Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration
Abstract
:1. Introduction
2. Emittance
3. Energy Spread
4. Current
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tajima, T.; Dawson, J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979, 43, 267. [Google Scholar] [CrossRef] [Green Version]
- Tajima, T.; Nakajima, K.; Mourou, G. Laser acceleration. Riv. Nuovo Cim. 2017, 40, 33–133. [Google Scholar] [CrossRef]
- Emma, C.; Van Tilborg, J.; Assmann, R.; Barber, S.; Cianchi, A.; Corde, S.; Couprie, M.E.; D’Arcy, R.; Ferrario, M.; Habib, A.F.; et al. Free electron lasers driven by plasma accelerators: Status and near-term prospects. High Power Laser Sci. Eng. 2021, 9, e57. [Google Scholar] [CrossRef]
- Huang, Z.R.; Ding, Y.T.; Schroeder, C.B. Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator. Phys. Rev. Lett. 2012, 109, 204801. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Marinelli, A.; Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 2016, 88, 55. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Faure, J.; Glinec, Y.; Pukhov, A.; Kiselev, S.; Gordienko, S.; Lefebvre, E.; Rousseau, J.P.; Burgy, F.; Malka, V. A laser-plasma accelerator producing monoenergetic electron beams. Nature 2004, 431, 541–544. [Google Scholar] [CrossRef]
- Geddes, C.G.R.; Toth, C.; van Tilborg, J.; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 2004, 431, 538–541. [Google Scholar] [CrossRef]
- Mangles, S.P.D.; Murphy, C.D.; Najmudin, Z.; Thomas, A.G.R.; Collier, J.L.; Dangor, A.E.; Divall, E.J.; Foster, P.S.; Gallacher, J.G.; Hooker, C.J.; et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 2004, 431, 535–538. [Google Scholar] [CrossRef]
- Nakajima, K.; Kim, H.T.; Jeong, T.M.; Nam, C.H. Scaling and design of high-energy laser plasma electron acceleration. High Power Laser Sci. Eng. 2015, 3, e10. [Google Scholar] [CrossRef] [Green Version]
- Maier, A.R.; Delbos, N.M.; Eichner, T.; Hubner, L.; Jalas, S.; Jeppe, L.; Jolly, S.W.; Kirchen, M.; Leroux, V.; Messner, P.; et al. Decoding Sources of Energy Variability in a Laser-Plasma Accelerator. Phys. Rev. X 2020, 10, 031039. [Google Scholar] [CrossRef]
- Wang, W.T.; Li, W.T.; Liu, J.S.; Zhang, Z.J.; Qi, R.; Yu, C.H.; Liu, J.Q.; Fang, M.; Qin, Z.Y.; Wang, C.; et al. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control. Phys. Rev. Lett. 2016, 117, 124801. [Google Scholar] [CrossRef] [PubMed]
- Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Schroeder, C.B.; Hooker, S.M. GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2006, 2, 696–699. [Google Scholar] [CrossRef]
- Leemans, W.P.; Gonsalves, A.J.; Mao, H.S.; Nakamura, K.; Benedetti, C.; Schroeder, C.B.; Toth, C.; Daniels, J.; Mittelberger, D.E.; Bulanov, S.S.; et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Phys. Rev. Lett. 2014, 113, 245002. [Google Scholar] [CrossRef] [Green Version]
- Gonsalves, A.J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T.C.H.; Steinke, S.; Bin, J.H.; Bulanov, S.S.; van Tilborg, J.; et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. Phys. Rev. Lett. 2019, 122, 084801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oubrerie, K.; Leblanc, A.; Kononenko, O.; Lahaye, R.; Andriyash, I.A.; Gautier, J.; Goddet, J.P.; Martelli, L.; Tafzi, A.; Phuoc, K.T.; et al. Controlled acceleration of GeV electron beams in an all-optical plasma waveguide. Light-Sci. Appl. 2022, 11, 180. [Google Scholar] [CrossRef]
