A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources
Abstract
:1. Introduction
2. Interaction of Chirped Laser and Dispersed Electron Beam
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.; Kashiwagi, S.; Yakimenko, V.; Kusche, K.; Siddons, P.; Skaritka, J.; Kumita, T.; Tsunemi, A.; et al. Demonstration of 8 × 10 18 photons/second peaked at 1.8 A in a relativistic Thomson scattering experiment. PPhys. Rev. Spec. Top.-Accel. Beams 2000, 3, 090702. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.J.; Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Booth, R.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; et al. Experimental characterization of an ultrafast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis. Phys. Rev. Spec. Top.-Accel. Beams 2004, 7, 060702. [Google Scholar] [CrossRef]
- Bech, M.; Bunk, O.; David, C.; Ruth, R.; Rifkin, J.; Loewen, R.; Feidenhans’l, R.; Pfeiffer, F. Hard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays. J. Synchrotron Rad. 2009, 16, 43. [Google Scholar] [CrossRef]
- Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.; Mori, K. Quasi-monochromatic hard X-ray source via laser Compton scattering and its application. Nucl. Instrum. Methods Phys. Res. 2011, A637, S183–S186. [Google Scholar] [CrossRef]
- Du, Y.; Yan, L.; Hua, J.; Du, Q.; Zhang, Z.; Li, R.; Qian, H.; Huang, W.; Chen, H.; Tang, C. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source. Rev. Sci. Instrum. 2013, 84, 053301. [Google Scholar] [CrossRef]
- Vaccarezza, C.; Alesini, D.; Anania, M.P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A. The SPARC_LAB Thomson source. Nucl. Instr. Meth. Phys. Res. A 2016, 829, 237–242. [Google Scholar] [CrossRef]
- Eggl, E.; Dierolf, M.; Achterhold, K.; Jud, C.; Guether, B.; Braig, E.; Gleich, B.; Pfeiffer, F. The Munich Compact Light Source: Initial performance measures. J. Synchrotron Radiat. 2016, 23, 1137–1142. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Y.K. Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. Spec. Top.-Accel. Beams 2011, 14, 044701. [Google Scholar] [CrossRef] [Green Version]
- EuroGammaS. Technical Design Report for the ELI_np Gamma beam System. arXiv 2014, arXiv:1407.3669. [Google Scholar]
- Babzien, M.; Ben-Zvi, I.; Kusche, K.; Pavlishin, I.V.; Pogorelsky, I.V.; Siddons, D.P.; Yakimenko, V.; Cline, D.; Zhou, F.; Hirose, T.; et al. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons. Phys. Rev. Lett. 2006, 96, 054802. [Google Scholar] [CrossRef]
- Ikeura-Sekiguchi, H.; Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Koike, M.; Yamada, K.; Sakai, F.; Mori, K.; Maruyama, K.; Oka, H.; et al. In-line phase-contrast imaging of a biological specimen using a compact laser-Compton scattering-based x-ray source. Appl. Phys. Lett. 2008, 92, 131107. [Google Scholar] [CrossRef]
- Sakai, Y.; Pogorelsky, I.; Williams, O.; O’Shea, F.; Barber, S.; Gadjev, I.; Duris, J.; Musumeci, P.; Fedurin, M.; Korostyshevsky, A.; et al. Observation of redshifting and harmonic radiation in inverse Compton scattering. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 060702. [Google Scholar] [CrossRef]
- Sakai, Y.; Gadjev, I.; Hoang, P.; Majernik, N.; Nause, A.; Fukasawa, A.; Williams, O.; Fedurin, M.; Malone, B.; Swinson, C.; et al. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime. Phys. Rev. Accel. Beams 2017, 20, 060701. [Google Scholar] [CrossRef] [Green Version]
- Krämer, J.M.; Jochmann, A.; Budde, M.; Bussmann, M.; Couperus, J.P.; Cowan, T.E.; Debus, A.; Köhler, A.; Kuntzsch, M.; García, A.L.; et al. Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci. Rep. 2018, 8, 1398. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Fruhling, C.; Golovin, G.; Haden, D.; Luo, J.; Zhang, P.; Zhao, B.; Zhang, J.; Liu, C.; Chen, M.; et al. High-order multiphoton Thomson scattering. Nat. Photonics 2017, 11, 514–520. [Google Scholar] [CrossRef]
