/mm−1 | 0.339 | 0.338 | 0.334 |
Tmin, Tmax | 0.680, 0.747 | 0.697, 0.748 | 0.624, 0.746 |
No. of measured, independent, and observed [I > 2σ(I)] reflections | 45048, 3653, 3111 | 101011, 11763, 9079 | 3260, 3260, 2903 |
Rint | 0.0569 | 0.0425 | − |
(sin θ/λ)max/Å−1 | 0.801 | 0.932 | 0.760 |
No. of reflections | 3653 | 11,763 | 3260 |
No. of parameters | 147 | 290 | 147 |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.074, 1.10 | 0.031, 0.081, 1.05 | 0.027, 0.069, 1.08 |
Δρmax, Δρmin (e−·Å−3) | 0.52, −0.34 | 0.65, −0.52 | 0.40, −0.28 |
CSD-code | 2294159 | 2294161 | 2294148 |
(NH4)2SeO4·-3NH4NO3-(I) | (NH4)2SeO4·-3NH4NO3-(II) | (NH4)2CrO4·-3NH4NO3-(I) | (NH4)2CrO4·-3NH4NO3-(II) | |
---|---|---|---|---|
Code | ASe·3AN-(I) | ASe·3AN-(II) | ACr·3AN-(I) | ACr·3AN-(II) |
Mr | 419.20 | 419.20 | 392.24 | 392.24 |
Space group, No | P21, 4 | P21/c, 14 | P21, 4 | P21/c, 14 |
Z | 2 | 4 | 2 | 4 |
Temperature/°C | 50 | −173 | 60 | −173 |
Crystal form, color | plate, colourless | plate, colourless | plate, yellow | plate, yellow |
Crystal dimension/mm3 | 0.30 × 0.20 × 0.05 | 0.30 × 0.20 × 0.05 | 0.08 × 0.08 × 0.01 | 0.08 × 0.08 × 0.01 |
a/Å | 10.0933(8) | 10.0343(8) | 10.049(4) | 9.9417(13) |
b/Å | 6.0117(5) | 6.0652(5) | 5.956(2) | 5.9118(8) |
c/Å | 12.5641(11) | 24.331(2) | 12.576(5) | 24.843(3) |
α/° | 90 | 90 | 90 | 90 |
β/° | 92.714(2) | 93.218(2) | 92.474(9) | 92.546(3) |
γ/° | 90 | 90 | 90 | 90 |
V/Å3 | 761.51(11) | 1478.5(2) | 751.9(5) | 1458.7(3) |
X-ray density/g·cm−3 | 1.828 | 1.883 | 1.732 | 1.786 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ/mm−1 | 2.548 | 2.625 | 0.840 | 0.870 |
Tmin, Tmax | 0.697, 0.748 | 0.611, 0.747 | 0.667, 0.787 | 0.663, 0.747 |
No. of measured, independent, and observed [I > 2σ(I)] reflections | 48670, 7102, 5846 | 80103, 6547, 5767 | 28070, 5541, 3256 | 44239, 4249, 3428 |
Rint | 0.0366 | 0.0384 | 0.1090 | 0.0537 |
(sin θ/λ)max/Å−1 | 0.824 | 0.817 | 0.765 | 0.703 |
No. of reflections | 7102 | 6547 | 5541 | 4249 |
No. of parameters | 228 | 260 | 228 | 288 |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.087, 1.07 | 0.021, 0.049, 1.07 | 0.059, 0.186, 0.98 | 0.037, 0.101, 1.03 |
Δρmax, Δρmin (e−·Å−3) | 0.65, −0.52 | 1. 10, −0.54 | 1.05, −0.56 | 1.40, −0.61 |
Absolute structure | Refined as an inversion twin; Flack 0.518(11) | − | Refined as an inversion twin; Flack 0.58(6) | − |
CSD-code | 2294151 | 2294157 | 2294149 | 2294155 |
AFP·AN-(I) at −73 °C | |||
P1—O2 | 1.4982(6) | N1—O6 | 1.2444(11) |
P1—O3 | 1.5080(6) | N1—O5 | 1.2463(13) |
P1—O1 | 1.5106(6) | N1—O4 | 1.2464(11) |
P1—F1 | 1.5953(6) | ||
O2—P1—O3 | 115.38(4) | O2—P1—F1 | 104.20(4) |
O2—P1—O1 | 115.01(4) | O3—P1—F1 | 103.51(4) |
O3—P1—O1 | 113.82(4) | O1—P1—F1 | 102.72(3) |
N···O | 2.7624(11)–3.0200(14) | ||
BVS: P1 4.92, N1: 4.96 | |||
AFP·AN-(II) at −98 °C | |||
P1A—O3A | 1.4995(5) | N1A—O4A | 1.2360(9) |
P1A—O2A | 1.5098(5) | N1A—O5A | 1.2529(9) |
P1A—O1A | 1.5157(5) | N1A—O6A | 1.2613(9) |
P1A—F1A | 1.5928(5) | N1B—O6B | 1.2462(10) |
P1B—O2B | 1.5046(5) | N1B—O5Biii | 1.2492(9) |
P1B—O3B | 1.5058(5) | N1B—O4B | 1.2519(9) |
P1B—O1B | 1.5125(5) | ||
P1B—F1B | 1.6021(4) | ||
O3A—P1A—O2A | 115.03(3) | O2B—P1B—O3B | 115.41(3) |
O3A—P1A—O1A | 115.41(3) | O2B—P1B—O1B | 115.59(3) |
O2A—P1A—O1A | 113.33(3) | O3B—P1B—O1B | 114.16(3) |