- Turner, M.; Gonsalves, A.J.; Bulanov, S.S.; Benedetti, C.; Bobrova, N.A.; Gasilov, V.A.; Sasorov, P.V.; Korn, G.; Nakamura, K.; van Tilborg, J.; et al. Radial density profile and stability of capillary discharge plasma waveguides of lengths up to 40 cm. High Power Laser Sci. Eng. 2021, 9, e17. [Google Scholar] [CrossRef]
- Osterhoff, J.; Popp, A.; Major, Z.; Marx, B.; Rowlands-Rees, T.P.; Fuchs, M.; Geissler, M.; Hoerlein, R.; Hidding, B.; Becker, S.; et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. Phys. Rev. Lett. 2008, 101, 085002. [Google Scholar] [CrossRef] [Green Version]
- Jalas, S.; Kirchen, M.; Messner, P.; Winkler, P.; Hubner, L.; Dirkwinkel, J.; Schnepp, M.; Lehe, R.; Maier, A.R. Bayesian Optimization of a Laser-Plasma Accelerator. Phys. Rev. Lett. 2021, 126, 104801. [Google Scholar] [CrossRef]
- Kirchen, M.; Jalas, S.; Messner, P.; Winkler, P.; Eichner, T.; Hubner, L.; Hulsenbusch, T.; Jeppe, L.; Parikh, T.; Schnepp, M.; et al. Optimal Beam Loading in a Laser-Plasma Accelerator. Phys. Rev. Lett. 2021, 126, 174801. [Google Scholar] [CrossRef]
- Faure, J.; Rechatin, C.; Norlin, A.; Lifschitz, A.; Glinec, Y.; Malka, V. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 2006, 444, 737–739. [Google Scholar] [CrossRef]
- Rechatin, C.; Faure, J.; Ben-Ismail, A.; Lim, J.; Fitour, R.; Specka, A.; Videau, H.; Tafzi, A.; Burgy, F.; Malka, V. Controlling the Phase-Space Volume of Injected Electrons in a Laser-Plasma Accelerator. Phys. Rev. Lett. 2009, 102, 164801. [Google Scholar] [CrossRef]
- Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; et al. Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 2007, 98, 084801. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Wu, Y.P.; Zhang, C.J.; Li, F.; Wan, Y.; Hua, J.F.; Pai, C.H.; Lu, W.; Yu, P.; Joshi, C.; et al. Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths. Phys. Rev. Spec. Top.-Accel. Beams 2014, 17, 061301. [Google Scholar] [CrossRef]
- Yu, L.L.; Esarey, E.; Schroeder, C.B.; Vay, J.L.; Benedetti, C.; Geddes, C.G.R.; Chen, M.; Leemans, W.P. Two-Color Laser-Ionization Injection. Phys. Rev. Lett. 2014, 112, 125001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, M.; Chen, M.; Yu, L.L.; Mori, W.B.; Sheng, Z.M.; Hidding, B.; Jaroszynski, D.A.; Zhang, J. Multichromatic Narrow-Energy-Spread Electron Bunches from Laser-Wakefield Acceleration with Dual-Color Lasers. Phys. Rev. Lett. 2015, 114, 084801. [Google Scholar] [CrossRef] [Green Version]
- Di Mitri, S.; Cornacchia, M. Electron beam brightness in linac drivers for free-electron-lasers. Phys. Rep.-Rev. Sec. Phys. Lett. 2014, 539, 1–48. [Google Scholar] [CrossRef]
- Manahan, G.G.; Habib, A.F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z.M.; et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 2017, 8, 15705. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Pegoraro, F.; Pukhov, A.M.; Sakharov, A.S. Transverse-wake wave breaking. Phys. Rev. Lett. 1997, 78, 4205–4208. [Google Scholar] [CrossRef]