- Achterhold, K.; Bech, M.; Schleede, S.; Potdevin, G.; Ruth, R.; Loewen, R.; Pfeiffer, F. Monochromatic computed tomography with a compact laser-driven X-ray source. Sci. Rep. 2013, 3, 1313. [Google Scholar] [CrossRef]
- Golosio, B.; Endrizzi, M.; Oliva, P.; Delogu, P.; Carpinelli, M.; Pogorelsky, I.; Yakimenko, V. Measurement of an inverse Compton scattering source local spectrum using k-edge filters. Appl. Phys. Lett. 2012, 100, 164104. [Google Scholar] [CrossRef]
- Meinel, F.G.; Schwab, F.; Schleede, S.; Bech, M.; Herzen, J.; Achterhold, K.; Auweter, S.; Bamberg, F.; Yildirim, A.O.; Bohla, A.; et al. Diagnosing and mapping pulmonary emphysema on X-ray projection images: Incremental value of grating-based X-ray dark-field imaging. PLoS ONE 2013, 8, 59526. [Google Scholar]
- Schwab, F.; Schleede, S.; Hahn, D.; Bech, M.; Herzen, J.; Auweter, S.; Bamberg, F.; Achterhold, K.; Yildirim, A.O.; Bohla, A.; et al. Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue. Z. Fuer Mediznische Phys. 2013, 23, 236–242. [Google Scholar] [CrossRef]
- Vagberg, W.; Larsson, D.H.; Li, M.; Arner, A.; Hertz, H.M. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging. Sci. Rep. 2015, 5, 16625. [Google Scholar] [CrossRef] [Green Version]
- Eggl, E.; Mechlem, K.; Braig, E.; Kulpe, S.; Dierolf, M.; Gunther, B.; Achterhold, K.; Herzen, J.; Gleich, B.; Rummeny, E.; et al. Mono-energy coronary angiography with a compact synchrotron source. Sci. Rep. 2017, 7, 42211. [Google Scholar] [CrossRef] [PubMed]
- Oliva, P.; Bacci, A.; Bottigli, U.; Carpinelli, M.; Delogu, P.; Ferrario, M.; Giulietti, D.; Golosio, B.; Petrillo, V.; Serafini, L.; et al. Start-to-end simulation of a Thomson source for mammography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 615, 93–99. [Google Scholar] [CrossRef]
- Petrillo, V.; Bacci, A.; Curatolo, C.; Drebot, I.; Giribono, A.; Maroli, C.; Rossi, A.R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; et al. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 110701. [Google Scholar] [CrossRef]
- Faure, J.; Rechatin, C.; Norlin, A.; Lifschitz, A.; Glinec, Y.; Malka, V. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 2006, 444, 737–739. [Google Scholar] [CrossRef]
- Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F.; Mori, W.; Vieira, J.; Fonseca, J.R.; Silva, L. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top.-Accel. Beams 2007, 10, 061301. [Google Scholar] [CrossRef] [Green Version]
- Lundh, O.; Lim, J.; Rechatin, C.; Ammoura, L.; Ben-Ismail, A.; Davoine, X.; Gallot, G.; Goddet, J.; Lefebvre, E.; Malka, V.; et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 2011, 7, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Faure, J.; Rechatin, C.; Lundh, O.; Ammoura, L.; Malka, V. Injection and acceleration of quasi monoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas 2011, 8, 083107. [Google Scholar]
- Corde, S.; Thaury, C.; Lifschitz, A.; Lambert, G.; Phuoc, K.T.; Davoine, X.; Lehe, R.; Douillet, D.; Rousse, A.; Malka, V. Observation of longitudinal and transverse self-injections in laser-plasma accelerators. Nat. Commun. 2013, 4, 1501. [Google Scholar] [CrossRef] [Green Version]
- Thaury, C.; Guillaume, E.; Lifschitz, A.; Phuoc, K.T.; Hansson, M.; Grittani, G.; Gautier, J.; Goddet, J.-P.; Tafzi, A.; Lundh, O.; et al. Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 2015, 5, 16310. [Google Scholar] [CrossRef] [Green Version]
- Geddes, C.G.R.; Nakamura, K.; Plateau, G.R.; Toth, C.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Cary, J.R.; Leemans, W.P. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 2008, 100, 215004. [Google Scholar] [CrossRef] [Green Version]
