Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials
Abstract
:1. Introduction
2. Geometry Optimization and Sensitivity Evaluation of E-Field Sensor
2.1. E-Field Sensor Based on BTO
2.2. Sensitivity Analysis Based on BTO
2.3. E-Field Sensor Based on PMN-PT
2.4. Sensitivity Analysis Based on PMN-PT
3. Discussion on the Sensitivity and Possible Fabrication Method
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinecke, T.; Bischoff, M.; Brandl, F.; Hermann, C.; Klotz, F.; Mueller, F.; Pfaff, W.; Unger, M. Generic IC EMC test specification. In Proceedings of the 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, Singapore, 21–24 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 5–8. [Google Scholar]
- Klotz, F. EMC test specification for integrated circuits. In Proceedings of the 2007 18th International Zurich Symposium on Electromagnetic Compatibility, Munich, Germany, 24–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 73–78. [Google Scholar]
- Burford, N.M.; El-Shenawee, M.O. Review of terahertz photoconductive antenna technology. Opt. Eng. 2017, 56, 010901. [Google Scholar] [CrossRef]
- Zhang, W.; Li, P.; Zhou, N.; Suo, C.; Chen, W.; Wang, Y.; Zhao, J.; Li, Y. Method for localization aerial target in AC electric field based on sensor circular array. Sensors 2020, 20, 1585. [Google Scholar] [CrossRef] [Green Version]
- Saniour, I. Exploitation des Effets Électro-Optiques Pour la Sécurité en IRM: Applications des Liaisons Optiques Pour des Capteurs RF Endoluminaux et des Sondes de Mesure du TAS. Ph.D. Thesis, Université de Lyon, Lyon, France, 2017. [Google Scholar]
- Nastuta, A.V.; Gerling, T. Cold Atmospheric Pressure Plasma Jet Operated in Ar and He: From Basic Plasma Properties to Vacuum Ultraviolet, Electric Field and Safety Thresholds Measurements in Plasma Medicine. Appl. Sci. 2022, 12, 644. [Google Scholar] [CrossRef]
- Joseph, W.; Martens, L. The influence of the measurement probe on the evaluation of electromagnetic fields. IEEE Trans. Electromagn. Compat. 2003, 45, 339–349. [Google Scholar] [CrossRef]
- Kanda, M. Standard antennas for electromagnetic interference measurements and methods to calibrate them. IEEE Trans. Electromagn. Compat. 1994, 36, 261–273. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, W.; Wang, J.; Su, D.; Yan, X.; Fan, J. Noncontact wideband current probes with high sensitivity and spatial resolution for noise location on PCB. IEEE Trans. Instrum. Meas. 2018, 67, 2881–2891. [Google Scholar] [CrossRef]
- Hsu, L.; Baida, F.I.; Ndao, A. Local field enhancement using a photonic-plasmonic nanostructure. Opt. Express 2021, 29, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, C.; Zhao, Z. Design and application of integrated optics sensor for measurement of intense pulsed electric field. J. Light. Technol. 2019, 37, 1440–1448. [Google Scholar] [CrossRef]
- Calero, V.; Suarez, M.A.; Salut, R.; Baida, F.; Caspar, A.; Behague, F.; Courjal, N.; Galtier, L.; Gillette, L.; Duvillaret, L.; et al. An ultra wideband-high spatial resolution-compact electric field sensor based on Lab-on-Fiber technology. Sci. Rep. 2019, 9, 8058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoblos, A.; Suarez, M.; Courjal, N.; Bernal, M.P.; Baida, F.I. Excitation of symmetry protected modes in a lithium niobate membrane photonic crystal for sensing applications. OSA Contin. 2020, 3, 3008–3018. [Google Scholar] [CrossRef]