- Mehrling, T.; Grebenyuk, J.; Tsung, F.S.; Floettmann, K.; Osterhoff, J. Transverse emittance growth in staged laser-wakefield acceleration. Phys. Rev. Spec. Top.-Accel. Beams 2012, 15, 111303. [Google Scholar] [CrossRef]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229–1285. [Google Scholar] [CrossRef]
- Lu, W.; Huang, C.; Zhou, M.; Tzoufras, M.; Tsung, F.S.; Mori, W.B.; Katsouleas, T. A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 2006, 13, 056709. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Breizman, B.; Katsouleas, T.; Su, J.J. Acceleration and focusing of electrons in 2-dimensional nonlinear plasma wake fields. Phys. Rev. A 1991, 44, R6189–R6192. [Google Scholar] [CrossRef] [PubMed]
- Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A.R.; Serafini, L.; Antici, P. Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 011302. [Google Scholar] [CrossRef] [Green Version]
- Li, X.K.; Chance, A.; Nghiem, P.A.P. Preserving emittance by matching out and matching in plasma wakefield acceleration stage. Phys. Rev. Accel. Beams 2019, 22, 021304. [Google Scholar] [CrossRef] [Green Version]
- Floettmann, K. Adiabatic matching section for plasma accelerated beams. Phys. Rev. Spec. Top.-Accel. Beams 2014, 17, 054402. [Google Scholar] [CrossRef]
- Dornmair, I.; Floettmann, K.; Maier, A.R. Emittance conservation by tailored focusing profiles in a plasma accelerator. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 041302. [Google Scholar] [CrossRef]
- Loulergue, A.; Labat, M.; Evain, C.; Benabderrahmane, C.; Malka, V.; Couprie, M.E. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 2015, 17, 023028. [Google Scholar] [CrossRef]
- Pousa, A.F.; de la Ossa, A.M.; Brinkmann, R.; Assmann, R.W. Compact Multistage Plasma-Based Accelerator Design for Correlated Energy Spread Compensation. Phys. Rev. Lett. 2019, 123, 054801. [Google Scholar] [CrossRef]
- Van Tilborg, J.; Steinke, S.; Geddes, C.G.R.; Matlis, N.H.; Shaw, B.H.; Gonsalves, A.J.; Huijts, J.V.; Nakamura, K.; Daniels, J.; Schroeder, C.B.; et al. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams. Phys. Rev. Lett. 2015, 115, 184802. [Google Scholar] [CrossRef]
- Hafz, N.A.M.; Li, S.; Li, G.Y.; Mirzaie, M.; Zeng, M.; Zhang, J. Generation of high-quality electron beams by ionization injection in a single acceleration stage. High Power Laser Sci. Eng. 2016, 4, e24. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, Y.F.; Wang, J.G.; Li, D.Z.; Zhu, C.Q.; Tan, J.H.; Geng, X.T.; Liu, F.; Chen, L.M. Optical control of transverse motion of ionization injected electrons in a laser plasma accelerator. High Power Laser Sci. Eng. 2021, 9, e5. [Google Scholar] [CrossRef]
- Bulanov, S.; Naumova, N.; Pegoraro, F.; Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 1998, 58, R5257–R5260. [Google Scholar] [CrossRef] [Green Version]
- Suk, H.; Barov, N.; Rosenzweig, J.B.; Esarey, E. Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 2001, 86, 1011–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geddes, C.G.R.; Nakamura, K.; Plateau, G.R.; Toth, C.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Cary, J.R.; Leemans, W.P. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 2008, 100, 215004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, J.; Rechatin, C.; Lundh, O.; Ammoura, L.; Malka, V. Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas 2010, 17, 083107. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.T.; Li, W.T.; Liu, J.S.; Wang, C.; Chen, Q.; Zhang, Z.J.; Qi, R.; Leng, Y.X.; Liang, X.Y.; Liu, Y.Q.; et al. Control of seeding phase for a cascaded laser wakefield accelerator with gradient injection. Appl. Phys. Lett. 2013, 103, 243501. [Google Scholar] [CrossRef]