O3A—P1A—F1A | 104.86(3) | O2B—P1B—F1B | 103.17(3) |
O2A—P1A—F1A | 103.77(3) | O3B—P1B—F1B | 103.35(3) |
O1A—P1A—F1A | 102.37(3) | O1B—P1B—F1B | 102.65(3) |
N···O | 2.7890(8)–3.0515(11) | ||
BVS: P1A 4.89, P1B 4.88 N1A: 4.90, N1B 4.92 | |||
AFP·AN-(III) at −173 °C | |||
P1—O2 | 1.5059(6) | N1—O4 | 1.2357(10) |
P1—O3 | 1.5100(6) | N1—O5 | 1.2565(10) |
P1—O1 | 1.5164(6) | N1—O6 | 1.2696(10) |
P1—F1 | 1.5992(5) | ||
O2—P1—O3 | 115.13(3) | O2—P1—F1 | 103.56(3) |
O2—P1—O1 | 115.72(4) | O3—P1—F1 | 103.80(3) |
O3—P1—O1 | 113.73(3) | O1—P1—F1 | 102.58(3) |
N···O | 2.7811(10)–2.9446(9) | ||
BVS: P1 4.85, N1: 4.86 |
ASe·3AN-(I) at 50 °C | |||
Se1—O1 | 1.608(4) | N2—O8 | 1.233(5) |
Se1—O4 | 1.611(3) | N2—O10 | 1.253(3) |
Se1—O3 | 1.626(3) | N2—O9 | 1.264(5) |
Se1—O2 | 1.627(2) | N3—O13B | 1.15(2) |
N1—O6 | 1.190(8) | N3—O11B | 1.150(18) |
N1—O5 | 1.195(4) | N3—O12A | 1.171(6) |
N1—O7 | 1.279(8) | N3—O13A | 1.253(6) |
N···O | 2.721(4)–3.159(5) | N3—O11A | 1.262(5) |
BVS: Se1 6.34, N1 5.33, N2 4.91, N3 5.07 | N3—O12B | 1.365(14) | |
ASe·3AN-(II) at −173 °C | |||
Se1—O3 | 1.6351(7) | N2—O8 | 1.2550(11) |
Se1—O4 | 1.6370(7) | N2—O9 | 1.2569(11) |
Se1—O1 | 1.6406(7) | N2—O10 | 1.2594(11) |
Se1—O2 | 1.6522(7) | N3—O12 | 1.2348(12) |
N1—O5 | 1.2444(11) | N3—O11 | 1.2412(11) |
N1—O6 | 1.2501(11) | N3—O13 | 1.2702(11) |
N1—O7 | 1.2654(10) | 1.253 | |
N···O | 2.7654(11)–3.1260(12) | ||
BVS: Se1 5.95, N1 4.8, N2 4.82, N3 4.93 | |||
ACr·3AN-(I) at 60 °C | |||
Cr1—O1 | 1.589(6) | N2—O9 | 1.206(10) |
Cr1—O4 | 1.622(4) | N2—O10 | 1.253(5) |
Cr1—O2 | 1.657(3) | N2—O8 | 1.315(10) |
Cr1—O3 | 1.694(6) | N3—O11B | 1.10(2) |
N1—O5 | 1.192(7) | N3—O12A | 1.135(8) |
N1—O7 | 1.197(11) | N3—O11A | 1.280(9) |
N1—O6 | 1.281(13) | N3—O12B | 1.313(19) |
N···O | 2.735(6)–3.164(14) | N3—O13B | 1.34(3) |
BVS: Cr1 6.09, N1 5.30, N2 4.84 N3 5.11. | N3—O13A | 1.343(14) | |
ACr·3AN-(II) at −173 °C | |||
Cr1—O3 | 1.6380(13) | N2—O10 | 1.255(2) |
Cr1—O4 | 1.6394(15) | N2—O9 | 1.2549(19) |
Cr1—O1 | 1.6473(14) | N2—O8 | 1.259(2) |
Cr1—O2 | 1.6656(13) | N3—O12 | 1.219(2) |
N1—O5A | 1.103(7) | N3—O11 | 1.249(2) |
N1—O6B | 1.110(6) | N3—O13 | 1.264(2) |
N1—O7A | 1.294(4) | N···O | 2.741(2)–3.154(3) |
N1—O7B | 1.304(4) | ||
N1—O5B | 1.353(6) | ||
N1—O6A | 1.379(6) | ||
BVS: Cr 5.95, N1 5.31, N2 4.82, N3 4.99 |
Band | Wavenumber/cm−1 | Assignment |
---|---|---|
1, 2, 3 | 3186, 3004, 2810 | ν N–H |
4 | 1450 | δ H–N–H |
5 | 1335 | ν as O–N–O |
6 | 1136 | νas P–O |
7 | 1020 | νs P–O |
8 | 762 | ν P–F |
9 | 530 | δ O–P–O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weil, M.; Häusler, T.; Bonneau, B.; Füglein, E. Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr). Inorganics 2023, 11, 433. https://doi.org/10.3390/inorganics11110433
Weil M, Häusler T, Bonneau B, Füglein E. Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr). Inorganics. 2023; 11(11):433. https://doi.org/10.3390/inorganics11110433
Chicago/Turabian StyleWeil, Matthias, Thomas Häusler, Barbara Bonneau, and Ekkehard Füglein. 2023. "Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr)" Inorganics 11, no. 11: 433. https://doi.org/10.3390/inorganics11110433
APA StyleWeil, M., Häusler, T., Bonneau, B., & Füglein, E. (2023). Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr). Inorganics, 11(11), 433. https://doi.org/10.3390/inorganics11110433