- Benea-Chelmus, I.C.; Salamin, Y.; Settembrini, F.F.; Fedoryshyn, Y.; Heni, W.; Elder, D.L.; Dalton, L.R.; Leuthold, J.; Faist, J. Electro-optic interface for ultrasensitive intracavity electric field measurements at microwave and terahertz frequencies. Optica 2020, 7, 498–505. [Google Scholar] [CrossRef]
- Qiu, W.; Ndao, A.; Lu, H.; Bernal, M.P.; Baida, F.I. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Opt. Express 2016, 24, 20196–20209. [Google Scholar] [CrossRef]
- Abel, S.; Eltes, F.; Ortmann, J.E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A.M.; Tulli, D.; et al. Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 2019, 18, 42–47. [Google Scholar] [CrossRef]
- Karvounis, A.; Vogler-Neuling, V.V.; Richter, F.U.; Dénervaud, E.; Timofeeva, M.; Grange, R. Electro-Optic Metasurfaces Based on Barium Titanate Nanoparticle Films. Adv. Opt. Mater. 2020, 8, 2000623. [Google Scholar] [CrossRef]
- Jeong, D.Y.; Lu, Y.; Sharma, V.; Zhang, Q.; Luo, H.S. Linear electrooptic properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals at compositions near the morphotropic phase boundary. Jpn. J. Appl. Phys. 2003, 42, 4387. [Google Scholar] [CrossRef]
- Song, H.C.; Ha, J.Y.; Kim, J.S.; Yoon, S.J.; Jeong, D.Y. Temperature Dependences of Piezoelectric and Linear Electrooptic Properties of Rhombohedral 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 Single Crystal Oriented in <111> Direction. Jpn. J. Appl. Phys. 2007, 46, 1540. [Google Scholar]
- Baek, S.H.; Eom, C.B. Epitaxial integration of perovskite-based multifunctional oxides on silicon. Acta Mater. 2013, 61, 2734–2750. [Google Scholar] [CrossRef]
- Di, X. Fabrication and Characterisation of Epitaxial PMN-PT Nano-Structures. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland, 2019. [Google Scholar]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Reiss, S.; Bitzer, A.; Bock, M. An optical setup for electric field measurements in MRI with high spatial resolution. Phys. Med. Biol. 2015, 60, 4355. [Google Scholar] [CrossRef]
- Abel, S.; Stöferle, T.; Marchiori, C.; Rossel, C.; Rossell, M.D.; Erni, R.; Caimi, D.; Sousa, M.; Chelnokov, A.; Offrein, B.J.; et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 2013, 4, 1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvounis, A.; Timpu, F.; Vogler-Neuling, V.V.; Savo, R.; Grange, R. Barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater. 2020, 8, 2001249. [Google Scholar] [CrossRef]
- Qiu, W.; Ndao, A.; Vila, V.C.; Salut, R.; Courjal, N.; Baida, F.I.; Bernal, M.P. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate. Opt. Lett. 2016, 41, 1106–1109. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Chan, H.; Choy, C.; Zhao, X.; Luo, H. Optical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry. J. Appl. Phys. 2004, 96, 1387–1391. [Google Scholar] [CrossRef]
- Wan, X.; Luo, H.; Zhao, X.; Wang, D.; Chan, H.; Choy, C. Refractive indices and linear electro-optic properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals. Appl. Phys. Lett. 2004, 85, 5233–5235. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Yang, R.; Zhao, Y.; Zhao, W.; Liu, X.; Fu, X.; Luan, P.; Song, K.; Zhuang, Y.; Xu, Z.; et al. Achieve single domain state in (111)-oriented rhombohedral phase PMN-PT relaxor ferroelectric single crystals for electro-optical application. Appl. Phys. Lett. 2019, 115, 222901. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, L.; Ding, F.; Schmidt, O.G. Scalable single crystalline PMN-PT nanobelts sculpted from bulk for energy harvesting. Nano Energy 2017, 31, 239–246. [Google Scholar] [CrossRef]