- Leemans, W.P.; Gonsalves, A.J.; Mao, H.-S.; Nakamura, K.; Benedetti, C.; Schroeder, C.B.; Toeth, C.; Daniels, J.; Mittelberger, D.E.; Bulanov, S.S.; et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 2014, 113, 245002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalmykov, S.; Yi, S.A.; Khudik, V.; Shvets, G. Electron self-injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 2009, 103, 135004. [Google Scholar] [CrossRef] [PubMed]
- Pollock, B.B.; Clayton, C.E.; Ralph, J.E.; Albert, F.; Davidson, A.; Divol, L.; Filip, C.; Glenzer, S.H.; Herpoldt, K.; Lu, W.; et al. Demonstration of a narrow energy spread, electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 2011, 107, 045001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weingartner, R.; Raith, S.; Popp, A.; Chou, S.; Wenz, J.; Khrennikov, K.; Heigoldt, M.; Maier, A.; Kajumba, N.; Fuchs, M.; et al. Ultralow emittance electron beams from a laser-wakefield accelerator. Phys. Rev. Spec. Top.-Accel. Beams 2012, 15, 111302. [Google Scholar] [CrossRef]
- Andre, T.; Andriyash, I.A.; Loulergue, A.; Labat, M.; Roussel, E.; Ghaith, A.; Khojoyan, M.; Thaury, C.; Valleau, M.; Briquez, F.; et al. Control of laser plasma accelerated electrons for light sources. Nat. Comm. 2018, 9, 1334. [Google Scholar] [CrossRef]
- Cipiccia, S.; Islam, M.R.; Ersfeld, B.; Shanks, R.P.; Brunetti, E.; Vieux, G.; Yang, X.; Issac, R.C.; Wiggins, S.M.; Welsh, G.H.; et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 2011, 7, 867–871. [Google Scholar] [CrossRef]
- Kneip, S.; McGuffey, C.; Martins, J.L.; Martins, S.F.; Bellei, C.; Chvykov, V.; Dollar, F.; Fonseca, R.; Huntington, C.; Kalintchenko, G.; et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 2010, 6, 980–983. [Google Scholar] [CrossRef] [Green Version]
- Corde, S.; Phuoc, K.T.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 2013, 85, 1. [Google Scholar] [CrossRef]
- Albert, F.; Thomas, A.G.R. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control Fusion 2016, 58, 103001. [Google Scholar] [CrossRef]
- Schlenvoigt, H.-P.; Haupt, K.; Debus, A.; Budde, F.; Jaekel, O.; Pfotenhauer, S.; Schwoerer, H.; Rohwer, E.; Gallacher, J.; Brunetti, E.; et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 2008, 4, 130–133. [Google Scholar] [CrossRef]
- Fuchs, M.; Weingartner, R.; Popp, A.; Major, Z.; Becker, S.; Osterhoff, J.; Cortrie, I.; Zeitler, B.; Hoerlein, R.; Tsakiris, G.D.; et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 2009, 5, 826–829. [Google Scholar] [CrossRef] [Green Version]
- Lambert, G.; Corde, S.; Phuoc, K.T.; Malka, V.; Ismail, A.B.; Benveniste, E.; Specka, A.; Labat, M.; Loulergue, A.; Bachelard, R.; et al. Progress on the generation of undulator radiation in the UV from a plasma-based electron beam. In Proceedings of the FEL2012, Nara, Japan, 26–31 August 2012; p. 2. [Google Scholar]
- LUX. Available online: http://lux.cfel.de/index.htm (accessed on 20 November 2021).
- Walker, P.A.; Alesini, P.D.; Alexandrova, A.S.; Anania, M.P.; Andreev, N.E.; Andriyash, I.; Aschikhin, A.; Assmann, R.W.; Audet, T.; Bacci, A.; et al. Horizon 2020 EuPRAXIA design study. J. Phys. Conf. Ser. 2017, 874, 012029. [Google Scholar] [CrossRef]
- Ferrario, M.; Alesini, D.; Anania, M.P.; Artioli, M.; Bacci, A.; Bartocci, S.; Bedogni, R.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; et al. EuPRAXIA@ SPARC_LAB Design study towards a compact FEL facility at LNF. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. 2018, 909, 134–138. [Google Scholar] [CrossRef]
- Wang, W.; Feng, K.; Ke, L.; Yu, C.; Xu, Y.; Qi, R.; Chen, Y.; Qin, Z.; Zhang, Z.; Fang, M.; et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 2021, 595, 516–520. [Google Scholar] [CrossRef]
- Pompili, R. First lasing of a free-electron laser with a compact beam-driven plasma accelerator. Nat. Phys. 2021. submitted. [Google Scholar]
- Galletti, M. Stable Operation of a Free-Electron Laser Driven by a Plasma Accelerator. in preparation.