- Schmid, K.; Buck, A.; Sears, C.M.S.; Mikhailova, J.M.; Tautz, R.; Herrmann, D.; Geissler, M.; Krausz, F.; Veisz, L. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top.-Accel. Beams 2010, 13, 091301. [Google Scholar] [CrossRef]
- Gonsalves, A.J.; Nakamura, K.; Lin, C.; Panasenko, D.; Shiraishi, S.; Sokollik, T.; Benedetti, C.; Schroeder, C.B.; Geddes, C.G.R.; van Tilborg, J.; et al. Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 2011, 7, 862–866. [Google Scholar] [CrossRef] [Green Version]
- Buck, A.; Wenz, J.; Xu, J.; Khrennikov, K.; Schmid, K.; Heigoldt, M.; Mikhailova, J.M.; Geissler, M.; Shen, B.; Krausz, F.; et al. Shock-Front Injector for High-Quality Laser-Plasma Acceleration. Phys. Rev. Lett. 2013, 110, 185006. [Google Scholar] [CrossRef]
- Burza, M.; Gonoskov, A.; Svensson, K.; Wojda, F.; Persson, A.; Hansson, M.; Genoud, G.; Marklund, M.; Wahlstrom, C.G.; Lundh, O. Laser wakefield acceleration using wire produced double density ramps. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 011301. [Google Scholar] [CrossRef]
- Hansson, M.; Aurand, B.; Davoine, X.; Ekerfelt, H.; Svensson, K.; Persson, A.; Wahlstrom, C.G.; Lundh, O. Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 071303. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Huang, C.; Zhou, M.; Mori, W.B.; Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 2006, 96, 165002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corde, S.; Thaury, C.; Lifschitz, A.; Lambert, G.; Phuoc, K.T.; Davoine, X.; Lehe, R.; Douillet, D.; Rousse, A.; Malka, V. Observation of longitudinal and transverse self-injections in laser-plasma accelerators. Nat. Commun. 2013, 4, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antipov, S.; Baturin, S.; Jing, C.; Fedurin, M.; Kanareykin, A.; Swinson, C.; Schoessow, P.; Gai, W.; Zholents, A. Experimental Demonstration of Energy-Chirp Compensation by a Tunable Dielectric-Based Structure. Phys. Rev. Lett. 2014, 112, 114801. [Google Scholar] [CrossRef] [PubMed]
- Emma, P.; Venturini, M.; Bane, K.L.F.; Stupakov, G.; Kang, H.S.; Chae, M.S.; Hong, J.; Min, C.K.; Yang, H.; Ha, T.; et al. Experimental Demonstration of Energy-Chirp Control in Relativistic Electron Bunches Using a Corrugated Pipe. Phys. Rev. Lett. 2014, 112, 034801. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Dawson, J.M.; Huff, R.W.; Katsouleas, T. Acceleration of electrons by the interaction of a bunched electron-beam with a plasma. Phys. Rev. Lett. 1985, 54, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Litos, M.; Adli, E.; An, W.; Clarke, C.I.; Clayton, C.E.; Corde, S.; Delahaye, J.P.; England, R.J.; Fisher, A.S.; Frederico, J.; et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 2014, 515, 92–95. [Google Scholar] [CrossRef]