- Moorthy, B.; Baek, C.; Wang, J.E.; Jeong, C.K.; Moon, S.; Park, K.I.; Kim, D.K. Piezoelectric energy harvesting from a PMN-PT single nanowire. RSC Adv. 2017, 7, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, X.; Luo, W.; Xu, D.; He, K. Surfactant-assisted hydrothermal synthesis of PMN-PT nanorods. Nanoscale Res. Lett. 2016, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Wang, B.; Zhang, N.; Zhang, S.; Liu, J.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Kormondy, K.J.; Abel, S.; Fallegger, F.; Popoff, Y.; Ponath, P.; Posadas, A.B.; Sousa, M.; Caimi, D.; Siegwart, H.; Uccelli, E.; et al. Analysis of the Pockels effect in ferroelectric barium titanate thin films on Si (0 0 1). Microelectron. Eng. 2015, 147, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Rajasekar, R.; Robinson, S. Nano-electric field sensor based on two dimensional photonic crystal resonator. Opt. Mater. 2018, 85, 474–482. [Google Scholar] [CrossRef]
- Ma, X.; Zhuang, C.; Zeng, R.; Zhou, W. Large-dynamic-range athermal lithium niobite on insulator/TiO2 nanobeam electric field sensor. J. Phys. D Appl. Phys. 2020, 54, 105101. [Google Scholar] [CrossRef]
- Goncharenko, I.; Ryabtsev, V.N. High-frequency electric field intensity sensor based on double-slot waveguides filled with electro-optical polymer. Quantum Electron. 2021, 51, 1044. [Google Scholar] [CrossRef]
- Li, J.; Xia, Z.; Liu, L.; Zhang, L.; Bian, Z.; Hu, A.; Chu, F. Performance analysis of multifunctional SPR sensor based on electro-optic crystal. Photonics Nanostruct. 2020, 42, 100838. [Google Scholar] [CrossRef]
60 | 65 | 70 | 75 | 85 | 90 | |
---|---|---|---|---|---|---|
(nm) | 1607.55 | 1594.98 | 1582.06 | 1570.02 | 1541.16 | 1526.3 |
42.5 | 51.6 | 82.1 | 93.7 | 105.1 | 60.1 | |
Q () | 1.058 | 1.734 | 4.057 | 9.813 | 11.855 | 3.469 |
s (nm) | 5 | 10 | 20 | 30 | 40 | 50 |
---|---|---|---|---|---|---|
(nm) | 1576.42 | 1575.79 | 1573.59 | 1569.78 | 1564.22 | 1557.32 |
95.8 | 53.1 | 27.4 | 17.8 | 13.1 | 10.5 | |
Q | 9273.1 | 1731.6 | 504.3 | 242.6 | 144.9 | 93.4 |
Structure | Footprint | Q | S | |
---|---|---|---|---|
The free standing LN [15] | nm | 1000 | 0.19 pm/(V/m) | 0.5 V/m |
Si-BTO coupled photonic crystal resonator [35] | 1410 | 0.004 pm/(V/m) | V/m | |
LN on insulator/TiO nanobeam [36] | 0.85 pm/(V/m) | 0.15 V/m | ||
Micro ring resonators with polymer SEO125 [37] | The radius of 32 | - | - | 150 V/m |
multifunctional four-layer SPR structure based on BTO [38] | Thickness of 50 nm Ag & 15 nm BTO | - | 0.0129 nm/V | - |
BTO nanoparticles [This work] | Thickness of 200 nm | 11,855 | 0.1213 pm/(V/m) | 0.82 V/m |
PMN-PT thinfilm [This work] | Thickness of 200 nm | 9273 | 4.774 pm/(V/m) | 20 mV/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Liu, F.; Qiu, W.; Liu, C.; Guan, H.; Lu, H. Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials. Photonics 2022, 9, 431. https://doi.org/10.3390/photonics9060431
Yin X, Liu F, Qiu W, Liu C, Guan H, Lu H. Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials. Photonics. 2022; 9(6):431. https://doi.org/10.3390/photonics9060431
Chicago/Turabian StyleYin, Xiaowei, Fengli Liu, Wentao Qiu, Can Liu, Heyuan Guan, and Huihui Lu. 2022. "Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials" Photonics 9, no. 6: 431. https://doi.org/10.3390/photonics9060431
APA StyleYin, X., Liu, F., Qiu, W., Liu, C., Guan, H., & Lu, H. (2022). Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials. Photonics, 9(6), 431. https://doi.org/10.3390/photonics9060431