- Powers, N.D.; Ghebregziabher, I.; Golovin, G.; Liu, C.; Chen, S.; Banerjee, S.; Zhang, J.; Umstadter, D.P. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nat. Photonics 2014, 8, 28–31. [Google Scholar] [CrossRef]
- Chen, S.; Powers, N.D.; Ghebregziabher, I.; Maharajan, C.; Liu, C.; Golovin, G.; Banerjee, S.; Zhang, J.; Cunningham, N.; Moorti, A.; et al. MeV-Energy X Rays from Inverse Compton Scattering with Laser-Wakefield Accelerated Electrons. Phys. Rev. Lett. 2013, 110, 155003. [Google Scholar] [CrossRef] [Green Version]
- Sarri, G.; Corvan, D.J.; Schumaker, W.; Cole, J.M.; Piazza, A.D.; Ahmed, H.; Harvey, C.; Keitel, C.H.; Krushelnick, K.; Mangles, S.D.; et al. Ultrahigh Brilliance Multi-MeV g-rays Beams from Nonlinear Relativistic Thomson Scattering. Phys.Rev. Lett. 2014, 113, 224801. [Google Scholar] [CrossRef] [Green Version]
- Schwoerer, H.; Liesfeld, B.; Schlenvoigt, H.-P.; Amthor, K.-U.; Sauerbrey, R. Thomson-Backscattered X Rays From Laser-Accelerated Electrons. Phys. Rev. Lett. 2006, 96, 014802. [Google Scholar] [CrossRef]
- Khrennikov, K.; Wenz, J.; Buck, A.; Xu, J.; Heigoldt, M.; Veisz, L.; Karsch, S. Tunable All-Optical Quasimonochromatic Thomson X-Ray Source in the Nonlinear Regime. Phys. Rev. Lett. 2015, 114, 195003. [Google Scholar] [CrossRef] [Green Version]
- Phuoc, K.T.; Corde, S.; Thaury, C.; Malka, V.; Tafzi, A.; Goddet, J.P.; Shah, R.C.; Sebban, S.; Rousse, A. All-optical Compton gamma-ray source. Nat. Photonics 2012, 6, 308–311. [Google Scholar] [CrossRef]
- Ke, L.T.; Feng, K.; Wang, W.T.; Qin, Z.Y.; Yu, C.H.; Wu, Y.; Chen, Y.; Qi, R.; Zhang, Z.J.; Xu, Y.; et al. Near-GeV Electron Beams at a Few Per-Mille Level from a Laser Wakefield Accelerator via Density-Tailored Plasma. Phys. Rev. Lett. 2021, 126, 214801. [Google Scholar] [CrossRef]
- Ghebregziabher, I.; Shadwick, B.A.; Umstadter, D. Spectral bandwidth reduction of Thomson scattered light by pulse chirping. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 030705. [Google Scholar] [CrossRef] [Green Version]
- Terzić, B.; Deitrick, K.; Hofler, A.; Krafft, G.A. Narrow-band emission in Thomson sources operating in the high-field regime. Phys. Rev. Lett. 2014, 112, 074801. [Google Scholar] [CrossRef] [Green Version]
- Terzić, B.; Reeves, C.; Krafft, G.A. Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources. Phys. Rev. Spec. Top.-Accel. Beams 2016, 19, 044403. [Google Scholar] [CrossRef] [Green Version]
- Rykovanov, S.G.; Geddes, C.G.R.; Schroeder, C.B.; Esarey, E.; Leemans, W.P. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping. Phys. Rev. Spec. Top.-Accel. Beams 2016, 19, 030701. [Google Scholar] [CrossRef] [Green Version]
- Maroli, C.; Petrillo, V.; Drebot, I.; Serafini, L.; Terzić, B.; Krafft, G.A. Compensation of non-linear bandwidth broadening by laser chirping in Thomson sources. J. Appl. Phys. 2018, 124, 063105. [Google Scholar] [CrossRef] [Green Version]
- Terzić, B.; Krafft, G.; Brown, A.; Drebot, I.; Hagerman, T.; Johnson, E.; Krafft, G.A.; Maroli, C.; Petrillo, V.; Ruijter, M. Improving performance of inverse Compton sources through laser chirping. Europhys. Lett. 2019, 126, 12003. [Google Scholar] [CrossRef] [Green Version]
- Seipt, D.; Kharin, V.Y.; Rykovanov, S.G. Optimizing Laser Pulses for Narrow-Band Inverse Compton Sources in the High-Intensity Regime. Phys. Rev. Lett. 2019, 122, 204802. [Google Scholar] [CrossRef] [Green Version]
- Ruijter, M.; Petrillo, V.; Zepf, M. Decreasing the bandwidth of linear and nonlinear Thomson scattering radiation for electron bunches with a finite energy spread. Phys. Rev. Accel. Beams 2021, 24, 020702. [Google Scholar] [CrossRef]