- D’Arcy, R.; Wesch, S.; Aschikhin, A.; Bohlen, S.; Behrens, C.; Garland, M.J.; Goldberg, L.; Gonzalez, P.; Knetsch, A.; Libov, V.; et al. Tunable Plasma-Based Energy Dechirper. Phys. Rev. Lett. 2019, 122, 034801. [Google Scholar] [CrossRef] [Green Version]
- Shpakov, V.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Cardelli, F.; Cesarini, M.; Chiadroni, E.; Cianchi, A.; Costa, G.; et al. Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields. Phys. Rev. Lett. 2019, 122, 114801. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.P.; Hua, J.F.; Zhou, Z.; Zhang, J.; Liu, S.; Peng, B.; Fang, Y.; Nie, Z.; Ning, X.N.; Pai, C.H.; et al. Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction. Phys. Rev. Lett. 2019, 122, 204804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dopp, A.; Thaury, C.; Guillaume, E.; Massimo, F.; Lifschitz, A.; Andriyash, I.; Goddet, J.P.; Tazfi, A.; Phuoc, K.T.; Malka, V. Energy-Chirp Compensation in a Laser Wakefield Accelerator. Phys. Rev. Lett. 2018, 121, 074802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, L.T.; Feng, K.; Wang, W.T.; Qin, Z.Y.; Yu, C.H.; Wu, Y.; Chen, Y.; Qi, R.; Zhang, Z.J.; Xu, Y.; et al. Near-GeV Electron Beams at a Few Per-Mille Level from a Laser Wakefield Accelerator via Density-Tailored Plasma. Phys. Rev. Lett. 2021, 126, 214801. [Google Scholar] [CrossRef] [PubMed]
- Gotzfried, J.; Dopp, A.; Gilljohann, M.F.; Foerster, F.M.; Ding, H.; Schindler, S.; Schilling, G.; Buck, A.; Veisz, L.; Karsch, S. Physics of High-Charge Electron Beams in Laser-Plasma Wakefields. Phys. Rev. X 2020, 10, 041015. [Google Scholar] [CrossRef]
- Gordienko, S.; Pukhov, A. Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 2005, 12, 3109. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F.S.; Mori, W.B.; Vieira, J.; Fonseca, R.A.; Silva, L.O. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top.-Accel. Beams 2007, 10, 061301. [Google Scholar] [CrossRef] [Green Version]
- Kuschel, S.; Schwab, M.B.; Yeung, M.; Hollatz, D.; Seidel, A.; Ziegler, W.; Savert, A.; Kaluza, M.C.; Zepf, M. Controlling the Self-Injection Threshold in Laser Wakefield Accelerators. Phys. Rev. Lett. 2018, 121, 154801. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Li, D.Z.; Huang, K.; Tao, M.Z.; Li, M.H.; Zhao, J.R.; Ma, Y.; Guo, X.; Wang, J.G.; Chen, M.; et al. Generation of 20 kA electron beam from a laser wakefield accelerator. Phys. Plasmas 2017, 24, 023108. [Google Scholar] [CrossRef]
- Couperus, J.P.; Pausch, R.; Kohler, A.; Zarini, O.; Kramer, J.M.; Garten, M.; Huebl, A.; Gebhardt, R.; Helbig, U.; Bock, S.; et al. Demonstration of a beam loaded nanocoulombclass laser wakefield accelerator. Nat. Commun. 2017, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.T.; Feng, K.; Ke, L.T.; Yu, C.H.; Xu, Y.; Qi, R.; Chen, Y.; Qin, Z.Y.; Zhang, Z.J.; Fang, M.; et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 2021, 595, 516–520. [Google Scholar] [CrossRef]
- Rousse, A.; Phuoc, K.T.; Shah, R.; Pukhov, A.; Lefebvre, E.; Malka, V.; Kiselev, S.; Burgy, F.; Rousseau, J.P.; Umstadter, D.; et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 2004, 93, 135005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corde, S.; Phuoc, K.T.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 2013, 85, 1–48. [Google Scholar] [CrossRef]
