Scattering-Assisted Computational Imaging
Abstract
:1. Introduction
2. Methods
2.1. Proposed Method
2.2. Experimental Setup
3. Results and Discussion
3.1. Obstacle-Avoidance Imaging
3.2. Comparison
3.3. Robustness Analysis
3.4. Generalization Analysis
3.5. Photon-Limited Demonstration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gariepy, G.; Tonolini, F.; Henderson, R.; Leach, J.; Faccio, D. Detection and tracking of moving objects hidden from view. Nat. Photonics 2016, 10, 23–26. [Google Scholar] [CrossRef]
- O’Toole, M.; Lindell, D.B.; Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 2018, 555, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xu, S.; Chen, X.w.; Wang, X.; Wang, K.X. Object recognition for remarkably small field-of-view with speckles. Appl. Phys. Lett. 2021, 118, 091103. [Google Scholar] [CrossRef]
- Faccio, D.; Velten, A.; Wetzstein, G. Nonline-of-sight imaging. Nat. Rev. Phys. 2020, 2, 318–327. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Huang, X.; Li, Z.P.; Yu, C.; Ye, J.T.; Zhang, J.; Zhang, Q.; Dou, X.; Goyal, V.K.; et al. Non–line-of-sight imaging over 1.43 km. Proc. Natl. Acad. Sci. USA 2021, 118, e2024468118. [Google Scholar] [CrossRef] [PubMed]
- Velten, A.; Willwacher, T.; Gupta, O.; Veeraraghavan, A.; Bawendi, M.G.; Raskar, R. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J. NLOS Imaging Assisted Navigation for BVI. In Proceedings of the 2nd International Workshop on Human-centric Multimedia Analysis, online, 12 October 2021; pp. 23–30. [Google Scholar]
- Saunders, C.; Murray-Bruce, J.; Goyal, V.K. Computational periscopy with an ordinary digital camera. Nature 2019, 565, 472–475. [Google Scholar] [CrossRef]
- Singh, A.K.; Naik, D.N.; Pedrini, G.; Takeda, M.; Osten, W. Looking through a diffuser and around an opaque surface: A holographic approach. Opt. Express 2014, 22, 7694–7701. [Google Scholar] [CrossRef]
- Jiao, A.; Tsang, P.W.M.; Poon, T.C. Restoration of digital off-axis Fresnel hologram by exemplar and search based image inpainting with enhanced computing speed. Comput. Phys. Commun. 2015, 193, 30–37. [Google Scholar] [CrossRef]
- Xia, H.; Montresor, S.; Guo, R.; Li, J.; Olchewsky, F.; Desse, J.M.; Picart, P. Robust processing of phase dislocations based on combined unwrapping and inpainting approaches. Opt. Lett. 2017, 42, 322–325. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, E.; Gu, J.; Bai, L.; Han, J. Imaging through unknown scattering media based on physics-informed learning. Photonics Res. 2021, 9, B210–B219. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, W.; Zhai, A.; Wang, Z.; Wang, D. Optical encryption using uncorrelated characteristics of dynamic scattering media and spatially random sampling of a plaintext. Opt. Express 2020, 28, 36432–36444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xiao, Y.; Chen, W. Learning-based optical authentication in complex scattering media. Opt. Lasers Eng. 2021, 141, 106570. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, T.D.; Fang-Yen, C.; Kang, P.; Lee, K.J.; Dasari, R.R.; Feld, M.S.; Choi, W. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 2011, 107, 023902. [Google Scholar] [CrossRef] [PubMed]
- Katz, O.; Ramaz, F.; Gigan, S.; Fink, M. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Antipa, N.; Kuo, G.; Heckel, R.; Mildenhall, B.; Bostan, E.; Ng, R.; Waller, L. DiffuserCam: Lensless single-exposure 3D imaging. Optica 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Devaney, A.J.; Marengo, E.A.; Gruber, F.K. Time-reversal-based imaging and inverse scattering of multiply scattering point targets. J. Acoust. Soc. Am. 2005, 118, 3129–3138. [Google Scholar] [CrossRef]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Academic Press: New York, NY, USA, 1978; Volume 2. [Google Scholar]
- Byrnes, N.; Foreman, M.R. Universal bounds for imaging in scattering media. New J. Phys. 2020, 22, 083023. [Google Scholar] [CrossRef]
- Penrose, R. A generalized inverse for matrices. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1955; Volume 51, pp. 406–413. [Google Scholar]
- Sun, Y.; Wu, X.; Zheng, Y.; Fan, J.; Zeng, G. Scalable non-invasive imaging through dynamic scattering media at low photon flux. Opt. Lasers Eng. 2021, 144, 106641. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, J.; Sun, L.; Fan, J.; Zeng, G. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express 2019, 27, 16032–16046. [Google Scholar] [CrossRef]
- Chen, T.; Lu, T.; Song, S.; Miao, S.; Gao, F.; Li, J. A deep learning method based on U-Net for quantitative photoacoustic imaging. In Photons Plus Ultrasound: Imaging and Sensing 2020; International Society for Optics and Photonics: San Francisco, CA, USA, 2020; Volume 11240, p. 112403V. [Google Scholar]
- Liu, S.; Meng, X.; Yin, Y.; Wu, H.; Jiang, W. Computational ghost imaging based on an untrained neural network. Opt. Lasers Eng. 2021, 147, 106744. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, M.; Situ, G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express 2018, 26, 22603–22614. [Google Scholar] [CrossRef] [PubMed]
- Situ, G. Learning to image through dense scattering media. In JSAP-OSA Joint Symposia; Optical Society of America: Washington, DC, USA, 2021; p. 12p_N404_6. [Google Scholar]
- Li, Y.; Xue, Y.; Tian, L. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media. Optica 2018, 5, 1181–1190. [Google Scholar] [CrossRef]
- Elharrouss, O.; Almaadeed, N.; Al-Maadeed, S.; Akbari, Y. Image inpainting: A review. Neural Process. Lett. 2020, 51, 2007–2028. [Google Scholar] [CrossRef]
- Qin, Z.; Zeng, Q.; Zong, Y.; Xu, F. Image inpainting based on deep learning: A review. Displays 2021, 69, 102028. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wu, X.; Shi, J.; Zeng, G. Scattering-Assisted Computational Imaging. Photonics 2022, 9, 512. https://doi.org/10.3390/photonics9080512
Sun Y, Wu X, Shi J, Zeng G. Scattering-Assisted Computational Imaging. Photonics. 2022; 9(8):512. https://doi.org/10.3390/photonics9080512
Chicago/Turabian StyleSun, Yiwei, Xiaoyan Wu, Jianhong Shi, and Guihua Zeng. 2022. "Scattering-Assisted Computational Imaging" Photonics 9, no. 8: 512. https://doi.org/10.3390/photonics9080512
APA StyleSun, Y., Wu, X., Shi, J., & Zeng, G. (2022). Scattering-Assisted Computational Imaging. Photonics, 9(8), 512. https://doi.org/10.3390/photonics9080512