- Bernhard, A.; Rodríguez, V.A.; Kuschel, S.; Leierb, M.; Peiffer, P.; Sävert, A.; Schwab, M.; Werner, W.; Widmann, C.; Will, A.; et al. Progress on experiments towards LWFA-driven transverse gradient undulator-based FELs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 909, 391–397. [Google Scholar] [CrossRef]
- Qin, W.; Zeng, L.; Huang, S.; Zhao, G.; Ding, Y.; Huang, Z.; Hu, R.; Lu, H.; Yan, X.; Liu, K. Study of a free-electron laser driven by a laser-plasma accelerated beam at Peking University. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 925, 193–198. [Google Scholar] [CrossRef]
- Widmann, C.; Rodriguez, V.A.; Braun, N.; Nicolai, M.; Papash, A.; Reuter, M.; Rossmanith, R.; Sävert, A.; Werner, W.; Kaluza, M.C.; et al. Beam transport system from a laser wakefield accelerator to a transverse gradient undulator. In Proceedings of the 5th International Particle Accelerator Conference (IPAC 2014), Dresden, Germany, 15–20 June 2014; pp. 2803–2806. [Google Scholar]
- Liu, T.; Huang, Z.; Liu, B.; Liu, J.S.; Wang, D.; Zhang, T. Beam Transport Line of the LPA-FEL Facility Based on Transverse Gradient Undulator. In Proceedings of the Seventh International Particle Accelerator Conference (IPAC 2016), Busan, Korea, 8–13 May 2016; pp. 3287–3290. [Google Scholar]
- Jafarinia, F. Studies on Experiments and Free-Electron Laser Concepts with a Transverse Gradient Undulator. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany. Available online: https://bib-pubdb1.desy.de/record/470631/files/Thesis.pdf (accessed on 20 November 2021).
- Trebino, R. Optics Course, Lection 27. Available online: https://frog.gatech.edu/talks.html (accessed on 20 November 2021).
- Ranjan, N.; Terzić, B.; Krafft, G.A.; Petrillo, V.; Drebot, I.; Serafini, L. Simulation of inverse Compton scattering and its implications on the scattered linewidth. Phys. Rev. Accel. Beams 2018, 21, 030701. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Akturk, S.; Trebino, R. Spatial chirp in ultrafast optics. Opt. Commun. 2004, 242, 599–604. [Google Scholar] [CrossRef]
- Huang, Z.; Ding, Y.; Schroeder, C.B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 2012, 109, 204801–204805. [Google Scholar] [CrossRef] [PubMed]
- Terzić, B.; Krafft, G.A.; Petrillo, V.; Drebot, I.; Ruijter, M. Improving inverse Compton sources by avoiding non-linearities. EPL 2020, 129, 62001. [Google Scholar] [CrossRef]
e-Beam | Laser | Radiation | ||||
---|---|---|---|---|---|---|
Q (nC) | 0.25 | 0.25 | ) | 0.8 | ) | 0.013 |
391 | 391 | (eV) | 1.55 | (KeV) | 951 | |
0.1 | 0.1 | 10 | bw | 0.026 | ||
3.5 | 3.5 | (ps) | 3 | |||
3.5 | 3.5 | 0.165 | ||||
0.5 | 1.14 | E (J) | 0.5 | B(u*) | ||
0.5 | 0.5 | (rad) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrillo, V.; Drebot, I.; Krafft, G.; Maroli, C.; Rossi, A.R.; Rossetti Conti, M.; Ruijter, M.; Terzić, B. A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources. Photonics 2022, 9, 62. https://doi.org/10.3390/photonics9020062
Petrillo V, Drebot I, Krafft G, Maroli C, Rossi AR, Rossetti Conti M, Ruijter M, Terzić B. A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources. Photonics. 2022; 9(2):62. https://doi.org/10.3390/photonics9020062
Chicago/Turabian StylePetrillo, Vittoria, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, and Balša Terzić. 2022. "A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources" Photonics 9, no. 2: 62. https://doi.org/10.3390/photonics9020062
APA StylePetrillo, V., Drebot, I., Krafft, G., Maroli, C., Rossi, A. R., Rossetti Conti, M., Ruijter, M., & Terzić, B. (2022). A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources. Photonics, 9(2), 62. https://doi.org/10.3390/photonics9020062