- Yu, C.H.; Qi, R.; Wang, W.T.; Liu, J.S.; Li, W.T.; Wang, C.; Zhang, Z.J.; Liu, J.Q.; Qin, Z.Y.; Fang, M.; et al. Ultrahigh brilliance quasi-monochromatic MeV gamma-rays based on self-synchronized all-optical Compton scattering. Sci. Rep. 2016, 6, 29518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phuoc, K.T.; Corde, S.; Thaury, C.; Malka, V.; Tafzi, A.; Goddet, J.P.; Shah, R.C.; Sebban, S.; Rousse, A. All-optical Compton gamma-ray source. Nat. Photonics 2012, 6, 308–311. [Google Scholar] [CrossRef]
- Dopp, A.; Mahieu, B.; Lifschitz, A.; Thaury, C.; Doche, A.; Guillaume, E.; Grittani, G.; Lundh, O.; Hansson, M.; Gautier, J.; et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light-Sci. Appl. 2017, 6, e17086. [Google Scholar] [CrossRef]
- Wenz, J.; Dopp, A.; Khrennikov, K.; Schindler, S.; Gilljohann, M.F.; Ding, H.; Gotzfried, J.; Buck, A.; Xu, J.; Heigoldt, M.; et al. Dual-energy electron beams from a compact laser-driven accelerator. Nat. Photonics 2019, 13, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Nalkajima, K. Towards a table-top free-electron laser. Nat. Phys. 2008, 4, 92–93. [Google Scholar] [CrossRef]
- Pompili, R.; Alesini, D.; Anania, M.P.; Arjmand, S.; Behtouei, M.; Bellaveglia, M.; Biagioni, A.; Buonomo, B.; Cardelli, F.; Carpanese, M.; et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 2022, 605, 659–662. [Google Scholar] [CrossRef]
- Sarri, G.; Corvan, D.J.; Schumaker, W.; Cole, J.M.; Di Piazza, A.; Ahmed, H.; Harvey, C.; Keitel, C.H.; Krushelnick, K.; Mangles, S.P.D.; et al. Ultrahigh Brilliance Multi-MeV gamma-Ray Beams from Nonlinear Relativistic Thomson Scattering. Phys. Rev. Lett. 2014, 113, 224801. [Google Scholar] [CrossRef] [Green Version]
- Schlenvoigt, H.P.; Haupt, K.; Debus, A.; Budde, F.; Jackel, O.; Pfotenhauer, S.; Schwoerer, H.; Rohwer, E.; Gallacher, J.G.; Brunetti, E.; et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 2008, 4, 130–133. [Google Scholar] [CrossRef]
- Svensson, J.B.; Guenot, D.; Ferri, J.; Ekerfelt, H.; Gonzalez, I.G.; Persson, A.; Svendsen, K.; Veisz, L.; Lundh, O. Low-divergence femtosecond X-ray pulses from a passive plasma lens. Nat. Phys. 2021, 17, 639–645. [Google Scholar] [CrossRef]
Laboratory | Energy 1 (GeV) | Energy Spread 1 (%) | Charge 1 (pC) | Emittance 1 (mm mrad) |
---|---|---|---|---|
SIOM | 0.8 | 0.2–1.2 | 10–50 | 0.4 |
DESY | 0.3 | 0.4 | 500 | 1.5/0.3 |
LBNL | 7.8 | 0.2–1 | 25 | 0.3–1 |
LOA | 1.1 | 3.1 | 120 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Wang, W.; Feng, K.; Li, R. Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration. Photonics 2022, 9, 511. https://doi.org/10.3390/photonics9080511
Jiang K, Wang W, Feng K, Li R. Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration. Photonics. 2022; 9(8):511. https://doi.org/10.3390/photonics9080511
Chicago/Turabian StyleJiang, Kangnan, Wentao Wang, Ke Feng, and Ruxin Li. 2022. "Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration" Photonics 9, no. 8: 511. https://doi.org/10.3390/photonics9080511
APA StyleJiang, K., Wang, W., Feng, K., & Li, R. (2022). Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration. Photonics, 9(8), 511. https://doi.org/10.3390/photonics9080511